1
|
Farag A, Koung Ngeun S, Kaneda M, Aboubakr M, Tanaka R. Optimizing Cardiomyocyte Differentiation: Comparative Analysis of Bone Marrow and Adipose-Derived Mesenchymal Stem Cells in Rats Using 5-Azacytidine and Low-Dose FGF and IGF Treatment. Biomedicines 2024; 12:1923. [PMID: 39200387 PMCID: PMC11352160 DOI: 10.3390/biomedicines12081923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
Mesenchymal stem cells (MSCs) exhibit multipotency, self-renewal, and immune-modulatory properties, making them promising in regenerative medicine, particularly in cardiovascular treatments. However, optimizing the MSC source and induction method of cardiac differentiation is challenging. This study compares the cardiomyogenic potential of bone marrow (BM)-MSCs and adipose-derived (AD)-MSCs using 5-Azacytidine (5-Aza) alone or combined with low doses of Fibroblast Growth Factor (FGF) and Insulin-like Growth Factor (IGF). BM-MSCs and AD-MSCs were differentiated using two protocols: 10 μmol 5-Aza alone and 10 μmol 5-Aza with 1 ng/mL FGF and 10 ng/mL IGF. Morphological, transcriptional, and translational analyses, along with cell viability assessments, were performed. Both the MSC types exhibited similar morphological changes; however, AD-MSCs achieved 70-80% confluence faster than BM-MSCs. Surface marker profiling confirmed CD29 and CD90 positivity and CD45 negativity. The differentiation protocols led to cell flattening and myotube formation, with earlier differentiation in AD-MSCs. The combined protocol reduced cell mortality in BM-MSCs and enhanced the expression of cardiac markers (MEF2c, Troponin I, GSK-3β), particularly in BM-MSCs. Immunofluorescence confirmed cardiac-specific protein expression in all the treated groups. Both MSC types exhibited the expression of cardiac-specific markers indicative of cardiomyogenic differentiation, with the combined treatment showing superior efficiency for BM-MSCs.
Collapse
Affiliation(s)
- Ahmed Farag
- Veterinary Teaching Hospital, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sai Koung Ngeun
- Laboratory of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
| | - Ryou Tanaka
- Veterinary Teaching Hospital, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
2
|
Yang C, Gao Z, Wang Y, Zhang Q, Bai M, Yang H, Guo J, Zhang Y. Genome-wide DNA methylation analysis reveals layer-specific methylation patterns in deer antler tissue. Gene 2023; 884:147744. [PMID: 37640118 DOI: 10.1016/j.gene.2023.147744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
This paper explored using of deer antlers as a model for studying rapid growth and cartilage formation in mammals. The genes and regulatory mechanisms involved in antler chondrogenesis are poorly understood, however, previous research has suggested that DNA methylation played a key role in antler regeneration. By using fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP), this study measured DNA methylation levels in cartilage (CA) and reserve mesenchyme (RM) cells and tissues. Results showed that RM cells (RMCs) DNA methylation levels were significantly lower than those of CA, suggesting that DNA demethylation may be involved in antler fast cartilage differentiation. The study also identified 20 methylated fragments specific to RMCs or CA using the methylation-sensitive amplified polymorphism (MSAP) technique and confirmed these findings using southern blot analysis. The data provide the first experimental evidence of a link between epigenetic regulation and rapid cartilage differentiation in antlers.
Collapse
Affiliation(s)
- Chun Yang
- College of Basic Medicine, Beihua University, Jilin, PR China.
| | - Zizheng Gao
- College of Basic Medicine, Beihua University, Jilin, PR China
| | - Yukun Wang
- School of Stomatology, Beihua University, Jilin, PR China
| | - Qi Zhang
- School of Public Health, Beihua University, Jilin, PR China
| | - Muran Bai
- School of Stomatology, Beihua University, Jilin, PR China
| | - Huiran Yang
- School of Public Health, Beihua University, Jilin, PR China
| | - Junqi Guo
- The Third Clinical Medicine Affiliated to Changchun University of Chinese Medicine, Changchun, PR China.
| | - Yan Zhang
- School of Public Health, Beihua University, Jilin, PR China.
