1
|
Wei L, Li Y, Chen J, Wang Y, Wu J, Yang H, Zhang Y. Alternative splicing in ovarian cancer. Cell Commun Signal 2024; 22:507. [PMID: 39425166 PMCID: PMC11488268 DOI: 10.1186/s12964-024-01880-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024] Open
Abstract
Ovarian cancer is the second leading cause of gynecologic cancer death worldwide, with only 20% of cases detected early due to its elusive nature, limiting successful treatment. Most deaths occur from the disease progressing to advanced stages. Despite advances in chemo- and immunotherapy, the 5-year survival remains below 50% due to high recurrence and chemoresistance. Therefore, leveraging new research perspectives to understand molecular signatures and identify novel therapeutic targets is crucial for improving the clinical outcomes of ovarian cancer. Alternative splicing, a fundamental mechanism of post-transcriptional gene regulation, significantly contributes to heightened genomic complexity and protein diversity. Increased awareness has emerged about the multifaceted roles of alternative splicing in ovarian cancer, including cell proliferation, metastasis, apoptosis, immune evasion, and chemoresistance. We begin with an overview of altered splicing machinery, highlighting increased expression of spliceosome components and associated splicing factors like BUD31, SF3B4, and CTNNBL1, and their relationships to ovarian cancer. Next, we summarize the impact of specific variants of CD44, ECM1, and KAI1 on tumorigenesis and drug resistance through diverse mechanisms. Recent genomic and bioinformatics advances have enhanced our understanding. By incorporating data from The Cancer Genome Atlas RNA-seq, along with clinical information, a series of prognostic models have been developed, which provided deeper insights into how the splicing influences prognosis, overall survival, the immune microenvironment, and drug sensitivity and resistance in ovarian cancer patients. Notably, novel splicing events, such as PIGV|1299|AP and FLT3LG|50,941|AP, have been identified in multiple prognostic models and are associated with poorer and improved prognosis, respectively. These novel splicing variants warrant further functional characterization to unlock the underlying molecular mechanisms. Additionally, experimental evidence has underscored the potential therapeutic utility of targeting alternative splicing events, exemplified by the observation that knockdown of splicing factor BUD31 or antisense oligonucleotide-induced BCL2L12 exon skipping promotes apoptosis of ovarian cancer cells. In clinical settings, bevacizumab, a humanized monoclonal antibody that specifically targets the VEGF-A isoform, has demonstrated beneficial effects in the treatment of patients with advanced epithelial ovarian cancer. In conclusion, this review constitutes the first comprehensive and detailed exposition of the intricate interplay between alternative splicing and ovarian cancer, underscoring the significance of alternative splicing events as pivotal determinants in cancer biology and as promising avenues for future diagnostic and therapeutic intervention.
Collapse
Affiliation(s)
- Liwei Wei
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
| | - Yisheng Li
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
| | - Jiawang Chen
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, 325101, China
| | - Yuanmei Wang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianmin Wu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Huanming Yang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China.
| | - Yi Zhang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China.
