1
|
Guo A, Nie H, Li H, Li B, Cheng C, Jiang K, Zhu S, Zhao N, Hua J. The miR3367-lncRNA67-GhCYP724B module regulates male sterility by modulating brassinosteroid biosynthesis and interacting with Aorf27 in Gossypium hirsutum. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39526576 DOI: 10.1111/jipb.13802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Cytoplasmic male sterile (CMS) lines play a crucial role in utilization of heterosis in crop plants. However, the mechanism underlying the manipulation of male sterility in cotton by long non-coding RNA (lncRNA) and brassinosteroids (BRs) remains elusive. Here, using an integrative approach combining lncRNA transcriptomic profiles with virus-induced gene silencing experiments, we identify a flower bud-specific lncRNA in the maintainer line 2074B, lncRNA67, negatively modulating with male sterility in upland cotton (Gossypium hirsutum). lncRNA67 positively regulates cytochrome P274B (GhCYP724B), which acted as an eTM (endogenous target mimic) for miR3367. The suppression of GhCYP724B induced symptoms of BR deficiency and male semi-sterility in upland cotton as well as in tobacco, which resulted from a reduction in the endogenous BR contents. GhCYP724B regulates BRs synthesis by interacting with GhDIM and GhCYP90B, two BRs biosynthesis proteins. Additionally, GhCYP724B suppressed a unique chimeric open reading frame (Aorf27) in 2074A mitochondrial genome. Ectopic expression of Aorf27 in yeast inhibited cellular growth, and over expression of Aorf27 in tobacco showed male sterility. Overall, the results proved that the miR3367-lncRNA67-GhCYP724B module positively regulates male sterility by modulating BRs biosynthesis. The findings uncovered the function of lncRNA67-GhCYP724B in male sterility, providing a new mechanism for understanding male sterility in upland cotton.
Collapse
Affiliation(s)
- Anhui Guo
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hushuai Nie
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Huijing Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Bin Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Cheng Cheng
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Kaiyun Jiang
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shengwei Zhu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
2
|
Hamid R, Jacob F, Ghorbanzadeh Z, Khayam Nekouei M, Zeinalabedini M, Mardi M, Sadeghi A, Kumar S, Ghaffari MR. Genomic insights into CKX genes: key players in cotton fibre development and abiotic stress responses. PeerJ 2024; 12:e17462. [PMID: 38827302 PMCID: PMC11144395 DOI: 10.7717/peerj.17462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/05/2024] [Indexed: 06/04/2024] Open
Abstract
Cytokinin oxidase/dehydrogenase (CKX), responsible for irreversible cytokinin degradation, also controls plant growth and development and response to abiotic stress. While the CKX gene has been studied in other plants extensively, its function in cotton is still unknown. Therefore, a genome-wide study to identify the CKX gene family in the four cotton species was conducted using transcriptomics, quantitative real-time PCR (qRT-PCR) and bioinformatics. As a result, in G. hirsutum and G. barbadense (the tetraploid cotton species), 87 and 96 CKX genes respectively and 62 genes each in G. arboreum and G. raimondii, were identified. Based on the evolutionary studies, the cotton CKX gene family has been divided into five distinct subfamilies. It was observed that CKX genes in cotton have conserved sequence logos and gene family expansion was due to segmental duplication or whole genome duplication (WGD). Collinearity and multiple synteny studies showed an expansion of gene families during evolution and purifying selection pressure has been exerted. G. hirsutum CKX genes displayed multiple exons/introns, uneven chromosomal distribution, conserved protein motifs, and cis-elements related to growth and stress in their promoter regions. Cis-elements related to resistance, physiological metabolism and hormonal regulation were identified within the promoter regions of the CKX genes. Expression analysis under different stress conditions (cold, heat, drought and salt) revealed different expression patterns in the different tissues. Through virus-induced gene silencing (VIGS), the GhCKX34A gene was found to improve cold resistance by modulating antioxidant-related activity. Since GhCKX29A is highly expressed during fibre development, we hypothesize that the increased expression of GhCKX29A in fibres has significant effects on fibre elongation. Consequently, these results contribute to our understanding of the involvement of GhCKXs in both fibre development and response to abiotic stress.
