1
|
Anjna B, Purty RS. Unraveling the impact of abiotic stress on conserved microRNA expression and their target genes in Stevia rebaudiana. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1795-1818. [PMID: 39687701 PMCID: PMC11646260 DOI: 10.1007/s12298-024-01527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 12/18/2024]
Abstract
Production of stevioside and rebaudioside in Stevia rebaudiana is greatly affected due to extreme environmental conditions. MicroRNAs are known to play an important role in post-transcriptional gene regulation. Here, the aim was to study the effect of abiotic stresses on the Stevia plantlets and then to identify and validate the expression of the conserved microRNAs and their targets under abiotic stress conditions. The effect of dehydration, salinity and cold stress treatment on 7-week-old Stevia plantlets was analyzed. Plant growth, relative water content, malondialdehyde content and antioxidant activity were greatly affected under stress treatment. In the present investigation, amongst the various abiotic stresses studied, 9% PEG treatment greatly affected the Stevia plantlets. To identify the microRNAs, BLAST analysis was performed. A homology search of known miRNAs from the PMRD database against non-redundant Stevia genomic sequences resulted in the prediction of 37 conserved miRNAs and their targets were identified using the psRNATarget server. All the predicted miRNAs had lengths of 20, 21, 22, 23, 24, and 25 nucleotides, respectively. The identified potential conserved miRNAs belong to 34 distinct miRNA families. The highest potential miRNAs are represented by miR169 family followed by miR156, miR172, and miR396 families. Promoter analysis of miRNA-targets genes revealed the presence of numerous cis-acting regulatory elements involved in hormonal and stress-response mechanisms. Further, expression analysis revealed an inverse correlation between the selected identified miRNAs and their targets under abiotic stress treatments. Identifying stress-responsive miRNAs and their targets will help us understand the molecular mechanisms of stress tolerance in Stevia. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01527-5.
Collapse
Affiliation(s)
- Babita Anjna
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sec-16C, Dwarka, New Delhi 110078 India
| | - Ram Singh Purty
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sec-16C, Dwarka, New Delhi 110078 India
| |
Collapse
|
2
|
Ma L, Xu Y, Tao X, Fahim AM, Zhang X, Han C, Yang G, Wang W, Pu Y, Liu L, Fan T, Wu J, Sun W. Integrated miRNA and mRNA Transcriptome Analysis Reveals Regulatory Mechanisms in the Response of Winter Brassica rapa to Drought Stress. Int J Mol Sci 2024; 25:10098. [PMID: 39337583 PMCID: PMC11432419 DOI: 10.3390/ijms251810098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Drought is a major abiotic stress factor that reduces agricultural productivity. Understanding the molecular regulatory network of drought response in winter rape is of great significance for molecular Brassica rapa. In order to comprehensively analyze the network expression of DEGs and DEMIs in winter rape under drought stress, in this study we used Longyou 7 as the experimental material to identify DEGs and DEMIs related to drought stress by transcriptome and miRNA sequencing. A total of 14-15 key differential mRNA genes related to drought stress and biological stress were screened out under different treatments in the three groups. and 32 differential miRNAs were identified through targeted regulatory relationships, and the mRNA expression of 20 target genes was negatively regulated by the targeting regulatory relationship. It is mainly enriched in starch and sucrose metabolism, carbon metabolism and other pathways. Among them, gra-MIR8731-p3_2ss13GA18GA regulated the expression of multiple mRNAs in the three treatments. miRNA is mainly involved in the drought resistance of Chinese cabbage winter rape by regulating the expression of target genes, such as starch and sucrose metabolism, amino acid biosynthesis, and carbon metabolism. These miRNAs and their target genes play an indispensable role in winter rapeseed drought stress tolerance regulation.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanxia Xu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaolei Tao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Abbas Muhammad Fahim
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xianliang Zhang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunyang Han
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Gang Yang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Wangtian Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanyuan Pu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Lijun Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Tingting Fan
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Junyan Wu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Wancang Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Zhang A, Pi W, Wang Y, Li Y, Wang J, Liu S, Cui X, Liu H, Yao D, Zhao R. Update on functional analysis of long non-coding RNAs in common crops. FRONTIERS IN PLANT SCIENCE 2024; 15:1389154. [PMID: 38872885 PMCID: PMC11169716 DOI: 10.3389/fpls.2024.1389154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
With the rapid advances in next-generation sequencing technology, numerous non-protein-coding transcripts have been identified, including long noncoding RNAs (lncRNAs), which are functional RNAs comprising more than 200 nucleotides. Although lncRNA-mediated regulatory processes have been extensively investigated in animals, there has been considerably less research on plant lncRNAs. Nevertheless, multiple studies on major crops showed lncRNAs are involved in crucial processes, including growth and development, reproduction, and stress responses. This review summarizes the progress in the research on lncRNA roles in several major crops, presents key strategies for exploring lncRNAs in crops, and discusses current challenges and future prospects. The insights provided in this review will enhance our comprehension of lncRNA functions in crops, with potential implications for improving crop genetics and breeding.
