1
|
Ellis VA, Kalbskopf V, Ciloglu A, Duc M, Huang X, Inci A, Bensch S, Hellgren O, Palinauskas V. Genomic sequence capture of Plasmodium relictum in experimentally infected birds. Parasit Vectors 2022; 15:267. [PMID: 35906670 PMCID: PMC9336033 DOI: 10.1186/s13071-022-05373-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/25/2022] [Indexed: 01/23/2023] Open
Abstract
Background Sequencing parasite genomes in the presence of host DNA is challenging. Sequence capture can overcome this problem by using RNA probes that hybridize with the parasite DNA and then are removed from solution, thus isolating the parasite DNA for efficient sequencing. Methods Here we describe a set of sequence capture probes designed to target 1035 genes (c. 2.5 Mbp) of the globally distributed avian haemosporidian parasite, Plasmodium relictum. Previous sequence capture studies of avian haemosporidians from the genus Haemoproteus have shown that sequencing success depends on parasitemia, with low-intensity, chronic infections (typical of most infected birds in the wild) often being difficult to sequence. We evaluate the relationship between parasitemia and sequencing success using birds experimentally infected with P. relictum and kept under laboratory conditions. Results We confirm the dependence of sequencing success on parasitemia. Sequencing success was low for birds with low levels of parasitemia (< 1% infected red blood cells) and high for birds with higher levels of parasitemia. Plasmodium relictum is composed of multiple lineages defined by their mitochondrial DNA haplotype including three that are widespread (SGS1, GRW11, and GRW4); the probes successfully isolated DNA from all three. Furthermore, we used data from 25 genes to describe both among- and within-lineage genetic variation. For example, two samples of SGS1 isolated from different host species differed by 11 substitutions across those 25 genes. Conclusions The sequence capture approach we describe will allow for the generation of genomic data that will contribute to our understanding of the population genetic structure and evolutionary history of P. relictum, an extreme host generalist and widespread parasite. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05373-w.
Collapse
Affiliation(s)
- Vincenzo A Ellis
- Molecular Ecology and Evolution Laboratory, Department of Biology, Lund University, S-22362, Lund, Sweden.,Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE, USA
| | - Victor Kalbskopf
- Molecular Ecology and Evolution Laboratory, Department of Biology, Lund University, S-22362, Lund, Sweden
| | - Arif Ciloglu
- Molecular Ecology and Evolution Laboratory, Department of Biology, Lund University, S-22362, Lund, Sweden.,Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, 38280, Kayseri, Turkey.,Vectors and Vector-Borne Diseases Implementation and Research Center, Erciyes University, 38280, Kayseri, Turkey
| | - Mélanie Duc
- Molecular Ecology and Evolution Laboratory, Department of Biology, Lund University, S-22362, Lund, Sweden.,Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Xi Huang
- Molecular Ecology and Evolution Laboratory, Department of Biology, Lund University, S-22362, Lund, Sweden.,MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, People's Republic of China
| | - Abdullah Inci
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, 38280, Kayseri, Turkey.,Vectors and Vector-Borne Diseases Implementation and Research Center, Erciyes University, 38280, Kayseri, Turkey
| | - Staffan Bensch
- Molecular Ecology and Evolution Laboratory, Department of Biology, Lund University, S-22362, Lund, Sweden
| | - Olof Hellgren
- Molecular Ecology and Evolution Laboratory, Department of Biology, Lund University, S-22362, Lund, Sweden.
| | | |
Collapse
|
2
|
Rodrigues JR, Roy SW, Sehgal RNM. Novel RNA viruses associated with avian haemosporidian parasites. PLoS One 2022; 17:e0269881. [PMID: 35771829 PMCID: PMC9246168 DOI: 10.1371/journal.pone.0269881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
Avian haemosporidian parasites can cause malaria-like symptoms in their hosts and have been implicated in the demise of some bird species. The newly described Matryoshka RNA viruses (MaRNAV1 and MaRNAV2) infect haemosporidian parasites that in turn infect their vertebrate hosts. MaRNAV2 was the first RNA virus discovered associated with parasites of the genus Leucocytozoon. By analyzing metatranscriptomes from the NCBI SRA database with local sequence alignment tools, we detected two novel RNA viruses; we describe them as MaRNAV3 associated with Leucocytozoon and MaRNAV4 associated with Parahaemoproteus. MaRNAV3 had ~59% amino acid identity to the RNA-dependent RNA-polymerase (RdRp) of MaRNAV1 and ~63% amino acid identity to MaRNAV2. MaRNAV4 had ~44% amino acid identity to MaRNAV1 and ~47% amino acid identity to MaRNAV2. These findings lead us to hypothesize that MaRNAV_like viruses are widespread and tightly associated with the order Haemosporida since they have been described in human Plasmodium vivax, and now two genera of avian haemosporidians.