| |
Collapse
|
3
|
Malatji K, Singh A, Thobakgale C, Alexandre K. Development of a Multiplex HIV/TB Diagnostic Assay Based on the Microarray Technology. BIOSENSORS 2023; 13:894. [PMID: 37754128 PMCID: PMC10526232 DOI: 10.3390/bios13090894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Currently there are diagnostic tests available for human immunodeficiency virus (HIV) and tuberculosis (TB); however, they are still diagnosed separately, which can delay treatment in cases of co-infection. Here we report on a multiplex microarray technology for the detection of HIV and TB antibodies using p24 as well as TB CFP10, ESAT6 and pstS1 antigens on epoxy-silane slides. To test this technology for antigen-antibody interactions, immobilized antigens were exposed to human sera spiked with physiological concentrations of primary antibodies, followed by secondary antibodies conjugated to a fluorescent reporter. HIV and TB antibodies were captured with no cross-reactivity observed. The sensitivity of the slides was compared to that of high-binding plates. We found that the slides were more sensitive, with the detection limit being 0.000954 µg/mL compared to 4.637 µg/mL for the plates. Furthermore, stability studies revealed that the immobilized antigens could be stored dry for at least 90 days and remained stable across all pH and temperatures assessed, with pH 7.4 and 25 °C being optimal. The data collectively suggested that the HIV/TB multiplex detection technology we developed has the potential for use to diagnose HIV and TB co-infection, and thus can be developed further for the purpose.
Collapse
Affiliation(s)
- Kanyane Malatji
- Array Technology Laboratory, Synthetic Biology and Precision Medicine Centre: Next Generation Health Cluster, Council for Scientific and Industrial Research, Brummeria, Pretoria 0001, South Africa (K.A.)
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Braamfontein, Johannesburg 2000, South Africa;
| | - Advaita Singh
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research, Brummeria, Pretoria 0001, South Africa
| | - Christina Thobakgale
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Braamfontein, Johannesburg 2000, South Africa;
- Centre for HIV and STIs, National Institute for Communicable Diseases, Sandringham, Johannesburg 2192, South Africa
| | - Kabamba Alexandre
- Array Technology Laboratory, Synthetic Biology and Precision Medicine Centre: Next Generation Health Cluster, Council for Scientific and Industrial Research, Brummeria, Pretoria 0001, South Africa (K.A.)
| |
Collapse
|
4
|
Ma L, He X, Wu Q. The Molecular Regulatory Mechanism in Multipotency and Differentiation of Wharton's Jelly Stem Cells. Int J Mol Sci 2023; 24:12909. [PMID: 37629090 PMCID: PMC10454700 DOI: 10.3390/ijms241612909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are isolated from Wharton's jelly tissue of umbilical cords. They possess the ability to differentiate into lineage cells of three germ layers. WJ-MSCs have robust proliferative ability and strong immune modulation capacity. They can be easily collected and there are no ethical problems associated with their use. Therefore, WJ-MSCs have great tissue engineering value and clinical application prospects. The identity and functions of WJ-MSCs are regulated by multiple interrelated regulatory mechanisms, including transcriptional regulation and epigenetic modifications. In this article, we summarize the latest research progress on the genetic/epigenetic regulation mechanisms and essential signaling pathways that play crucial roles in pluripotency and differentiation of WJ-MSCs.
Collapse
Affiliation(s)
| | | | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
5
|
Shi Y, Qin B, Fan X, Li Y, Wang Y, Yuan W, Jiang Z, Zhu P, Chen J, Chen Y, Li F, Wan Y, Wu X, Zhuang J. Novel biphasic mechanism of the canonical Wnt signalling component PYGO2 promotes cardiomyocyte differentiation from hUC-MSCs. Cell Tissue Res 2023:10.1007/s00441-023-03774-6. [PMID: 37233752 DOI: 10.1007/s00441-023-03774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) are used to regenerate the myocardium during cardiac repair after myocardial infarction. However, the regulatory mechanism underlying their ability to form mesodermal cells and differentiate into cardiomyocytes remains unclear. Here, we established a human-derived MSCs line isolated from healthy umbilical cords and established a cell model of the natural state to examine the differentiation of hUC-MSCs into cardiomyocytes. Quantitative RT-PCR, western blotting, immunofluorescence, flow cytometry, RNA Seq, and inhibitors of canonical Wnt signalling were used to detect the germ-layer markers T and MIXL1; the markers of cardiac progenitor cells MESP1, GATA4, and NKX2.5 and the cardiomyocyte-marker cTnT to identify the molecular mechanism associated with PYGO2, a key component of the canonical Wnt signalling pathway that regulates the formation of cardiomyocyte-like cells. We demonstrated that PYGO2 promotes the formation of mesodermal-like cells and their differentiation into cardiomyocytes through the hUC-MSC-dependent canonical Wnt signalling by promoting the early-stage entry of β-catenin into the nucleus. Surprisingly, PYGO2 did not alter the expression of the canonical-Wnt, NOTCH, or BMP signalling pathways during the middle-late stages. In contrast, PI3K-Akt signalling promoted hUC-MSCs formation and their differentiation into cardiomyocyte-like cells. To the best of our knowledge, this is the first study to demonstrate that PYGO2 uses a biphasic mechanism to promote cardiomyocyte formation from hUC-MSCs.