Collapse
Affiliation(s)
- Aijing Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Wenxuan Pi
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yashuo Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yuxin Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Jiaxin Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Shuying Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiyan Cui
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Huijing Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Dan Yao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Rengui Zhao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| |
Collapse
|
4
|
Zhang P, Li F, Tian Y, Wang D, Fu J, Rong Y, Wu Y, Gao T, Zhang H. Transcriptome Analysis of Sesame ( Sesamum indicum L.) Reveals the LncRNA and mRNA Regulatory Network Responding to Low Nitrogen Stress. Int J Mol Sci 2024; 25:5501. [PMID: 38791539 PMCID: PMC11122487 DOI: 10.3390/ijms25105501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Nitrogen is one of the important factors restricting the development of sesame planting and industry in China. Cultivating sesame varieties tolerant to low nitrogen is an effective way to solve the problem of crop nitrogen deficiency. To date, the mechanism of low nitrogen tolerance in sesame has not been elucidated at the transcriptional level. In this study, two sesame varieties Zhengzhi HL05 (ZZ, nitrogen efficient) and Burmese prolific (MD, nitrogen inefficient) in low nitrogen were used for RNA-sequencing. A total of 3964 DEGs (differentially expressed genes) and 221 DELs (differentially expressed lncRNAs) were identified in two sesame varieties at 3d and 9d after low nitrogen stress. Among them, 1227 genes related to low nitrogen tolerance are mainly located in amino acid metabolism, starch and sucrose metabolism and secondary metabolism, and participate in the process of transporter activity and antioxidant activity. In addition, a total of 209 pairs of lncRNA-mRNA were detected, including 21 pairs of trans and 188 cis. WGCNA (weighted gene co-expression network analysis) analysis divided the obtained genes into 29 modules; phenotypic association analysis identified three low-nitrogen response modules; through lncRNA-mRNA co-expression network, a number of hub genes and cis/trans-regulatory factors were identified in response to low-nitrogen stress including GS1-2 (glutamine synthetase 1-2), PAL (phenylalanine ammonia-lyase), CHS (chalcone synthase, CHS), CAB21 (chlorophyll a-b binding protein 21) and transcription factors MYB54, MYB88 and NAC75 and so on. As a trans regulator, lncRNA MSTRG.13854.1 affects the expression of some genes related to low nitrogen response by regulating the expression of MYB54, thus responding to low nitrogen stress. Our research is the first to provide a more comprehensive understanding of DEGs involved in the low nitrogen stress of sesame at the transcriptome level. These results may reveal insights into the molecular mechanisms of low nitrogen tolerance in sesame and provide diverse genetic resources involved in low nitrogen tolerance research.
Collapse
Affiliation(s)
- Pengyu Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (P.Z.); (F.L.); (Y.T.); (D.W.); (J.F.); (Y.R.); (Y.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Feng Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (P.Z.); (F.L.); (Y.T.); (D.W.); (J.F.); (Y.R.); (Y.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Yuan Tian
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (P.Z.); (F.L.); (Y.T.); (D.W.); (J.F.); (Y.R.); (Y.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Dongyong Wang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (P.Z.); (F.L.); (Y.T.); (D.W.); (J.F.); (Y.R.); (Y.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Jinzhou Fu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (P.Z.); (F.L.); (Y.T.); (D.W.); (J.F.); (Y.R.); (Y.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Yasi Rong
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (P.Z.); (F.L.); (Y.T.); (D.W.); (J.F.); (Y.R.); (Y.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Yin Wu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (P.Z.); (F.L.); (Y.T.); (D.W.); (J.F.); (Y.R.); (Y.W.)
| | - Tongmei Gao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (P.Z.); (F.L.); (Y.T.); (D.W.); (J.F.); (Y.R.); (Y.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (P.Z.); (F.L.); (Y.T.); (D.W.); (J.F.); (Y.R.); (Y.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|
5
|
Li H, Zhang Y, Lan J, Wang S, Cai H, Meng X, Ren Y, Yang M. Identification of Differentially Expressed lncRNAs in Response to Blue Light and Expression Pattern Analysis of Populus tomentosa Hybrid Poplar 741. PLANTS (BASEL, SWITZERLAND) 2023; 12:3157. [PMID: 37687403 PMCID: PMC10490017 DOI: 10.3390/plants12173157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Poplar is an important shelterbelt, timber stand, and city tree species that has been the focus of forestry research. The regulatory role of the long non-coding RNA molecule (lncRNA; length > 200 nt) has been a research hotspot in plants. In this study, seedlings of 741 poplar were irradiated with LED blue and white light, and the Illumina HiSeq 2000 sequencing platform was used to identify lncRNAs. |logFC| > 1 and p < 0.05 were considered to indicate differentially expressed lncRNAs, and nine differentially expressed lncRNAs were screened, the target genes of which were predicted, and three functionally annotated target genes were obtained. The differentially expressed lncRNAs were identified as miRNA targets. Six lncRNAs were determined to be target sites for twelve mRNAs in six miRNA families. LncRNAs and their target genes, including lncRNA MSTRG.20413.1-ptc-miR396e-5p-GRF9, were verified using quantitative real-time polymerase chain reaction analysis, and the expression patterns were analyzed. The analysis showed that the ptc-miR396e-5p expression was downregulated, while lncRNA MSTRG.20413.1 and GRF9 expression was upregulated, after blue light exposure. These results indicate that lncRNAs interact with miRNAs to regulate gene expression and affect plant growth and development.
Collapse
Affiliation(s)
- Hongyan Li
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China; (H.L.); (Y.Z.); (S.W.); (H.C.); (X.M.); (Y.R.)
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Yiwen Zhang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China; (H.L.); (Y.Z.); (S.W.); (H.C.); (X.M.); (Y.R.)
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Jinping Lan
- Life Science Research Center, Hebei North University, Zhangjiakou 075000, China;
| | - Shijie Wang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China; (H.L.); (Y.Z.); (S.W.); (H.C.); (X.M.); (Y.R.)
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Hongyu Cai
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China; (H.L.); (Y.Z.); (S.W.); (H.C.); (X.M.); (Y.R.)
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Xin Meng
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China; (H.L.); (Y.Z.); (S.W.); (H.C.); (X.M.); (Y.R.)
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Yachao Ren
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China; (H.L.); (Y.Z.); (S.W.); (H.C.); (X.M.); (Y.R.)
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Minsheng Yang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China; (H.L.); (Y.Z.); (S.W.); (H.C.); (X.M.); (Y.R.)