Collapse
Affiliation(s)
- Rasmieh Hamid
- Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Golestan, Iran
| | - Feba Jacob
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, Kerala, India
| | - Zahra Ghorbanzadeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Alborz, Iran
| | | | - Mehrshad Zeinalabedini
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Alborz, Iran
| | - Mohsen Mardi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Alborz, Iran
| | - Akram Sadeghi
- Department of Microbial Biotechnology and Biosafety, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Alborrz, Iran
| | - Sushil Kumar
- Agricultural Biotechnology, Anand agricultural University, Anand, Gujarat, India
| | - Mohammad Reza Ghaffari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Alborz, Iran
| |
Collapse
|
3
|
Hamid R, Ghorbanzadeh Z, Jacob F, Nekouei MK, Zeinalabedini M, Mardi M, Sadeghi A, Ghaffari MR. Decoding drought resilience: a comprehensive exploration of the cotton Eceriferum (CER) gene family and its role in stress adaptation. BMC PLANT BIOLOGY 2024; 24:468. [PMID: 38811873 PMCID: PMC11134665 DOI: 10.1186/s12870-024-05172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND The cuticular wax serves as a primary barrier that protects plants from environmental stresses. The Eceriferum (CER) gene family is associated with wax production and stress resistance. RESULTS In a genome-wide identification study, a total of 52 members of the CER family were discovered in four Gossypium species: G. arboreum, G. barbadense, G. raimondii, and G. hirsutum. There were variations in the physicochemical characteristics of the Gossypium CER (GCER) proteins. Evolutionary analysis classified the identified GCERs into five groups, with purifying selection emerging as the primary evolutionary force. Gene structure analysis revealed that the number of conserved motifs ranged from 1 to 15, and the number of exons varied from 3 to 13. Closely related GCERs exhibited similar conserved motifs and gene structures. Analyses of chromosomal positions, selection pressure, and collinearity revealed numerous fragment duplications in the GCER genes. Additionally, nine putative ghr-miRNAs targeting seven G. hirsutum CER (GhCER) genes were identified. Among them, three miRNAs, including ghr-miR394, ghr-miR414d, and ghr-miR414f, targeted GhCER09A, representing the most targeted gene. The prediction of transcription factors (TFs) and the visualization of the regulatory TF network revealed interactions with GhCER genes involving ERF, MYB, Dof, bHLH, and bZIP. Analysis of cis-regulatory elements suggests potential associations between the CER gene family of cotton and responses to abiotic stress, light, and other biological processes. Enrichment analysis demonstrated a robust correlation between GhCER genes and pathways associated with cutin biosynthesis, fatty acid biosynthesis, wax production, and stress response. Localization analysis showed that most GCER proteins are localized in the plasma membrane. Transcriptome and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) expression assessments demonstrated that several GhCER genes, including GhCER15D, GhCER04A, GhCER06A, and GhCER12D, exhibited elevated expression levels in response to water deficiency stress compared to control conditions. The functional identification through virus-induced gene silencing (VIGS) highlighted the pivotal role of the GhCER04A gene in enhancing drought resistance by promoting increased tissue water retention. CONCLUSIONS This investigation not only provides valuable evidence but also offers novel insights that contribute to a deeper understanding of the roles of GhCER genes in cotton, their role in adaptation to drought and other abiotic stress and their potential applications for cotton improvement.
Collapse
Affiliation(s)
- Rasmieh Hamid
- Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
| | - Zahra Ghorbanzadeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Feba Jacob
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India
| | | | - Mehrshad Zeinalabedini
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohsen Mardi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Akram Sadeghi
- Department of Microbial Biotechnology and Biosafety, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
4
|
Imaduwage I, Hewadikaram M. Predicted roles of long non-coding RNAs in abiotic stress tolerance responses of plants. MOLECULAR HORTICULTURE 2024; 4:20. [PMID: 38745264 PMCID: PMC11094901 DOI: 10.1186/s43897-024-00094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/06/2024] [Indexed: 05/16/2024]
Abstract
The plant genome exhibits a significant amount of transcriptional activity, with most of the resulting transcripts lacking protein-coding potential. Non-coding RNAs play a pivotal role in the development and regulatory processes in plants. Long non-coding RNAs (lncRNAs), which exceed 200 nucleotides, may play a significant role in enhancing plant resilience to various abiotic stresses, such as excessive heat, drought, cold, and salinity. In addition, the exogenous application of chemicals, such as abscisic acid and salicylic acid, can augment plant defense responses against abiotic stress. While how lncRNAs play a role in abiotic stress tolerance is relatively well-studied in model plants, this review provides a comprehensive overview of the current understanding of this function in horticultural crop plants. It also delves into the potential role of lncRNAs in chemical priming of plants in order to acquire abiotic stress tolerance, although many limitations exist in proving lncRNA functionality under such conditions.