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
2
|
Zhang Y, Chen D, Ang B, Deng X, Li B, Bai Y, Zhang Y. A necroptosis-regulated model from single-cell analysis that predicts survival and identifies the Pivotal role of MAGEA6 in hepatocellular carcinoma. Heliyon 2024; 10:e37711. [PMID: 39315163 PMCID: PMC11417173 DOI: 10.1016/j.heliyon.2024.e37711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Objective Hepatocellular carcinoma (HCC) ranks as the third leading cause of cancer-related deaths, constituting 75%-85 % of all primary liver cancers. The objective of this study was to develop a necroptosis-related gene signature using single-cell and bulk RNA sequencing to predict HCC patient prognoses. Methods A total of 25 key necroptosis regulators were identified from previous literature. We evaluated the necroptosis scores of different cell types using single-cell sequencing data from HCC and analyzed 168 necroptosis-related genes. The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset served as the training set for establishing a novel necroptosis-related gene risk signature, employing univariate and multivariate Cox regression analyses. Additionally, the study examined the model's relevance in immunity and immunotherapy, and predicted chemosensitivity in HCC patients based on the gene signature. The key genes were validated by the biological experiments. Results Compared to other cell types, hepatoma cells displayed the lowest necroptosis scores. A new six-gene necroptosis-related signature (S100A11, MAGEC2, MAGEA6, CTP2C9, SOX4, AKR1B10) was developed using the TCGA database and validated in the ICGC database. Patients in the high-risk category had poorer prognoses, with the risk score serving as an independent prognostic indicator beyond other clinical factors. These high-risk patients also exhibited greater immune infiltration but demonstrated a weaker anti-tumor response due to elevated expression of immune checkpoints. Pathways involving hypoxia, glycolysis, and P53, as well as the frequency of P53 somatic mutations, were notably heightened in the high-risk group. Additionally, the six genes in the model showed significantly different mRNA expression in hepatoma cell lines compared to normal hepatocytes, with the role of MAGEA6 in liver cancer being elucidated through critical experiments. Conclusions This study successfully developed a six-gene necroptosis-related signature to predict prognoses in HCC patients. It further explored the roles of necroptosis in hepatoma cells and the tumor microenvironment.
Collapse
Affiliation(s)
- Youcheng Zhang
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300192,China
- Department of Pediatric Surgery, Huai’an Maternal and Child Health Care Center, Huai'an, 223001, Jiangsu Province, China
| | - Dapeng Chen
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300192,China
| | - Bing Ang
- Department of Oncology, Tianjin First Central Hospital Clinic Institute, Tianjin 300192, China
| | - Xiyue Deng
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300192,China
| | - Bing Li
- Department of Pediatric Surgery, Huai’an Maternal and Child Health Care Center, Huai'an, 223001, Jiangsu Province, China
| | - Yi Bai
- Department of Hepatobiliary and Pancreatic Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yamin Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| |
Collapse
|
3
|
Radhakrishnan S, Martin CA, Vij M, Subbiah K, Raju LP, Gowrishankar G, Veldore VH, Kaliamoorthy I, Rammohan A, Rela M. Treatment and prognostic implications of strong PD-L1 expression in primary hepatic sarcomatoid carcinoma. Immunotherapy 2024; 16:371-379. [PMID: 38362631 DOI: 10.2217/imt-2023-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
Primary hepatic sarcomatoid carcinoma (HSC) is an extremely rare and aggressive subtype of primary liver cancer. HSC has uncertain pathogenesis and dismal prognosis with overall survival of only 8.3 months. The molecular alterations of HSC are also not well understood. In this study, the authors describe a patient who presented with a large liver mass. The patient underwent complete surgical resection and histological examination demonstrated HSC, infiltrating the stomach. PD-L1 was strongly positive in the tumor cells. The patient was started on anti-PD-L1 immunotherapy postsurgery and is doing well 15 months after surgical resection. Tumor whole exome sequencing revealed genetic alterations in TP53, NF2 and MAGEC3 genes, indicating their potential role in tumor development.