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| |
Collapse
|
6
|
Pasandideh Arjmand M, Samizadeh Lahiji H, Mohsenzadeh Golfazani M, Biglouei MH. Evaluation of protein's interaction and the regulatory network of some drought-responsive genes in Canola under drought and re-watering conditions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1085-1102. [PMID: 37829706 PMCID: PMC10564702 DOI: 10.1007/s12298-023-01345-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 10/14/2023]
Abstract
Drought stress is one of the most important environmental stresses that severely limits the growth and yield of Canola. The re-watering can compensate for the damage caused by drought stress. Investigation of protein's interaction of genes involved in important drought-responsive pathways and their regulatory network by microRNAs (miRNAs) under drought and re-watering conditions are helpful approaches to discovering drought-stress tolerance and recovery mechanisms. In this study, the protein's interaction and functional enrichment analyses of glycolysis, pentose phosphate, glyoxylate cycle, fatty acid biosynthesis, heat shock factor main genes, and the regulatory network of key genes by miRNAs were investigated by in silico analysis. Then, the relative expression of key genes and their related miRNAs were investigated in tolerant and susceptible genotypes of Canola under drought and re-watering conditions by Real-time PCR technique. The bna-miR156b/c/g, bna-miR395d/e/f, bna-miR396a, and all the studied key genes except HSFA1E and PK showed changes in expression levels in one or both genotypes after re-watering. The PPC1 and HSFB2B expression decreased, whereas the MLS and CAC3 expression increased in both genotypes under re-watering treatment after drought stress. It could cause the regulation of oxaloacetate production, the increase of the glyoxylate cycle, lipid biosynthesis, and the reduction of the negative regulation of HSFs under re-watering conditions. It seems that PPC1, G6PD2, MLS, CAC3, and HSFB2B were involved in the recovery mechanisms after drought stress of Canola. They were regulated by drought-responsive miRNAs to respond appropriately to drought stress. Therefore, regulating these genes could be important in plant recovery mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01345-1.
Collapse
Affiliation(s)
- Maryam Pasandideh Arjmand
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | | | - Mohammad Hassan Biglouei
- Department of Water Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
7
|
Cui J, Qiu T, Li L, Cui S. De novo full-length transcriptome analysis of two ecotypes of Phragmites australis (swamp reed and dune reed) provides new insights into the transcriptomic complexity of dune reed and its long-term adaptation to desert environments. BMC Genomics 2023; 24:180. [PMID: 37020272 PMCID: PMC10077656 DOI: 10.1186/s12864-023-09271-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND The extremely harsh environment of the desert is changing dramatically every moment, and the rapid adaptive stress response in the short term requires enormous energy expenditure to mobilize widespread regulatory networks, which is all the more detrimental to the survival of the desert plants themselves. The dune reed, which has adapted to desert environments with complex and variable ecological factors, is an ideal type of plant for studying the molecular mechanisms by which Gramineae plants respond to combinatorial stress of the desert in their natural state. But so far, the data on the genetic resources of reeds is still scarce, therefore most of their research has focused on ecological and physiological studies. RESULTS In this study, we obtained the first De novo non-redundant Full-Length Non-Chimeric (FLNC) transcriptome databases for swamp reeds (SR), dune reeds (DR) and the All of Phragmites australis (merged of iso-seq data from SR and DR), using PacBio Iso-Seq technology and combining tools such as Iso-Seq3 and Cogent. We then identified and described long non-coding RNAs (LncRNA), transcription factor (TF) and alternative splicing (AS) events in reeds based on a transcriptome database. Meanwhile, we have identified and developed for the first time a large number of candidates expressed sequence tag-SSR (EST-SSRs) markers in reeds based on UniTransModels. In addition, through differential gene expression analysis of wild-type and homogenous cultures, we found a large number of transcription factors that may be associated with desert stress tolerance in the dune reed, and revealed that members of the Lhc family have an important role in the long-term adaptation of dune reeds to desert environments. CONCLUSIONS Our results provide a positive and usable genetic resource for Phragmites australis with a widespread adaptability and resistance, and provide a genetic database for subsequent reeds genome annotation and functional genomic studies.
Collapse
Affiliation(s)
- Jipeng Cui
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Haidian District, Beijing, 100048, China
| | - Tianhang Qiu
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Haidian District, Beijing, 100048, China
| | - Li Li
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Haidian District, Beijing, 100048, China
| | - Suxia Cui
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, 100048, China.
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Haidian District, Beijing, 100048, China.
| |
Collapse
|
8
|
Molecular Aspects of MicroRNAs and Phytohormonal Signaling in Response to Drought Stress: A Review. Curr Issues Mol Biol 2022; 44:3695-3710. [PMID: 36005149 PMCID: PMC9406886 DOI: 10.3390/cimb44080253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Phytohormones play an essential role in plant growth and development in response to environmental stresses. However, plant hormones require a complex signaling network combined with other signaling pathways to perform their proper functions. Thus, multiple phytohormonal signaling pathways are a prerequisite for understanding plant defense mechanism against stressful conditions. MicroRNAs (miRNAs) are master regulators of eukaryotic gene expression and are also influenced by a wide range of plant development events by suppressing their target genes. In recent decades, the mechanisms of phytohormone biosynthesis, signaling, pathways of miRNA biosynthesis and regulation were profoundly characterized. Recent findings have shown that miRNAs and plant hormones are integrated with the regulation of environmental stress. miRNAs target several components of phytohormone pathways, and plant hormones also regulate the expression of miRNAs or their target genes inversely. In this article, recent developments related to molecular linkages between miRNAs and phytohormones were reviewed, focusing on drought stress.