Collapse
Affiliation(s)
- Iuh Imaduwage
- Department of Biomedical Sciences, Faculty of Science, NSBM Green University, Pitipana, Homagama, Sri Lanka
| | - Madhavi Hewadikaram
- Department of Biomedical Sciences, Faculty of Science, NSBM Green University, Pitipana, Homagama, Sri Lanka.
| |
Collapse
|
5
|
Qian Z, Shi D, Zhang H, Li Z, Huang L, Yan X, Lin S. Transcription Factors and Their Regulatory Roles in the Male Gametophyte Development of Flowering Plants. Int J Mol Sci 2024; 25:566. [PMID: 38203741 PMCID: PMC10778882 DOI: 10.3390/ijms25010566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Male gametophyte development in plants relies on the functions of numerous genes, whose expression is regulated by transcription factors (TFs), non-coding RNAs, hormones, and diverse environmental stresses. Several excellent reviews are available that address the genes and enzymes associated with male gametophyte development, especially pollen wall formation. Growing evidence from genetic studies, transcriptome analysis, and gene-by-gene studies suggests that TFs coordinate with epigenetic machinery to regulate the expression of these genes and enzymes for the sequential male gametophyte development. However, very little summarization has been performed to comprehensively review their intricate regulatory roles and discuss their downstream targets and upstream regulators in this unique process. In the present review, we highlight the research progress on the regulatory roles of TF families in the male gametophyte development of flowering plants. The transcriptional regulation, epigenetic control, and other regulators of TFs involved in male gametophyte development are also addressed.
Collapse
Affiliation(s)
- Zhihao Qian
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Dexi Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Hongxia Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Zhenzhen Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China;
| | - Xiufeng Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
6
|
Zhou D, Zhao S, Zhou H, Chen J, Huang L. A lncRNA bra-miR156HG regulates flowering time and leaf morphology as a precursor of miR156 in Brassica campestris and Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111889. [PMID: 37805055 DOI: 10.1016/j.plantsci.2023.111889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) are important regulators in plant growth and development. Here the function of a lncRNA fragment was studied, which was predicted as an endogenous target mimic (eTM) of miR156 in Brassica campesrtis. Unexpectedly, the transformation of this lncRNA into Arabidopsis thaliana neither inhibited the expression of miR156a nor resulted in any phenotypes that differed from the control plants (CK). The full-length sequence of the lncRNA (named bra-miR156HG) was then obtained using RACE and transferred into A. thaliana. The transgenic plants displayed a delay in flowering time, an increasing number of rosette leaves, and a changed morphology of cauline leaves, which was similar to the plants that expressed bra-miR156a. In contrast, the overexpression of bra-miR156HG in B. campestris resulted in an increased tip angle of leaves and changed the length-width ratio of leaves at different nodes, suggesting that bra-miR156HG may be involved in regulating the leaf morphology. Collectively, our study showed that bra-miR156HG functions as a precursor of bra-miR156a involved in regulating plant flowering time and leaf development under different biological backgrounds. The secondary structure of lncRNA is essential not only for the normal roles that it plays but also for expanding the functional diversities.
Collapse
Affiliation(s)
- Dong Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310000, China
| | - Shengke Zhao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310000, China
| | - Huiyan Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310000, China
| | - Jingwen Chen
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310000, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
7
|
Hamid R, Jacob F, Ghorbanzadeh Z, Jafari L, Alishah O. Dynamic roles of small RNAs and DNA methylation associated with heterosis in allotetraploid cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2023; 23:488. [PMID: 37828433 PMCID: PMC10571366 DOI: 10.1186/s12870-023-04495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Heterosis is a complex phenomenon wherein the hybrids outperform their parents. Understanding the underlying molecular mechanism by which hybridization leads to higher yields in allopolyploid cotton is critical for effective breeding programs. Here, we integrated DNA methylation, transcriptomes, and small RNA profiles to comprehend the genetic and molecular basis of heterosis in allopolyploid cotton at three developmental stages. RESULTS Transcriptome analysis revealed that numerous DEGs responsive to phytohormones (auxin and salicylic acid) were drastically altered in F1 hybrid compared to the parental lines. DEGs involved in energy metabolism and plant growth were upregulated, whereas DEGs related to basal defense were downregulated. Differences in homoeologous gene expression in F1 hybrid were greatly reduced after hybridization, suggesting that higher levels of parental expression have a vital role in heterosis. Small RNAome and methylome studies showed that the degree of DNA methylation in hybrid is higher when compared to the parents. A substantial number of allele-specific expression genes were found to be strongly regulated by CG allele-specific methylation levels. The hybrid exhibited higher 24-nt-small RNA (siRNA) expression levels than the parents. The regions in the genome with increased levels of 24-nt-siRNA were chiefly related to genes and their flanking regulatory regions, demonstrating a possible effect of these molecules on gene expression. The transposable elements correlated with siRNA clusters in the F1 hybrid had higher methylation levels but lower expression levels, which suggest that these non-additively expressed siRNA clusters, reduced the activity of transposable elements through DNA methylation in the hybrid. CONCLUSIONS These multi-omics data provide insights into how changes in epigenetic mechanisms and gene expression patterns can lead to heterosis in allopolyploid cotton. This makes heterosis a viable tool in cotton breeding.