Collapse
Affiliation(s)
- Jose Roberto Rodrigues
- Department of Biology, San Francisco State University, San Francisco, CA, United States of America
| | - Scott W. Roy
- Department of Biology, San Francisco State University, San Francisco, CA, United States of America
- * E-mail: (RNMS); (SWR)
| | - Ravinder N. M. Sehgal
- Department of Biology, San Francisco State University, San Francisco, CA, United States of America
- * E-mail: (RNMS); (SWR)
| |
Collapse
|
3
|
Videvall E, Paxton KL, Campana MG, Cassin‐Sackett L, Atkinson CT, Fleischer RC. Transcriptome assembly and differential gene expression of the invasive avian malaria parasite Plasmodium relictum in Hawai'i. Ecol Evol 2021; 11:4935-4944. [PMID: 33976860 PMCID: PMC8093664 DOI: 10.1002/ece3.7401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
The malaria parasite Plasmodium relictum (lineage GRW4) was introduced less than a century ago to the native avifauna of Hawai'i, where it has since caused major declines of endemic bird populations. One of the native bird species that is frequently infected with GRW4 is the Hawai'i 'amakihi (Chlorodrepanis virens). To achieve a better understanding of the transcriptional activities of this virulent parasite, we performed a controlled challenge experiment of 15 'amakihi that were infected with GRW4. Blood samples containing malaria parasites were collected at two time points (intermediate and peak infection stages) from host individuals that were either experimentally infected by mosquitoes or inoculated with infected blood. We then used RNA sequencing to assemble a high-quality blood transcriptome of P. relictum GRW4, allowing us to quantify parasite expression levels inside individual birds. We found few significant differences (one to two transcripts) in GRW4 expression levels between host infection stages and between inoculation methods. However, 36 transcripts showed differential expression levels among all host individuals, indicating a potential presence of host-specific gene regulation across hosts. To reduce the extinction risk of the remaining native bird species in Hawai'i, genetic resources of the local Plasmodium lineage are needed to enable further molecular characterization of this parasite. Our newly built Hawaiian GRW4 transcriptome assembly, together with analyses of the parasite's transcriptional activities inside the blood of Hawai'i 'amakihi, can provide us with important knowledge on how to combat this deadly avian disease in the future.
Collapse
Affiliation(s)
- Elin Videvall
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteNational Zoological ParkWashingtonDCUSA
| | - Kristina L. Paxton
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteNational Zoological ParkWashingtonDCUSA
- Present address:
Hawai‘i Cooperative Studies UnitUniversity of Hawai'i at HiloHawai‘i National ParkHIUSA
| | - Michael G. Campana
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteNational Zoological ParkWashingtonDCUSA
| | - Loren Cassin‐Sackett
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteNational Zoological ParkWashingtonDCUSA
- Department of BiologyUniversity of LouisianaLafayetteLAUSA
| | - Carter T. Atkinson
- U.S. Geological Survey Pacific Island Ecosystems Research CenterKilauea Field StationHawai‘i National ParkHIUSA
| | - Robert C. Fleischer
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteNational Zoological ParkWashingtonDCUSA
| |
Collapse
|
5
|
Galen SC, Borner J, Williamson JL, Witt CC, Perkins SL. Metatranscriptomics yields new genomic resources and sensitive detection of infections for diverse blood parasites. Mol Ecol Resour 2019; 20:14-28. [PMID: 31507097 DOI: 10.1111/1755-0998.13091] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/22/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022]
Abstract
Metatranscriptomics is a powerful method for studying the composition and function of complex microbial communities. The application of metatranscriptomics to multispecies parasite infections is of particular interest, as research on parasite evolution and diversification has been hampered by technical challenges to genome-scale DNA sequencing. In particular, blood parasites of vertebrates are abundant and diverse although they often occur at low infection intensities and exist as multispecies infections, rendering the isolation of genomic sequence data challenging. Here, we use birds and their diverse haemosporidian parasites to illustrate the potential for metatranscriptome sequencing to generate large quantities of genome-wide sequence data from multiple blood parasite species simultaneously. We used RNA-sequencing of 24 blood samples from songbirds in North America to show that metatranscriptomes can yield large proportions of haemosporidian protein-coding gene repertoires even when infections are of low intensity (<0.1% red blood cells infected) and consist of multiple parasite taxa. By bioinformatically separating host and parasite transcripts and assigning them to the haemosporidian genus of origin, we found that transcriptomes detected ~23% more total parasite infections across all samples than were identified using microscopy and DNA barcoding. For single-species infections, we obtained data for >1,300 loci from samples with as low as 0.03% parasitaemia, with the number of loci increasing with infection intensity. In total, we provide data for 1,502 single-copy orthologous loci from a phylogenetically diverse set of 33 haemosporidian mitochondrial lineages. The metatranscriptomic approach described here has the potential to accelerate ecological and evolutionary research on haemosporidians and other diverse parasites.
Collapse
Affiliation(s)
- Spencer C Galen
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA.,Richard Gilder Graduate School, American Museum of Natural History, New York, NY, USA
| | - Janus Borner
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA.,Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Jessie L Williamson
- Department of Biology, Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Christopher C Witt
- Department of Biology, Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Susan L Perkins
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| |
Collapse
|