Collapse
|
9
|
Ali S, Khan N, Tang Y. Epigenetic marks for mitigating abiotic stresses in plants. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153740. [PMID: 35716656 DOI: 10.1016/j.jplph.2022.153740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/02/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stressors are one of the major factors affecting agricultural output. Plants have evolved adaptive systems to respond appropriately to various environmental cues. These responses can be accomplished by modulating or fine-tuning genetic and epigenetic regulatory mechanisms. Understanding the response of plants' molecular features to abiotic stress is a priority in the current period of continued environmental changes. Epigenetic modifications are necessary that control gene expression by changing chromatin status and recruiting various transcription regulators. The present study summarized the current knowledge on epigenetic modifications concerning plant responses to various environmental stressors. The functional relevance of epigenetic marks in regulating stress tolerance has been revealed, and epigenetic changes impact the effector genes. This study looks at the epigenetic mechanisms that govern plant abiotic stress responses, especially DNA methylation, histone methylation/acetylation, chromatin remodeling, and various metabolites. Plant breeders will benefit from a thorough understanding of these processes to create alternative crop improvement approaches. Genome editing with clustered regularly interspaced short palindromic repeat/CRISPR-associated proteins (CRISPR/Cas) provides genetic tools to make agricultural genetic engineering more sustainable and publicly acceptable.
Collapse
Affiliation(s)
- Shahid Ali
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, FL, 32611, USA
| | - Yulin Tang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
10
|
Sagwal V, Sihag P, Singh Y, Mehla S, Kapoor P, Balyan P, Kumar A, Mir RR, Dhankher OP, Kumar U. Development and characterization of nitrogen and phosphorus use efficiency responsive genic and miRNA derived SSR markers in wheat. Heredity (Edinb) 2022; 128:391-401. [PMID: 35132208 PMCID: PMC9177559 DOI: 10.1038/s41437-022-00506-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
Among all the nutrients, nitrogen (N) and phosphorous (P) are the most limiting factors reducing wheat production and productivity world-wide. These macronutrients are directly applied to soil in the form of fertilizers. However, only 30-40% of these applied fertilizers are utilized by crop plants, while the rest is lost through volatilization, leaching, and surface run off. Therefore, to overcome the deficiency of N and P, it becomes necessary to improve their use efficiency. Marker-assisted selection (MAS) combined with traditional plant breeding approaches is considered best to improve the N and P use efficiency (N/PUE) of wheat varieties. In this study, we developed and evaluated a total of 98 simple sequence repeat (SSR) markers including 66 microRNAs and 32 gene-specific SSRs on a panel of 10 (N and P efficient/deficient) wheat genotypes. Out of these, 35 SSRs were found polymorphic and have been used for the study of genetic diversity and population differentiation. A set of two SSRs, namely miR171a and miR167a were found candidate markers able to discriminate contrasting genotypes for N/PUE, respectively. Therefore, these two markers could be used as functional markers for characterization of wheat germplasm for N and P use efficiency. Target genes of these miRNAs were found to be highly associated with biological processes (24 GO terms) as compared to molecular function and cellular component and shows differential expression under various P starving conditions and abiotic stresses.
Collapse
Affiliation(s)
- Vijeta Sagwal
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Pooja Sihag
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Yogita Singh
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Sheetal Mehla
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Prexha Kapoor
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Priyanka Balyan
- Department of Botany, Deva Nagri P.G. College, CCS University, Meerut, 250001, India
| | - Anuj Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-Kashmir), Srinagar, J&K, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Upendra Kumar
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, 125004, India.
| |
Collapse
|
11
|
The Functional Interplay between Ethylene, Hydrogen Sulfide, and Sulfur in Plant Heat Stress Tolerance. Biomolecules 2022; 12:biom12050678. [PMID: 35625606 PMCID: PMC9138313 DOI: 10.3390/biom12050678] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Plants encounter several abiotic stresses, among which heat stress is gaining paramount attention because of the changing climatic conditions. Severe heat stress conspicuously reduces crop productivity through changes in metabolic processes and in growth and development. Ethylene and hydrogen sulfide (H2S) are signaling molecules involved in defense against heat stress through modulation of biomolecule synthesis, the antioxidant system, and post-translational modifications. Other compounds containing the essential mineral nutrient sulfur (S) also play pivotal roles in these defense mechanisms. As biosynthesis of ethylene and H2S is connected to the S-assimilation pathway, it is logical to consider the existence of a functional interplay between ethylene, H2S, and S in relation to heat stress tolerance. The present review focuses on the crosstalk between ethylene, H2S, and S to highlight their joint involvement in heat stress tolerance.
Collapse
|
12
|
Ma X, Zhao F, Zhou B. The Characters of Non-Coding RNAs and Their Biological Roles in Plant Development and Abiotic Stress Response. Int J Mol Sci 2022; 23:ijms23084124. [PMID: 35456943 PMCID: PMC9032736 DOI: 10.3390/ijms23084124] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
Plant growth and development are greatly affected by the environment. Many genes have been identified to be involved in regulating plant development and adaption of abiotic stress. Apart from protein-coding genes, more and more evidence indicates that non-coding RNAs (ncRNAs), including small RNAs and long ncRNAs (lncRNAs), can target plant developmental and stress-responsive mRNAs, regulatory genes, DNA regulatory regions, and proteins to regulate the transcription of various genes at the transcriptional, posttranscriptional, and epigenetic level. Currently, the molecular regulatory mechanisms of sRNAs and lncRNAs controlling plant development and abiotic response are being deeply explored. In this review, we summarize the recent research progress of small RNAs and lncRNAs in plants, focusing on the signal factors, expression characters, targets functions, and interplay network of ncRNAs and their targets in plant development and abiotic stress responses. The complex molecular regulatory pathways among small RNAs, lncRNAs, and targets in plants are also discussed. Understanding molecular mechanisms and functional implications of ncRNAs in various abiotic stress responses and development will benefit us in regard to the use of ncRNAs as potential character-determining factors in molecular plant breeding.