Collapse
Affiliation(s)
- Rasmieh Hamid
- Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran.
| | - Feba Jacob
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India
| | - Zahra Ghorbanzadeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Leila Jafari
- Horticultural Science Department, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran
- Research Group of Agroecology in Dryland Areas, University of Hormozgan, Bandar Abbas, Iran
| | - Omran Alishah
- Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
| |
Collapse
|
8
|
Li H, Zhang Y, Lan J, Wang S, Cai H, Meng X, Ren Y, Yang M. Identification of Differentially Expressed lncRNAs in Response to Blue Light and Expression Pattern Analysis of Populus tomentosa Hybrid Poplar 741. PLANTS (BASEL, SWITZERLAND) 2023; 12:3157. [PMID: 37687403 PMCID: PMC10490017 DOI: 10.3390/plants12173157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Poplar is an important shelterbelt, timber stand, and city tree species that has been the focus of forestry research. The regulatory role of the long non-coding RNA molecule (lncRNA; length > 200 nt) has been a research hotspot in plants. In this study, seedlings of 741 poplar were irradiated with LED blue and white light, and the Illumina HiSeq 2000 sequencing platform was used to identify lncRNAs. |logFC| > 1 and p < 0.05 were considered to indicate differentially expressed lncRNAs, and nine differentially expressed lncRNAs were screened, the target genes of which were predicted, and three functionally annotated target genes were obtained. The differentially expressed lncRNAs were identified as miRNA targets. Six lncRNAs were determined to be target sites for twelve mRNAs in six miRNA families. LncRNAs and their target genes, including lncRNA MSTRG.20413.1-ptc-miR396e-5p-GRF9, were verified using quantitative real-time polymerase chain reaction analysis, and the expression patterns were analyzed. The analysis showed that the ptc-miR396e-5p expression was downregulated, while lncRNA MSTRG.20413.1 and GRF9 expression was upregulated, after blue light exposure. These results indicate that lncRNAs interact with miRNAs to regulate gene expression and affect plant growth and development.
Collapse
Affiliation(s)
- Hongyan Li
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China; (H.L.); (Y.Z.); (S.W.); (H.C.); (X.M.); (Y.R.)
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Yiwen Zhang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China; (H.L.); (Y.Z.); (S.W.); (H.C.); (X.M.); (Y.R.)
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Jinping Lan
- Life Science Research Center, Hebei North University, Zhangjiakou 075000, China;
| | - Shijie Wang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China; (H.L.); (Y.Z.); (S.W.); (H.C.); (X.M.); (Y.R.)
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Hongyu Cai
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China; (H.L.); (Y.Z.); (S.W.); (H.C.); (X.M.); (Y.R.)
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Xin Meng
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China; (H.L.); (Y.Z.); (S.W.); (H.C.); (X.M.); (Y.R.)
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Yachao Ren
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China; (H.L.); (Y.Z.); (S.W.); (H.C.); (X.M.); (Y.R.)
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Minsheng Yang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China; (H.L.); (Y.Z.); (S.W.); (H.C.); (X.M.); (Y.R.)
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| |
Collapse
|
9
|
Nie H, Cheng C, Kong J, Li H, Hua J. Plant non-coding RNAs function in pollen development and male sterility. FRONTIERS IN PLANT SCIENCE 2023; 14:1109941. [PMID: 36875603 PMCID: PMC9975556 DOI: 10.3389/fpls.2023.1109941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Male sterility is classified as either cytoplasmic male sterility (CMS) or genic male sterility (GMS). Generally, CMS involves mitochondrial genomes interacting with the nuclear genome, while GMS is caused by nuclear genes alone. Male sterility is regulated by multilevel mechanisms in which non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and phased small interfering RNAs (phasiRNAs), which have been proven to be critical elements. The development of high-throughput sequencing technology offers new opportunities to evaluate the genetic mechanism of ncRNAs in plant male sterility. In this review, we summarize the critical ncRNAs that regulate gene expression in ways dependent on or independent of hormones, which involve the differentiation of the stamen primordia, degradation of the tapetum, formation of microspores, and the release of pollen. In addition, the key mechanisms of the miRNA-lncRNA-mRNA interaction networks mediating male sterility in plants are elaborated. We present a different perspective on exploring the ncRNA-mediated regulatory pathways that control CMS in plants and create male-sterile lines through hormones or genome editing. A refined understanding of the ncRNA regulatory mechanisms in plant male sterility for the development of new sterile lines would be conducive to improve hybridization breeding.