Collapse
Affiliation(s)
- Yan Shi
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
- Laboratory of Artificial Intelligence and 3D Technologies for Cardiovascular Diseases, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Bin Qin
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Hunan, Changsha, 410081, China
| | - Xiongwei Fan
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Yongqing Li
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Hunan, Changsha, 410081, China
| | - Yuequn Wang
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Hunan, Changsha, 410081, China
| | - Wuzhou Yuan
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Hunan, Changsha, 410081, China
| | - Zhigang Jiang
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Hunan, Changsha, 410081, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Jimei Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Yu Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Fang Li
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Hunan, Changsha, 410081, China
| | - Yongqi Wan
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Hunan, Changsha, 410081, China.
| | - Xiushan Wu
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Hunan, Changsha, 410081, China.
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
- Laboratory of Artificial Intelligence and 3D Technologies for Cardiovascular Diseases, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
6
|
Aparna GM, Tetala KKR. Recent Progress in Development and Application of DNA, Protein, Peptide, Glycan, Antibody, and Aptamer Microarrays. Biomolecules 2023; 13:602. [PMID: 37189350 PMCID: PMC10135839 DOI: 10.3390/biom13040602] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Microarrays are one of the trailblazing technologies of the last two decades and have displayed their importance in all the associated fields of biology. They are widely explored to screen, identify, and gain insights on the characteristics traits of biomolecules (individually or in complex solutions). A wide variety of biomolecule-based microarrays (DNA microarrays, protein microarrays, glycan microarrays, antibody microarrays, peptide microarrays, and aptamer microarrays) are either commercially available or fabricated in-house by researchers to explore diverse substrates, surface coating, immobilization techniques, and detection strategies. The aim of this review is to explore the development of biomolecule-based microarray applications since 2018 onwards. Here, we have covered a different array of printing strategies, substrate surface modification, biomolecule immobilization strategies, detection techniques, and biomolecule-based microarray applications. The period of 2018-2022 focused on using biomolecule-based microarrays for the identification of biomarkers, detection of viruses, differentiation of multiple pathogens, etc. A few potential future applications of microarrays could be for personalized medicine, vaccine candidate screening, toxin screening, pathogen identification, and posttranslational modifications.
Collapse
Affiliation(s)
| | - Kishore K. R. Tetala
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamilnadu, India;
| |
Collapse
|
7
|
Sharma A, Gupta S, Archana S, Verma RS. Emerging Trends in Mesenchymal Stem Cells Applications for Cardiac Regenerative Therapy: Current Status and Advances. Stem Cell Rev Rep 2022; 18:1546-1602. [PMID: 35122226 DOI: 10.1007/s12015-021-10314-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 12/29/2022]
Abstract
Irreversible myocardium infarction is one of the leading causes of cardiovascular disease (CVD) related death and its quantum is expected to grow in coming years. Pharmacological intervention has been at the forefront to ameliorate injury-related morbidity and mortality. However, its outcomes are highly skewed. As an alternative, stem cell-based tissue engineering/regenerative medicine has been explored quite extensively to regenerate the damaged myocardium. The therapeutic modality that has been most widely studied both preclinically and clinically is based on adult multipotent mesenchymal stem cells (MSC) delivered to the injured heart. However, there is debate over the mechanistic therapeutic role of MSC in generating functional beating cardiomyocytes. This review intends to emphasize the role and use of MSC in cardiac regenerative therapy (CRT). We have elucidated in detail, the various aspects related to the history and progress of MSC use in cardiac tissue engineering and its multiple strategies to drive cardiomyogenesis. We have further discussed with a focus on the various therapeutic mechanism uncovered in recent times that has a significant role in ameliorating heart-related problems. We reviewed recent and advanced technologies using MSC to develop/create tissue construct for use in cardiac regenerative therapy. Finally, we have provided the latest update on the usage of MSC in clinical trials and discussed the outcome of such studies in realizing the full potential of MSC use in clinical management of cardiac injury as a cellular therapy module.