Collapse
Affiliation(s)
- Xu Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Fei Zhao
- Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
- Correspondence: (F.Z.); (B.Z.); Tel.: +86-0538-8243-965 (F.Z.); +86-0451-8219-1738 (B.Z.)
| | - Bo Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Correspondence: (F.Z.); (B.Z.); Tel.: +86-0538-8243-965 (F.Z.); +86-0451-8219-1738 (B.Z.)
| |
Collapse
|
13
|
Gelaw TA, Sanan-Mishra N. Nanomaterials coupled with microRNAs for alleviating plant stress: a new opening towards sustainable agriculture. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:791-818. [PMID: 35592477 PMCID: PMC9110591 DOI: 10.1007/s12298-022-01163-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/21/2021] [Accepted: 03/06/2022] [Indexed: 06/15/2023]
Abstract
Plant growth and development is influenced by their continuous interaction with the environment. Their cellular machinery is geared to make rapid changes for adjusting the morphology and physiology to withstand the stressful changes in their surroundings. The present scenario of climate change has however intensified the occurrence and duration of stress and this is getting reflected in terms of yield loss. A number of breeding and molecular strategies are being adopted to enhance the performance of plants under abiotic stress conditions. In this context, the use of nanomaterials is gaining momentum. Nanotechnology is a versatile field and its application has been demonstrated in almost all the existing fields of science. In the agriculture sector, the use of nanoparticles is still limited, even though it has been found to increase germination and growth, enhance physiological and biochemical activities and impact gene expression. In this review, we have summarized the use and role of nanomaterial and small non-coding RNAs in crop improvement while highlighting the potential of nanomaterial assisted eco-friendly delivery of small non-coding RNAs as an innovative strategy for mitigating the effect of abiotic stress.
Collapse
Affiliation(s)
- Temesgen Assefa Gelaw
- Group Leader, Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India
- Department of Biotechnology, College of Natural and Computational Science, Debre Birhan University, 445, Debre Birhan, Ethiopia
| | - Neeti Sanan-Mishra
- Group Leader, Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India
| |
Collapse
|
14
|
Kourani M, Mohareb F, Rezwan FI, Anastasiadi M, Hammond JP. Genetic and Physiological Responses to Heat Stress in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:832147. [PMID: 35449889 PMCID: PMC9016328 DOI: 10.3389/fpls.2022.832147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/04/2022] [Indexed: 05/07/2023]
Abstract
Given the current rise in global temperatures, heat stress has become a major abiotic challenge affecting the growth and development of various crops and reducing their productivity. Brassica napus, the second largest source of vegetable oil worldwide, experiences a drastic reduction in seed yield and quality in response to heat. This review outlines the latest research that explores the genetic and physiological impact of heat stress on different developmental stages of B. napus with a special attention to the reproductive stages of floral progression, organogenesis, and post flowering. Several studies have shown that extreme temperature fluctuations during these crucial periods have detrimental effects on the plant and often leading to impaired growth and reduced seed production. The underlying mechanisms of heat stress adaptations and associated key regulatory genes are discussed. Furthermore, an overview and the implications of the polyploidy nature of B. napus and the regulatory role of alternative splicing in forming a priming-induced heat-stress memory are presented. New insights into the dynamics of epigenetic modifications during heat stress are discussed. Interestingly, while such studies are scarce in B. napus, opposite trends in expression of key genetic and epigenetic components have been identified in different species and in cultivars within the same species under various abiotic stresses, suggesting a complex role of these genes and their regulation in heat stress tolerance mechanisms. Additionally, omics-based studies are discussed with emphasis on the transcriptome, proteome and metabolome of B. napus, to gain a systems level understanding of how heat stress alters its yield and quality traits. The combination of omics approaches has revealed crucial interactions and regulatory networks taking part in the complex machinery of heat stress tolerance. We identify key knowledge gaps regarding the impact of heat stress on B. napus during its yield determining reproductive stages, where in-depth analysis of this subject is still needed. A deeper knowledge of heat stress response components and mechanisms in tissue specific models would serve as a stepping-stone to gaining insights into the regulation of thermotolerance that takes place in this important crop species and support future breeding of heat tolerant crops.
Collapse
Affiliation(s)
- Mariam Kourani
- Bioinformatics Group, Cranfield University, Cranfield, United Kingdom
| | - Fady Mohareb
- Bioinformatics Group, Cranfield University, Cranfield, United Kingdom
- *Correspondence: Fady Mohareb,
| | - Faisal I. Rezwan
- Bioinformatics Group, Cranfield University, Cranfield, United Kingdom
| | - Maria Anastasiadi
- Bioinformatics Group, Cranfield University, Cranfield, United Kingdom
| | - John P. Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
- John P. Hammond,
| |
Collapse
|
15
|
Ahmed W, Xia Y, Li R, Zhang H, Siddique KHM, Guo P. Identification and Analysis of Small Interfering RNAs Associated With Heat Stress in Flowering Chinese Cabbage Using High-Throughput Sequencing. Front Genet 2021; 12:746816. [PMID: 34790225 PMCID: PMC8592252 DOI: 10.3389/fgene.2021.746816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Endogenous small interfering RNAs (siRNAs) are substantial gene regulators in eukaryotes and play key functions in plant development and stress tolerance. Among environmental factors, heat is serious abiotic stress that severely influences the productivity and quality of flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee). However, how siRNAs are involved in regulating gene expression during heat stress is not fully understood in flowering Chinese cabbage. Combining bioinformatical and next-generation sequencing approaches, we identified heat-responsive siRNAs in four small RNA libraries of flowering Chinese cabbage using leaves collected at 0, 1, 6, and 12 h after a 38°C heat-stress treatment; 536, 816, and 829 siRNAs exhibited substantial differential expression at 1, 6, and 12 h, respectively. Seventy-five upregulated and 69 downregulated differentially expressed siRNAs (DE-siRNAs) were common for the three time points of heat stress. We identified 795 target genes of DE-siRNAs, including serine/threonine-protein kinase SRK2I, CTR1-like, disease resistance protein RML1A-like, and RPP1, which may play a role in regulating heat tolerance. Gene ontology showed that predictive targets of DE-siRNAs may have key roles in the positive regulation of biological processes, organismal processes, responses to temperature stimulus, signaling, and growth and development. These novel results contribute to further understanding how siRNAs modulate the expression of their target genes to control heat tolerance in flowering Chinese cabbage.