Collapse
Affiliation(s)
- Subathra Radhakrishnan
- Cell Laboratory, National Foundation for Liver Research, No. 7 CLC Works Road, Chromepet, Chennai-44, Tamil Nadu, India
| | - Catherine Ann Martin
- Cell Laboratory, National Foundation for Liver Research, No. 7 CLC Works Road, Chromepet, Chennai-44, Tamil Nadu, India
| | - Mukul Vij
- Department of Pathology, Dr. Rela Institute & Medical Centre, No. 7 CLC Works Road Chromepet, Chennai-44, Tamil Nadu, India
| | - Komalavalli Subbiah
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, No. 7 CLC Works Road Chromepet, Chennai-44, Tamil Nadu, India
| | - Lexmi Priya Raju
- Department of Pathology, Dr. Rela Institute & Medical Centre, No. 7 CLC Works Road Chromepet, Chennai-44, Tamil Nadu, India
| | - Gowripriya Gowrishankar
- Department of Pathology, Dr. Rela Institute & Medical Centre, No. 7 CLC Works Road Chromepet, Chennai-44, Tamil Nadu, India
| | - Vidya Harini Veldore
- 4baseCare Onco Solutions Pvt Ltd, IBAB campus, Bangalore Helix Biotech Park, Bangalore-100, Karnataka, India
| | - Ilankumaran Kaliamoorthy
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, No. 7 CLC Works Road Chromepet, Chennai-44, Tamil Nadu, India
| | - Ashwin Rammohan
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, No. 7 CLC Works Road Chromepet, Chennai-44, Tamil Nadu, India
| | - Mohamed Rela
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, No. 7 CLC Works Road Chromepet, Chennai-44, Tamil Nadu, India
| |
Collapse
|
4
|
Phuong TN, Duy Tai N, Aloufi AS, Subramani B, Theivaraj SD. An in-vitro evaluation of antifungal, anti-lungcancer (A549), and anti-hyperglycemic activities potential of Andrographis paniculata (Burm. f.) flower extract. ENVIRONMENTAL RESEARCH 2023; 238:117249. [PMID: 37783331 DOI: 10.1016/j.envres.2023.117249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/16/2023] [Accepted: 09/09/2023] [Indexed: 10/04/2023]
Abstract
The medical plant research has received more attention among researchers especially after the Covid-19 pandemic. This research performed to evaluate the antifungal, anti-lung cancer (A549), and anti-hyperglycemic activities of aqueous extract of Andrographis paniculata flower. Interestingly, A. paniculata flower aqueous extract contains pharmaceutically valuable phytochemicals such as alkaloid, phenolics, terpenoids, tannins, flavonoids, and protein. It also showed fine antifungal activity against test fungal pathogens in the following order as: Aspergillus niger > Fusarium solani > Trichoderma harzianum > A. parasiticus > P. expansum > Penicillium janthinellum with lowest MIC values as ranged from 100 to 300 μg mL-1. Interestingly, this aqueous extract also showed considerable anti-lung cancer activity, evidenced by dose and time dependent lung cancer cell line (A549) growth/proliferation inhibition/cytotoxicity activity (65%) at 300 μg mL-1 concentration. This can be achieved by plant extract through inducing the secretion of apoptosis related proteins such as TNF α, IFN-γ, and ınterleukin 2 leads to apoptosis in A549 cells. It also showed fine anti-diabetic activity by inhibiting α -amylase (58.41%) than α-glucosidase (54.74%) at 200 μg mL-1 concentration. The UV as well as FTIR results demonstrated that the aqueous extract of A. paniculata flower contains pharmaceutically valuable bioactive compounds, which may be responsible for the wide range of biomedical applications.