Collapse
Affiliation(s)
- Akriti Sharma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India
| | - Santosh Gupta
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India
| | - S Archana
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India.
| |
Collapse
|
8
|
Genome-wide methylome pattern predictive network analysis reveal mesenchymal stem cell's propensity to undergo cardiovascular lineage. 3 Biotech 2022; 12:12. [PMID: 34966635 PMCID: PMC8660944 DOI: 10.1007/s13205-021-03058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 11/07/2021] [Indexed: 01/03/2023] Open
Abstract
Mesenchymal stem cells (MSCs) differentiation toward cardiovascular lineage prediction using the global methylome profile will highlight its prospective utility in regenerative medicine. We examined the propensity prediction to cardiovascular lineage using 5-Aza, a well-known cardiac lineage inducer. The customized 180 K microarray was performed and further analysis of global differentially methylated regions by Ingenuity pathway analysis (IPA) in both MSCs and 5-AC-treated MSCs. The cluster enrichment tools sorted differentially enriched genes and further annotated to construct the interactive networks. Prediction analysis revealed pathways pertaining to the cardiovascular lineage found active in the native MSCs, suggesting its higher propensity to undergo cardiac, smooth muscle cell, and endothelial lineages in vitro. Interestingly, gene interaction network also proposed majorly stemness gene network NANOG and KLF6, cardiac-specific transcription factors GATA4, NKX2.5, and TBX5 were upregulated in the native MSCs. Furthermore, the expression of cardiovascular lineage specific markers such as Brachury, CD105, CD90, CD31, KDR and various forms of ACTIN (cardiac, sarcomeric, smooth muscle) were validated in native MSCs using real time PCR and immunostaining and blotting analysis. In 5-AC-treated MSCs, mosaic interactive networks were observed to persuade towards osteogenesis and cardiac lineage, indicating that 5-AC treatment resulted in nonspecific lineage induction in MSCs, while MSCs by default have a higher propensity to undergo cardiovascular lineage. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03058-2.
Collapse
|
9
|
Recent Advances in Cardiac Tissue Engineering for the Management of Myocardium Infarction. Cells 2021; 10:cells10102538. [PMID: 34685518 PMCID: PMC8533887 DOI: 10.3390/cells10102538] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Myocardium Infarction (MI) is one of the foremost cardiovascular diseases (CVDs) causing death worldwide, and its case numbers are expected to continuously increase in the coming years. Pharmacological interventions have not been at the forefront in ameliorating MI-related morbidity and mortality. Stem cell-based tissue engineering approaches have been extensively explored for their regenerative potential in the infarcted myocardium. Recent studies on microfluidic devices employing stem cells under laboratory set-up have revealed meticulous events pertaining to the pathophysiology of MI occurring at the infarcted site. This discovery also underpins the appropriate conditions in the niche for differentiating stem cells into mature cardiomyocyte-like cells and leads to engineering of the scaffold via mimicking of native cardiac physiological conditions. However, the mode of stem cell-loaded engineered scaffolds delivered to the site of infarction is still a challenging mission, and yet to be translated to the clinical setting. In this review, we have elucidated the various strategies developed using a hydrogel-based system both as encapsulated stem cells and as biocompatible patches loaded with cells and applied at the site of infarction.