Collapse
Affiliation(s)
- Hushuai Nie
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Cheng Cheng
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Huijing Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Xing M, Peng Z, Guan C, Guan M. Comparative study on abortion characteristics of Nsa CMS and Pol CMS and analysis of long non-coding RNAs related to pollen abortion in Brassica napus. PLoS One 2023; 18:e0284287. [PMID: 37053132 PMCID: PMC10101420 DOI: 10.1371/journal.pone.0284287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Cytoplasmic male sterile system (CMS) is one of the important methods for the utilization of heterosisin Brassica napus. The involvement of long non-coding RNAs (lncRNAs) in anther and pollen development in B.napus has been recognized, but there is little data on the involvement of lncRNAs in pollen abortion in different types of rapeseed CMS. The present study compared the cytological, physiological and biochemical characteristics of Nsa CMS (1258A) and Pol CMS (P5A) during pollen abortion, and high-throughput sequencing of flower buds of different sizes before and after pollen abortion. The results showed that insufficient energy supply was an important physiological basis for 1258A and P5A pollen abortion, and 1258A had excessive ROS (reactive oxygen species) accumulation in the stage of pollen abortion. Functional analysis showed that Starch and sucrose metabolism and Sulfur metabolism were significantly enriched before and after pollen abortion in 1258A and P5A, and a large number of genes were down-regulated. In 1258A, 227 lncRNAs had cis-targeting regulation, and 240 cis-target genes of the lncRNAs were identified. In P5A, 116 lncRNAs had cis-targeting regulation, and 101 cis-target genes of the lncRNAs were identified. There were five lncRNAs cis-target genes in 1258A and P5A during pollen abortion, and LOC106445716 encodes β-D-glucopyranosyl abscisate β-glucosidase and could regulate pollen abortion. Taken together, this study, provides a new perspective for lncRNAs to participate in the regulation of Nsa CMS and Pol CMS pollen abortion.
Collapse
Affiliation(s)
- Man Xing
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha, China
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Zechuan Peng
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha, China
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Chunyun Guan
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, China
| | - Mei Guan
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha, China
- College of Agriculture, Hunan Agricultural University, Changsha, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, China
| |
Collapse
|
11
|
Comparative Transcriptome Analysis Unveils the Molecular Mechanism Underlying Sepal Colour Changes under Acidic pH Substratum in Hydrangea macrophylla. Int J Mol Sci 2022; 23:ijms232315428. [PMID: 36499756 PMCID: PMC9739076 DOI: 10.3390/ijms232315428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The hydrangea (Hydrangea macrophylla (Thunb). Ser.), an ornamental plant, has good marketing potential and is known for its capacity to change the colour of its inflorescence depending on the pH of the cultivation media. The molecular mechanisms causing these changes are still uncertain. In the present study, transcriptome and targeted metabolic profiling were used to identify molecular changes in the RNAome of hydrangea plants cultured at two different pH levels. De novo assembly yielded 186,477 unigenes. Transcriptomic datasets provided a comprehensive and systemic overview of the dynamic networks of the gene expression underlying flower colour formation in hydrangeas. Weighted analyses of gene co-expression network identified candidate genes and hub genes from the modules linked closely to the hyper accumulation of Al3+ during different stages of flower development. F3'5'H, ANS, FLS, CHS, UA3GT, CHI, DFR, and F3H were enhanced significantly in the modules. In addition, MYB, bHLH, PAL6, PAL9, and WD40 were identified as hub genes. Thus, a hypothesis elucidating the colour change in the flowers of Al3+-treated plants was established. This study identified many potential key regulators of flower pigmentation, providing novel insights into the molecular networks in hydrangea flowers.