Collapse
Affiliation(s)
- Tran Nhat Phuong
- Faculty of Medicine, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Nguyen Duy Tai
- Faculty of Nursing and Medical Laboratory, HUTECH University, Vietnam
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Baskaran Subramani
- Division of Hematology and Oncology, Department of Medicine, Mays Cancer Center, The University of Texas Health Science Center at San Antonio, TX, USA
| | - Sridevi Dhanarani Theivaraj
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
5
|
Pellikaan K, Nguyen NQC, Rosenberg AGW, Coupaye M, Goldstone AP, Høybye C, Markovic T, Grugni G, Crinò A, Caixàs A, Poitou C, Corripio R, Nieuwenhuize RM, van der Lely AJ, de Graaff LCG. Malignancies in Prader-Willi Syndrome: Results From a Large International Cohort and Literature Review. J Clin Endocrinol Metab 2023; 108:e1720-e1730. [PMID: 37267430 PMCID: PMC10655548 DOI: 10.1210/clinem/dgad312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
CONTEXT Prader-Willi syndrome (PWS) is a complex disorder combining hypothalamic dysfunction, neurodevelopmental delay, hypotonia, and hyperphagia with risk of obesity and its complications. PWS is caused by the loss of expression of the PWS critical region, a cluster of paternally expressed genes on chromosome 15q11.2-q13. As life expectancy of patients with PWS increases, age-related diseases like malignancies might pose a new threat to health. OBJECTIVE To investigate the prevalence and risk factors of malignancies in patients with PWS and to provide clinical recommendations for cancer screening. METHODS We included 706 patients with PWS (160 children, 546 adults). We retrospectively collected data from medical records on past or current malignancies, the type of malignancy, and risk factors for malignancy. Additionally, we searched the literature for information about the relationship between genes on chromosome 15q11.2-q13 and malignancies. RESULTS Seven adults (age range, 18-55 years) had been diagnosed with a malignancy (acute lymphoblastic leukemia, intracranial hemangiopericytoma, melanoma, stomach adenocarcinoma, biliary cancer, parotid adenocarcinoma, and colon cancer). All patients with a malignancy had a paternal 15q11-13 deletion. The literature review showed that several genes on chromosome 15q11.2-q13 are related to malignancies. CONCLUSION Malignancies are rare in patients with PWS. Therefore, screening for malignancies is only indicated when clinically relevant symptoms are present, such as unexplained weight loss, loss of appetite, symptoms suggestive of paraneoplastic syndrome, or localizing symptoms. Given the increased cancer risk associated with obesity, which is common in PWS, participation in national screening programs should be encouraged.
Collapse
Affiliation(s)
- Karlijn Pellikaan
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands
- Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Dutch Center of Reference for Prader–Willi Syndrome, 3015 GD Rotterdam, The Netherlands
- Academic Center for Growth Disorders, Erasmus Medical Center, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Naomi Q C Nguyen
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Anna G W Rosenberg
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands
- Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Dutch Center of Reference for Prader–Willi Syndrome, 3015 GD Rotterdam, The Netherlands
- Academic Center for Growth Disorders, Erasmus Medical Center, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Muriel Coupaye
- Assistance Publique-Hôpitaux de Paris, Rare Diseases Center of Reference ‘Prader-Willi Syndrome and Obesity with Eating Disorders’ (PRADORT), Nutrition Department, Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital, Sorbonne Université, INSERM, Nutriomics, F75013 Paris, France
- International Network for Research, Management & Education on adults with Prader-Willi Syndrome (INfoRMEd-PWS)
| | - Anthony P Goldstone
- International Network for Research, Management & Education on adults with Prader-Willi Syndrome (INfoRMEd-PWS)
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
- Imperial Centre for Endocrinology, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London W12 0NN, UK
| | - Charlotte Høybye
- International Network for Research, Management & Education on adults with Prader-Willi Syndrome (INfoRMEd-PWS)
- ENDO-ERN (European Reference Network)
- Department of Molecular Medicine and Surgery and Department of Endocrinology, Karolinska Institute and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Tania Markovic
- International Network for Research, Management & Education on adults with Prader-Willi Syndrome (INfoRMEd-PWS)
- Metabolism & Obesity Services, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Boden Initiative, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Graziano Grugni