Collapse
|
10
|
Mesenchymal Stem Cells for Cardiac Regeneration: from Differentiation to Cell Delivery. Stem Cell Rev Rep 2021; 17:1666-1694. [PMID: 33954876 DOI: 10.1007/s12015-021-10168-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) are so far the most widely researched stem cells in clinics and used as an experimental cellular therapy module, particularly in cardiac regeneration and repair. Ever since the discovery of cardiomyogenesis induction in MSCs, a wide variety of differentiation protocols have been extensively used in preclinical models. However, pre differentiated MSC-derived cardiomyocytes have not been used in clinical trials; highlighting discrepancies and limitations in its use as a source of derived cardiomyocytes for transplantation to improve the damaged heart function. Therefore, this review article focuses on the strategies used to derive cardiomyocytes-like cells from MSCs isolated from three widely used tissue sources and their differentiation efficiencies. We have further discussed the role of MSCs in inducing angiogenesis as a cellular precursor to endothelial cells and its secretory aspects including exosomes. We have then discussed the strategies used for delivering cells in the damaged heart and how its retention plays a critical role in the overall outcome of the therapy. We have also conversed about the scope of the local and systemic modes of delivery of MSCs and the application of biomaterials to improve the overall delivery efficacy and function. We have finally discussed the advantages and limitations of cell delivery to the heart and the future scope of MSCs in cardiac regenerative therapy.
Collapse
|
11
|
Cardiac Differentiation of Mesenchymal Stem Cells: Impact of Biological and Chemical Inducers. Stem Cell Rev Rep 2021; 17:1343-1361. [PMID: 33864233 DOI: 10.1007/s12015-021-10165-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular disorders (CVDs) are the leading cause of global death, widely occurs due to irreparable loss of the functional cardiomyocytes. Stem cell-based therapeutic approaches, particularly the use of Mesenchymal Stem Cells (MSCs) is an emerging strategy to regenerate myocardium and thereby improving the cardiac function after myocardial infarction (MI). Most of the current approaches often employ the use of various biological and chemical factors as cues to trigger and modulate the differentiation of MSCs into the cardiac lineage. However, the recent advanced methods of using specific epigenetic modifiers and exosomes to manipulate the epigenome and molecular pathways of MSCs to modify the cardiac gene expression yield better profiled cardiomyocyte like cells in vitro. Hitherto, the role of cardiac specific inducers triggering cardiac differentiation at the cellular and molecular level is not well understood. Therefore, the current review highlights the impact and recent trends in employing biological and chemical inducers on cardiac differentiation of MSCs. Thereby, deciphering the interactions between the cellular microenvironment and the cardiac inducers will help us to understand cardiomyogenesis of MSCs. Additionally, the review also provides an insight on skeptical roles of the cell free biological factors and extracellular scaffold assisted mode for manipulation of native and transplanted stem cells towards translational cardiac research.
Collapse
|
12
|
5-Azacytidine-Induced Cardiomyocyte Differentiation of Very Small Embryonic-Like Stem Cells. Stem Cells Int 2020; 2020:5162350. [PMID: 32963547 PMCID: PMC7495233 DOI: 10.1155/2020/5162350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/29/2020] [Accepted: 06/16/2020] [Indexed: 11/17/2022] Open
Abstract
The use of stem cells in generating cell-based pacemaker therapies for bradyarrhythmia is currently being considered. Due to the propensity of stem cells to form tumors, as well as ethical issues surrounding their use, the seed cells used in cardiac biological pacemakers have limitations. Very small embryonic-like stem cells (VSELs) are a unique and rare adult stem cell population, which have the same structural, genetic, biochemical, and functional characteristics as embryonic stem cells without the ethical controversy. In this study, we investigated the ability of rat bone marrow- (BM-) derived VSELs to differentiate in vitro into cardiomyocytes by 5-Azacytidine (5-AzaC) treatment. The morphology of VSELs treated with 10 μM 5-AzaC increased in volume and gradually changed to cardiomyocyte-like morphology without massive cell death. Additionally, mRNA expression of the cardiomyocyte markers cardiac troponin-T (cTnT) and α-sarcomeric actin (α-actin) was significantly upregulated after 5-AzaC treatment. Conversely, stem cell markers such as Nanog, Oct-4, and Sox2 were continuously downregulated posttreatment. On day 14 post-5-AzaC treatment, the positive expression rates of cTnT and α-actin were 18.41 ± 1.51% and 19.43 ± 0.51%, respectively. Taken together, our results showed that rat BM-VSELs have the ability to differentiate into cardiomyocytes in vitro. These findings suggest that VSELs would be useful as seed cells in exploring the mechanism of biological pacemaker activity.