Collapse
|
12
|
Quan C, Li Y, Chen G, Tian X, Jia Z, Tu J, Shen J, Yi B, Fu T, Ma C, Dai C. The dynamics of lncRNAs transcription in interspecific F 1 allotriploid hybrids between Brassica species. Genomics 2022; 114:110505. [PMID: 36265744 DOI: 10.1016/j.ygeno.2022.110505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 01/15/2023]
Abstract
Interspecific hybridization is the intrinsic forces behind genome evolution. Long non-coding RNAs (lncRNAs) are important for plant biological processes regulation. However, it is unclear that these non-coding fractions are impacted by interspecific hybridization. Here we examined the profiles of lncRNAs by comparing them with coding genes in Brassica napus, three accessions of Brassica rapa, and their F1 hybrids. 6206 high-confidential lncRNAs were identified in F 1 hybrids and their parentals, and the lncRNAs transcriptome in the F1 hybrids was reprogrammed by the genome shock. Notably, genome-wide unbalanced of lncRNAs were observed between An and Ar subgenomes, ELD (Expression Level Dominance) was biased toward the An -genome in F1 hybrids, and ELD of non-conserved lncRNAs was more than conserved lncRNAs. Our findings demonstrate that the reprogramed lncRNAs acts as important role in enhancing plant plasticity, leading to the acquisition of desirable traits in polyploid Brassica species.
Collapse
Affiliation(s)
- Chengtao Quan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yuanyuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Guoting Chen
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xia Tian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhibao Jia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
13
|
Li N, Wang Z, Wang B, Wang J, Xu R, Yang T, Huang S, Wang H, Yu Q. Identification and Characterization of Long Non-coding RNA in Tomato Roots Under Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:834027. [PMID: 35865296 PMCID: PMC9295719 DOI: 10.3389/fpls.2022.834027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
As one of the most important vegetable crops in the world, the production of tomatoes was restricted by salt stress. Therefore, it is of great interest to analyze the salt stress tolerance genes. As the non-coding RNAs (ncRNAs) with a length of more than 200 nucleotides, long non-coding RNAs (lncRNAs) lack the ability of protein-coding, but they can play crucial roles in plant development and response to abiotic stresses by regulating gene expression. Nevertheless, there are few studies on the roles of salt-induced lncRNAs in tomatoes. Therefore, we selected wild tomato Solanum pennellii (S. pennellii) and cultivated tomato M82 to be materials. By high-throughput sequencing, 1,044 putative lncRNAs were identified here. Among them, 154 and 137 lncRNAs were differentially expressed in M82 and S. pennellii, respectively. Through functional analysis of target genes of differentially expressed lncRNAs (DE-lncRNAs), some genes were found to respond positively to salt stress by participating in abscisic acid (ABA) signaling pathway, brassinosteroid (BR) signaling pathway, ethylene (ETH) signaling pathway, and anti-oxidation process. We also construct a salt-induced lncRNA-mRNA co-expression network to dissect the putative mechanisms of high salt tolerance in S. pennellii. We analyze the function of salt-induced lncRNAs in tomato roots at the genome-wide levels for the first time. These results will contribute to understanding the molecular mechanisms of salt tolerance in tomatoes from the perspective of lncRNAs.
Collapse
Affiliation(s)
- Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Zhongyu Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Ruiqiang Xu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Shaoyong Huang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| |
Collapse
|
14
|
Ye J, Ge L, Geng X, He M, Yang X, Zhang L, Song X. Identification and validation of TCONS_00093333 for regulating fertility conversion of thermo-sensitive cytoplasmic male-sterility wheat with Aegilops kotschyi cytoplasm. Gene X 2022; 838:146707. [DOI: 10.1016/j.gene.2022.146707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/01/2022] [Accepted: 06/24/2022] [Indexed: 11/04/2022] Open
|
15
|
Zand Karimi H, Baldrich P, Rutter BD, Borniego L, Zajt KK, Meyers BC, Innes RW. Arabidopsis apoplastic fluid contains sRNA- and circular RNA-protein complexes that are located outside extracellular vesicles. THE PLANT CELL 2022; 34:1863-1881. [PMID: 35171271 PMCID: PMC9048913 DOI: 10.1093/plcell/koac043] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/14/2021] [Indexed: 05/21/2023]
Abstract
Previously, we have shown that apoplastic wash fluid (AWF) purified from Arabidopsis leaves contains small RNAs (sRNAs). To investigate whether these sRNAs are encapsulated inside extracellular vesicles (EVs), we treated EVs isolated from Arabidopsis leaves with the protease trypsin and RNase A, which should degrade RNAs located outside EVs but not those located inside. These analyses revealed that apoplastic RNAs are mostly located outside and are associated with proteins. Further analyses of these extracellular RNAs (exRNAs) revealed that they include both sRNAs and long noncoding RNAs (lncRNAs), including circular RNAs (circRNAs). We also found that exRNAs are highly enriched in the posttranscriptional modification N6-methyladenine (m6A). Consistent with this, we identified a putative m6A-binding protein in AWF, GLYCINE-RICH RNA-BINDING PROTEIN 7 (GRP7), as well as the sRNA-binding protein ARGONAUTE2 (AGO2). These two proteins coimmunoprecipitated with lncRNAs, including circRNAs. Mutation of GRP7 or AGO2 caused changes in both the sRNA and lncRNA content of AWF, suggesting that these proteins contribute to the secretion and/or stabilization of exRNAs. We propose that exRNAs located outside of EVs mediate host-induced gene silencing, rather than RNA located inside EVs.