Collapse
Affiliation(s)
- Waqas Ahmed
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yanshi Xia
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Ronghua Li
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Hua Zhang
- Guangzhou Academy of Agricultural Sciences, Guangzhou, China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Peiguo Guo
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
16
|
The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation. Int J Mol Sci 2021; 22:ijms222111387. [PMID: 34768817 PMCID: PMC8583499 DOI: 10.3390/ijms222111387] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Plant development processes are regulated by epigenetic alterations that shape nuclear structure, gene expression, and phenotypic plasticity; these alterations can provide the plant with protection from environmental stresses. During plant growth and development, these processes play a significant role in regulating gene expression to remodel chromatin structure. These epigenetic alterations are mainly regulated by transposable elements (TEs) whose abundance in plant genomes results in their interaction with genomes. Thus, TEs are the main source of epigenetic changes and form a substantial part of the plant genome. Furthermore, TEs can be activated under stress conditions, and activated elements cause mutagenic effects and substantial genetic variability. This introduces novel gene functions and structural variation in the insertion sites and primarily contributes to epigenetic modifications. Altogether, these modifications indirectly or directly provide the ability to withstand environmental stresses. In recent years, many studies have shown that TE methylation plays a major role in the evolution of the plant genome through epigenetic process that regulate gene imprinting, thereby upholding genome stability. The induced genetic rearrangements and insertions of mobile genetic elements in regions of active euchromatin contribute to genome alteration, leading to genomic stress. These TE-mediated epigenetic modifications lead to phenotypic diversity, genetic variation, and environmental stress tolerance. Thus, TE methylation is essential for plant evolution and stress adaptation, and TEs hold a relevant military position in the plant genome. High-throughput techniques have greatly advanced the understanding of TE-mediated gene expression and its associations with genome methylation and suggest that controlled mobilization of TEs could be used for crop breeding. However, development application in this area has been limited, and an integrated view of TE function and subsequent processes is lacking. In this review, we explore the enormous diversity and likely functions of the TE repertoire in adaptive evolution and discuss some recent examples of how TEs impact gene expression in plant development and stress adaptation.
Collapse
|
17
|
Chowdhury MR, Bahadur RP, Basak J. Genome-wide prediction of cauliflower miRNAs and lncRNAs and their roles in post-transcriptional gene regulation. PLANTA 2021; 254:72. [PMID: 34519918 DOI: 10.1007/s00425-021-03689-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
We have predicted miRNAs, their targets and lncRNAs from the genome of Brassica oleracea along with their functional annotation. Selected miRNAs and their targets are experimentally validated. Roles of these non-coding RNAs in post-transcriptional gene regulation are also deciphered. Cauliflower (Brassica oleracea var. Botrytis) is an important vegetable crop for its dietary and medicinal values with rich source of vitamins, dietary fibers, flavonoids and antioxidants. MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs), which regulate gene expression by inhibiting translation or by degrading messenger RNAs (mRNAs). On the other hand, long non-coding RNAs (lncRNAs) are responsible for the up regulation and the down regulation of transcription. Although the genome of cauliflower is reported, yet the roles of these ncRNAs in post-transcriptional gene regulation (PTGR) remain elusive. In this study, we have computationally predicted 355 miRNAs, of which 280 miRNAs are novel compared to miRBase 22.1. All the predicted miRNAs belong to 121 different families. We have also identified 934 targets of 125 miRNAs along with their functional annotation. These targets are further classified into biological processes, molecular functions and cellular components. Moreover, we have predicted 634 lncRNAs, of which 61 are targeted by 30 novel miRNAs. Randomly chosen 10 miRNAs and 10 lncRNAs are experimentally validated. Five miRNA targets including squamosa promoter-binding-like protein 9, homeobox-leucine zipper protein HDG12-like, NAC domain-containing protein 100, CUP-SHAPED COTYLEDON 1 and kinesin-like protein NACK2 of four miRNAs including bol-miR156a, bol-miR162a, bol-miR164d and bol-miR2673 are also experimentally validated. We have built network models of interactions between miRNAs and their target mRNAs, as well as between miRNAs and lncRNAs. Our findings enhance the knowledge of non-coding genome of cauliflower and their roles in PTGR, and might play important roles in improving agronomic traits of this economically important crop.