Collapse
|
13
|
Zipporah E B, Patra B, Govarthanan K, Yadav R, Mohan S, Shyamsunder P, Verma RS. Defective cell proliferation is an attribute of overexpressed Notch1 receptor and impaired autophagy in Fanconi Anemia. Genomics 2020; 112:4628-4639. [PMID: 32800766 DOI: 10.1016/j.ygeno.2020.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 01/22/2023]
Abstract
Fanconi Anemia (FA) is an inherited bone marrow failure syndrome caused by mutation in FA pathway proteins, involved in Interstrand Cross Link (ICL) repair. FA cells exhibit in vitro proliferation arrest due to accumulated DNA damage, hence understanding the rescue mechanism that renders proliferation advantage is required. Gene expression profiling performed in FA patients Peripheral Blood Mononuclear Cells (PBMCs) revealed a wide array of dysregulated biological processes. Functional enrichment and gene clustering analysis showed crippled autophagy process and escalated Notch signalling pathway in FA clinical samples and cell lines. Notch pathway mediators overexpression were reverted in FANCA mutant cells when treated with Rapamycin, an autophagy inducer. Additionally, Rapamycin stabilized cell viability after treatment with the DNA damaging agent, MitomycinC (MMC) and enhanced cell proliferation genes expression in FANCA mutant cells. Inherently FANCA mutant cells express impaired autophagy; thus activation of autophagy channelizes Notch signalling cascade and sustains cell viability.
Collapse
Affiliation(s)
- Binita Zipporah E
- Stem Cell and Molecular Biology Lab, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India
| | - Bamadeb Patra
- Stem Cell and Molecular Biology Lab, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India
| | - Kavitha Govarthanan
- Stem Cell and Molecular Biology Lab, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India
| | - Rajesh Yadav
- Stem Cell and Molecular Biology Lab, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India
| | - Sheila Mohan
- Apollo Speciality hospital, 320 Padma complex, Anna Salai, Chennai 600 035, India; Registry for Fanconi Anemia in India (REFAIN), India
| | - Pavithra Shyamsunder
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 119077, Singapore
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Lab, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India.
| |
Collapse
|
14
|
Wang J, Tian GG, Li X, Sun Y, Cheng L, Li Y, Shen Y, Chen X, Tang W, Tao S, Wu J. Integrated Glycosylation Patterns of Glycoproteins and DNA Methylation Landscapes in Mammalian Oogenesis and Preimplantation Embryo Development. Front Cell Dev Biol 2020; 8:555. [PMID: 32754589 PMCID: PMC7365846 DOI: 10.3389/fcell.2020.00555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Glycosylation is one of the most fundamental post-translational modifications. However, the glycosylation patterns of glycoproteins have not been analyzed in mammalian preimplantation embryos, because of technical difficulties and scarcity of the required materials. Using high-throughput lectin microarrays of low-input cells and electrochemical techniques, an integration analysis of the DNA methylation and glycosylation landscapes of mammal oogenesis and preimplantation embryo development was performed. Highly noticeable changes occurred in the level of protein glycosylation during these events. Further analysis identified several stage-specific lectins including LEL, MNA-M, and MAL I. It was later confirmed that LEL was involved in mammalian oogenesis and preimplantation embryogenesis, and might be a marker of FGSC differentiation. Modified nanocomposite polyaniline/AuNPs were characterized by electron microscopy and modification on bare gold electrodes using layer-by-layer assembly technology. These nanoparticles were further subjected to accuracy measurements by analyzing the protein level of ten-eleven translocation protein (TET), which is an important enzyme in DNA demethylation that is regulated by O-glycosylation. Subsequent results showed that the variations in the glycosylation patterns of glycoproteins were opposite to those of the TET levels. Moreover, analysis of correlation between the changes in glyco-gene expression and female germline stem cell glycosylation profiles indicated that glycosylation was related to DNA methylation. Subsequent integration analysis showed that the trend in the variations of glycosylation patterns of glycoproteins was similar to that of DNA methylation and opposite to that of the TET protein levels during female germ cell and preimplantation embryo development. Our findings provide insight into the complex molecular mechanisms that regulate human embryo development, and a foundation for further elucidation of early embryonic development and informed reproductive medicine.
Collapse
Affiliation(s)
- Jian Wang
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Geng G. Tian
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyong Li
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yangyang Sun
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Li Cheng
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yanfei Li
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Shen
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xuejin Chen
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenwei Tang
- School of Chemistry Science and Technology, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, China
| | - Shengce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Ji Wu
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|