Collapse
Affiliation(s)
- Hana Zand Karimi
- Department of Biology, Indiana University, Bloomington 47405, Indiana, USA
| | | | - Brian D Rutter
- Department of Biology, Indiana University, Bloomington 47405, Indiana, USA
| | - Lucía Borniego
- Department of Biology, Indiana University, Bloomington 47405, Indiana, USA
| | - Kamil K Zajt
- Department of Biology, Indiana University, Bloomington 47405, Indiana, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St Louis 63132, Missouri, USA
- Division of Plant Sciences, University of Missouri-Columbia, Columbia 65211, Missouri, USA
| | | |
Collapse
|
16
|
Unravelling the treasure trove of drought-responsive genes in wild-type peanut through transcriptomics and physiological analyses of root. Funct Integr Genomics 2022; 22:215-233. [PMID: 35195841 DOI: 10.1007/s10142-022-00833-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/04/2022]
Abstract
Peanut is one of the most valuable legumes, grown mainly in arid and semi-arid regions, where its production may be hindered by the lack of water. Therefore, breeding drought tolerant varieties is of great importance for peanut breeding programs around the world. Unlike cultivated peanuts, wild peanuts have greater genetic diversity and are an important source of alleles conferring tolerance/resistance to abiotic and biotic stresses. To decipher the transcriptome changes under drought stress, transcriptomics of roots of highly tolerant Arachis duranensis (ADU) and moderately susceptible A. stenosperma (AST) genotypes were performed. Transcriptome analysis revealed an aggregate of 1465 differentially expressed genes (DEGs), and among the identified DEGs, there were 366 single nucleotide polymorphisms (SNPs). Gene ontology and Mapman analyses revealed that the ADU genotype had a higher number of transcripts related to DNA methylation or demethylation, phytohormone signal transduction and flavonoid production, transcription factors, and responses to ethylene. The transcriptome analysis was endorsed by qRT-PCR, which showed a strong correlation value (R2 = 0.96). Physio-biochemical analysis showed that the drought-tolerant plants produced more osmolytes, ROS phagocytes, and sugars, but less MDA, thus attenuating the effects of drought stress. In addition, three SNPs of the gene encoding transcription factor NFAY (Aradu.YE2F8), expansin alpha (Aradu.78HGD), and cytokinin dehydrogenase 1-like (Aradu.U999X) exhibited polymorphism in selected different genotypes. Such SNPs could be useful for the selection of drought-tolerant genotypes.
Collapse
|
17
|
Satyavathi CT, Tomar RS, Ambawat S, Kheni J, Padhiyar SM, Desai H, Bhatt SB, Shitap MS, Meena RC, Singhal T, Sankar SM, Singh SP, Khandelwal V. Stage specific comparative transcriptomic analysis to reveal gene networks regulating iron and zinc content in pearl millet [Pennisetum glaucum (L.) R. Br.]. Sci Rep 2022; 12:276. [PMID: 34997160 PMCID: PMC8742121 DOI: 10.1038/s41598-021-04388-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Pearl millet is an important staple food crop of poor people and excels all other cereals due to its unique features of resilience to adverse climatic conditions. It is rich in micronutrients like iron and zinc and amenable for focused breeding for these micronutrients along with high yield. Hence, this is a key to alleviate malnutrition and ensure nutritional security. This study was conducted to identify and validate candidate genes governing grain iron and zinc content enabling the desired modifications in the genotypes. Transcriptome sequencing using ION S5 Next Generation Sequencer generated 43.5 million sequence reads resulting in 83,721 transcripts with N50 of 597 bp and 84.35% of transcripts matched with the pearl millet genome assembly. The genotypes having high iron and zinc showed differential gene expression during different stages. Of which, 155 were up-regulated and 251 were down-regulated while during flowering stage and milking stage 349 and 378 transcripts were differentially expressed, respectively. Gene annotation and GO term showed the presence of transcripts involved in metabolic activities associated with uptake and transport of iron and zinc. Information generated will help in gaining insights into iron and zinc metabolism and develop genotypes with high yield, grain iron and zinc content.