Collapse
Affiliation(s)
- Moumita Roy Chowdhury
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Jolly Basak
- Department of Biotechnology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
18
|
Shang Y, Tian Y, Wang Y, Guo R. Novel lncRNA lncRNA001074 participates in the low salinity-induced response in the sea cucumber Apostichopus japonicus by targeting the let-7/NKAα axis. Cell Stress Chaperones 2021; 26:785-798. [PMID: 34291427 PMCID: PMC8492809 DOI: 10.1007/s12192-021-01207-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/22/2021] [Accepted: 04/13/2021] [Indexed: 01/18/2023] Open
Abstract
Salinity fluctuations have severe impacts on sea cucumbers and therefore important consequences in sea cucumber farming. The responses of sea cucumbers to salinity changes are reflected in the expression profiles of multiple genes and non-coding RNAs (ncRNAs). The microRNA (let-7) which is a developmental regulator, the ion transporter gene sodium potassium ATPase gene (NKAα), and the long ncRNA lncRNA001074 were previously shown to be involved in responses to salinity changes in various marine species. To better understand the relationship between ncRNAs and target genes, the let-7/NKAα/lncRNA001074 predicted interaction was investigated in this study using luciferase reporter assays and gene knockdowns in the sea cucumber Apostichopus japonicus. The results showed that NKAα was the target gene of let-7 and NKAα expression levels were inversely correlated with let-7 expression based on the luciferase reporter assays and western blots. The let-7 abundance was negatively regulated by lncRNA001074 and NKAα both in vitro and in vivo. Knockdown of lncRNA001074 led to let-7 overexpression. These results demonstrated that lncRNA001074 binds to the 3'-UTR binding site of let-7 in a regulatory manner. Furthermore, the expression profiles of let-7, NKAα, and lncRNA001074 were analyzed in sea cucumbers after the knockdown of each of these genes. The results found that lncRNA001074 competitively bound let-7 to suppress NKAα expression under low salinity conditions. The downregulation of let-7, in conjunction with the upregulation of lncRNA001074 and NKAα, may be essential for the response to low salinity change in sea cucumbers. Therefore, the dynamic balance of the lncRNA001074, NKAα, and let-7 network might be a potential response mechanism to salinity change in sea cucumbers.
Collapse
Affiliation(s)
- Yanpeng Shang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Heishijiao Street, No. 52, Dalian, 116023, China
| | - Yi Tian
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Heishijiao Street, No. 52, Dalian, 116023, China.
| | - Yan Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Heishijiao Street, No. 52, Dalian, 116023, China
| | - Ran Guo
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Heishijiao Street, No. 52, Dalian, 116023, China
| |
Collapse
|
19
|
Low expression of miR-19a-5p is associated with high mRNA expression of diacylglycerol O-acyltransferase 2 (DGAT2) in hybrid tilapia. Genomics 2021; 113:2392-2399. [PMID: 34022348 DOI: 10.1016/j.ygeno.2021.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/06/2021] [Accepted: 05/17/2021] [Indexed: 11/24/2022]
Abstract
DGAT2 (acyl CoA:diacylglycerol acyltransferase 2) is a key and rate-limiting enzyme that catalyzes the final step of triglyceride (TG) synthesis. In this study, hybrid tilapia were generated from Nile tilapia (♀) and blue tilapia (♂) crossing. The TG content levels in the liver of these tilapia were measured. The results showed that the TG content was higher in the hybrid tilapia. In addition, protein and mRNA expression levels in the tilapia livers were determined. Higher hepatic mRNA and protein expression of DGAT2 in the hybrid fish was found. A luciferase reporter assay with HEK293T cells revealed that miRNA-19a-5p targeted the 3'UTR of DGAT2, suggesting a direct regulatory mechanism. Using qRT-PCR, we found that DGAT2 mRNA levels had a negative correlation with miRNA-19a-5p expression in Nile tilapia and hybrid. Taken together, these findings provide evidence that miRNA-19a-5p is involved in TG synthesis in the regulation of lipid metabolism in tilapia.
Collapse
|
20
|
Pagano L, Rossi R, Paesano L, Marmiroli N, Marmiroli M. miRNA regulation and stress adaptation in plants. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2021. [PMID: 0 DOI: 10.1016/j.envexpbot.2020.104369] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
|
21
|
Sun K, Wang H, Sun H. NAMS webserver: coding potential assessment and functional annotation of plant transcripts. Brief Bioinform 2020; 22:5906158. [PMID: 33080021 PMCID: PMC8138890 DOI: 10.1093/bib/bbaa200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/23/2020] [Accepted: 08/04/2020] [Indexed: 11/16/2022] Open
Abstract
Recent advances in transcriptomics have uncovered lots of novel transcripts in plants. To annotate such transcripts, dissecting their coding potential is a critical step. Computational approaches have been proven fruitful in this task; however, most current tools are designed/optimized for mammals and only a few of them have been tested on a limited number of plant species. In this work, we present NAMS webserver, which contains a novel coding potential classifier, NAMS, specifically optimized for plants. We have evaluated the performance of NAMS using a comprehensive dataset containing more than 3 million transcripts from various plant species, where NAMS demonstrates high accuracy and remarkable performance improvements over state-of-the-art software. Moreover, our webserver also furnishes functional annotations, aiming to provide users informative clues to the functions of their transcripts. Considering that most plant species are poorly characterized, our NAMS webserver could serve as a valuable resource to facilitate the transcriptomic studies. The webserver with testing dataset is freely available at http://sunlab.cpy.cuhk.edu.hk/NAMS/.
Collapse
Affiliation(s)
- Kun Sun
- Corresponding authors: Kun Sun, Shenzhen Bay Laboratory, Shenzhen 518132, China. Tel.: +86-0755-2641-9310; Fax: +86-755-8696-7710. E-mail: ; Hao Sun, Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China. Tel.: +852-3763-6048; Fax: +852-2636-5090. E-mail:
| | | | | |
Collapse
|
22
|
Ahmed W, Li R, Xia Y, Bai G, Siddique KHM, Zhang H, Zheng Y, Yang X, Guo P. Comparative Analysis of miRNA Expression Profiles Between Heat-Tolerant and Heat-Sensitive Genotypes of Flowering Chinese Cabbage Under Heat Stress Using High-Throughput Sequencing. Genes (Basel) 2020; 11:E264. [PMID: 32121287 PMCID: PMC7140848 DOI: 10.3390/genes11030264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022] Open
Abstract
Heat stress disturbs cellular homeostasis, thus usually impairs yield of flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee). MicroRNAs (miRNAs) play a significant role in plant responses to different stresses by modulating gene expression at the post-transcriptional level. However, the roles that miRNAs and their target genes may play in heat tolerance of flowering Chinese cabbage remain poorly characterized. The current study sequenced six small RNA libraries generated from leaf tissues of flowering Chinese cabbage collected at 0, 6, and 12 h after 38 °C heat treatment, and identified 49 putative novel miRNAs and 43 known miRNAs that differentially expressed between heat-tolerant and heat-sensitive flowering Chinese cabbage. Among them, 14 novel and nine known miRNAs differentially expressed only in the heat-tolerant genotype under heat-stress, therefore, their target genes including disease resistance protein TAO1-like, RPS6, reticuline oxidase-like protein, etc. might play important roles in enhancing heat-tolerance. Gene Ontology (GO) analysis revealed that targets of these differentially expressed miRNAs may play key roles in responses to temperature stimulus, cell part, cellular process, cell, membrane, biological regulation, binding, and catalytic activities. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified their important functions in signal transduction, environmental adaptation, global and overview maps, as well as in stress adaptation and in MAPK signaling pathways such as cell death. These findings provide insight into the functions of the miRNAs in heat stress tolerance of flowering Chinese cabbage.
Collapse
Affiliation(s)
- Waqas Ahmed
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Ronghua Li
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yanshi Xia
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Guihua Bai
- United States Department of Agriculture - Agricultural Research Service, Hard Winter Wheat Genetics Research Unit, Manhattan, Kansas 66506, United States of America
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, LB 5005, Perth WA 6001, Australia
| | - Hua Zhang
- Guangzhou Academy of Agricultural Sciences, Guangzhou 510308, China
| | - Yansong Zheng
- Guangzhou Academy of Agricultural Sciences, Guangzhou 510308, China
| | - Xinquan Yang
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Peiguo Guo
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
23
|
Asefpour Vakilian K. Machine learning improves our knowledge about miRNA functions towards plant abiotic stresses. Sci Rep 2020; 10:3041. [PMID: 32080299 PMCID: PMC7033123 DOI: 10.1038/s41598-020-59981-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/06/2020] [Indexed: 12/03/2022] Open
Abstract
During the last two decades, human has increased his knowledge about the role of miRNAs and their target genes in plant stress response. Biotic and abiotic stresses result in simultaneous tissue-specific up/down-regulation of several miRNAs. In this study, for the first time, feature selection algorithms have been used to investigate the contribution of individual plant miRNAs in Arabidopsis thaliana response towards different levels of several abiotic stresses including drought, salinity, cold, and heat. Results of information theory-based feature selection revealed that miRNA-169, miRNA-159, miRNA-396, and miRNA-393 had the highest contributions to plant response towards drought, salinity, cold, and heat, respectively. Furthermore, regression models, i.e., decision tree (DT), support vector machines (SVMs), and Naïve Bayes (NB) were used to predict the plant stress by having the plant miRNAs' concentration. SVM with Gaussian kernel was capable of predicting plant stress (R2 = 0.96) considering miRNA concentrations as input features. Findings of this study prove the performance of machine learning as a promising tool to investigate some aspects of miRNAs' contribution to plant stress responses that have been undiscovered until today.
Collapse
Affiliation(s)
- Keyvan Asefpour Vakilian
- Department of Agrotechnology, College of Abouraihan, University of Tehran, Tehran, Iran.
- Private Laboratory of Biosensor Applications, Hamadan, Iran.
| |
Collapse
|
24
|
Tan X, Li S, Hu L, Zhang C. Genome-wide analysis of long non-coding RNAs (lncRNAs) in two contrasting rapeseed (Brassica napus L.) genotypes subjected to drought stress and re-watering. BMC PLANT BIOLOGY 2020; 20:81. [PMID: 32075594 PMCID: PMC7032001 DOI: 10.1186/s12870-020-2286-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/12/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Drought stress is a major abiotic factor that affects rapeseed (Brassica napus L.) productivity. Though previous studies indicated that long non-coding RNAs (lncRNAs) play a key role in response to drought stress, a scheme for genome-wide identification and characterization of lncRNAs' response to drought stress is still lacking, especially in the case of B. napus. In order to further understand the molecular mechanism of the response of B. napus to drought stress, we compared changes in the transcriptome between Q2 (a drought-tolerant genotype) and Qinyou8 (a drought-sensitive genotype) responding drought stress and rehydration treatment at the seedling stage. RESULTS A total of 5546 down-regulated and 6997 up-regulated mRNAs were detected in Q2 compared with 7824 and 10,251 in Qinyou8, respectively; 369 down-regulated and 108 up- regulated lncRNAs were detected in Q2 compared with 449 and 257 in Qinyou8, respectively. LncRNA-mRNA interaction network analysis indicated that the co-expression network of Q2 was composed of 145 network nodes and 5175 connections, while the co-expression network of Qinyou8 was composed of 305 network nodes and 22,327 connections. We further identified 34 transcription factors (TFs) corresponding to 126 differentially expressed lncRNAs in Q2, and 45 TFs corresponding to 359 differentially expressed lncRNAs in Qinyou8. Differential expression analysis of lncRNAs indicated that up- and down-regulated mRNAs co-expressed with lncRNAs participated in different metabolic pathways and were involved in different regulatory mechanisms in the two genotypes. Notably, some lncRNAs were co-expressed with BnaC07g44670D, which are associated with plant hormone signal transduction. Additionally, some mRNAs co-located with XLOC_052298, XLOC_094954 and XLOC_012868 were mainly categorized as signal transport and defense/stress response. CONCLUSIONS The results of this study increased our understanding of expression characterization of rapeseed lncRNAs in response to drought stress and re-watering, which would be useful to provide a reference for the further study of the function and action mechanisms of lncRNAs under drought stress and re-watering.
Collapse
Affiliation(s)
- Xiaoyu Tan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Su Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Liyong Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunlei Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|