Collapse
Affiliation(s)
- C Tara Satyavathi
- ICAR-AICRP on Pearl Millet, Agriculture University, Jodhpur, Rajasthan, 342 304, India.
| | - Rukam S Tomar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Supriya Ambawat
- ICAR-AICRP on Pearl Millet, Agriculture University, Jodhpur, Rajasthan, 342 304, India
| | - Jasminkumar Kheni
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Shital M Padhiyar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Hiralben Desai
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - S B Bhatt
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - M S Shitap
- Department of Agricultural Statistics, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Ramesh Chand Meena
- ICAR-AICRP on Pearl Millet, Agriculture University, Jodhpur, Rajasthan, 342 304, India
| | - Tripti Singhal
- Division of Genetics, Indian Agricultural Research Institute, ICAR, New Delhi, India
| | - S Mukesh Sankar
- Division of Genetics, Indian Agricultural Research Institute, ICAR, New Delhi, India
| | - S P Singh
- Division of Genetics, Indian Agricultural Research Institute, ICAR, New Delhi, India
| | - Vikas Khandelwal
- ICAR-AICRP on Pearl Millet, Agriculture University, Jodhpur, Rajasthan, 342 304, India
| |
Collapse
|
18
|
Genic microsatellite marker characterization and development in little millet (Panicum sumatrense) using transcriptome sequencing. Sci Rep 2021; 11:20620. [PMID: 34663808 PMCID: PMC8523711 DOI: 10.1038/s41598-021-00100-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/29/2021] [Indexed: 11/08/2022] Open
Abstract
Little millet is a climate-resilient and high-nutrient value plant. The lack of molecular markers severely limits the adoption of modern genomic approaches in millet breeding studies. Here the transcriptome of three samples were sequenced. A total of 4443 genic-SSR motifs were identified in 30,220 unigene sequences. SSRs were found at a rate of 12.25 percent, with an average of one SSR locus per 10 kb. Among different repeat motifs, tri-nucleotide repeat (66.67) was the most abundant one, followed by di- (27.39P), and tetra- (3.83P) repeats. CDS contained fewer motifs with the majority of tri-nucleotides, while 3' and 5' UTR carry more motifs but have shorter repeats. Functional annotation of unigenes containing microsatellites, revealed that most of them were linked to metabolism, gene expression regulation, and response to environmental stresses. Fifty primers were randomly chosen and validated in five little millet and 20 minor millet genotypes; 48% showed polymorphism, with a high transferability (70%) rate. Identified microsatellites can be a noteworthy resource for future research into QTL-based breeding, genetic resource conservation, MAS selection, and evolutionary genetics.
Collapse
|
19
|
Krüger M, Abeyawardana OAJ, Krüger C, Juříček M, Štorchová H. Differentially Expressed Genes Shared by Two Distinct Cytoplasmic Male Sterility (CMS) Types of Silene vulgaris Suggest the Importance of Oxidative Stress in Pollen Abortion. Cells 2020; 9:cells9122700. [PMID: 33339225 PMCID: PMC7766179 DOI: 10.3390/cells9122700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
Cytoplasmic male sterility (CMS), encoded by the interacting mitochondrial and nuclear genes, causes pollen abortion or non-viability. CMS is widely used in agriculture and extensively studied in crops. Much less is known about CMS in wild species. We performed a comparative transcriptomic analysis of male sterile and fertile individuals of Silene vulgaris, a model plant for the study of gynodioecy, to reveal the genes responsible for pollen abortion in this species. We used RNA-seq datasets previously employed for the analysis of mitochondrial and plastid transcriptomes of female and hermaphrodite flower buds, making it possible to compare the transcriptomes derived from three genomes in the same RNA specimen. We assembled de novo transcriptomes for two haplotypes of S. vulgaris and identified differentially expressed genes between the females and hermaphrodites, associated with stress response or pollen development. The gene for alternative oxidase was downregulated in females. The genetic pathways controlling CMS in S. vulgaris are similar to those in crops. The high number of the differentially expressed nuclear genes contrasts with the uniformity of organellar transcriptomes across genders, which suggests these pathways are evolutionarily conserved and that selective mechanisms may shield organellar transcription against changes in the cytoplasmic transcriptome.
Collapse
Affiliation(s)
- Manuela Krüger
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
| | - Oushadee A. J. Abeyawardana
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
- Department of Horticulture, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague 6-Suchdol, Czech Republic
| | - Claudia Krüger
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
| | - Miloslav Juříček
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
| | - Helena Štorchová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
- Correspondence: ; Tel.: +420-225-106-828
| |
Collapse
|