- International Network for Research, Management & Education on adults with Prader-Willi Syndrome (INfoRMEd-PWS)
- ENDO-ERN (European Reference Network)
- Division of Auxology, Istituto Auxologico Italiano, IRCCS, 20095 Piancavallo VB, Italy
| | - Antonino Crinò
- International Network for Research, Management & Education on adults with Prader-Willi Syndrome (INfoRMEd-PWS)
- Reference Center for Prader-Willi syndrome, Bambino Gesù Hospital, Research Institute, 00165 Palidoro (Rome), Italy
| | - Assumpta Caixàs
- International Network for Research, Management & Education on adults with Prader-Willi Syndrome (INfoRMEd-PWS)
- Department of Endocrinology and Nutrition, Hospital Universitari Parc Taulí, Institut d’Investigació i Innovació Parc Taulí (I3PT) and Department of Medicine, Universitat Autònoma de Barcelona, 08208 Sabadell, Spain
| | - Christine Poitou
- Assistance Publique-Hôpitaux de Paris, Rare Diseases Center of Reference ‘Prader-Willi Syndrome and Obesity with Eating Disorders’ (PRADORT), Nutrition Department, Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital, Sorbonne Université, INSERM, Nutriomics, F75013 Paris, France
- International Network for Research, Management & Education on adults with Prader-Willi Syndrome (INfoRMEd-PWS)
- ENDO-ERN (European Reference Network)
| | - Raquel Corripio
- Department of Pediatric Endocrinology, Parc Taulí Hospital Universitari, Research and Innovation Institute Parc Taulí I3PT, Autonomous University of Barcelona, 08208 Sabadell, Spain
| | - Rosa M Nieuwenhuize
- Department of Medical Oncology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Aart J van der Lely
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands
- ENDO-ERN (European Reference Network)
| | - Laura C G de Graaff
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands
- Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Dutch Center of Reference for Prader–Willi Syndrome, 3015 GD Rotterdam, The Netherlands
- Academic Center for Growth Disorders, Erasmus Medical Center, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands
- International Network for Research, Management & Education on adults with Prader-Willi Syndrome (INfoRMEd-PWS)
- ENDO-ERN (European Reference Network)
| |
Collapse
|
6
|
Comparative RNA-Sequencing Analysis Reveals High Complexity and Heterogeneity of Transcriptomic and Immune Profiles in Hepatocellular Carcinoma Tumors of Viral (HBV, HCV) and Non-Viral Etiology. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121803. [PMID: 36557005 PMCID: PMC9785216 DOI: 10.3390/medicina58121803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Background and Objectives: Hepatocellular carcinoma (HCC), the most common type of primary liver cancer, is the leading cause of cancer-related mortality. It arises and progresses against fibrotic or cirrhotic backgrounds mainly due to infection with hepatitis viruses B (HBV) or C (HCV) or non-viral causes that lead to chronic inflammation and genomic changes. A better understanding of molecular and immune mechanisms in HCC subtypes is needed. Materials and Methods: To identify transcriptional changes in primary HCC tumors with or without hepatitis viral etiology, we analyzed the transcriptomes of 24 patients by next-generation sequencing. Results: We identified common and unique differentially expressed genes for each etiological tumor group and analyzed the expression of SLC, ATP binding cassette, cytochrome 450, cancer testis, and heat shock protein genes. Metascape functional enrichment analysis showed mainly upregulated cell-cycle pathways in HBV and HCV and upregulated cell response to stress in non-viral infection. GeneWalk analysis identified regulator, hub, and moonlighting genes and highlighted CCNB1, ACTN2, BRCA1, IGF1, CDK1, AURKA, AURKB, and TOP2A in the HCV group and HSF1, HSPA1A, HSP90AA1, HSPB1, HSPA5, PTK2, and AURKB in the group without viral infection as hub genes. Immune infiltrate analysis showed that T cell, cytotoxic, and natural killer cell markers were significantly more highly expressed in HCV than in non-viral tumors. Genes associated with monocyte activation had the highest expression levels in HBV, while high expression of genes involved in primary adaptive immune response and complement receptor activity characterized tumors without viral infection. Conclusions: Our comprehensive study underlines the high degree of complexity of immune profiles in the analyzed groups, which adds to the heterogeneous HCC genomic landscape. The biomarkers identified in each HCC group might serve as therapeutic targets.
Collapse
|
7
|
Expression and Prognostic Value of Melanoma-Associated Antigen D2 in Gliomas. Brain Sci 2022; 12:brainsci12080986. [PMID: 35892426 PMCID: PMC9330880 DOI: 10.3390/brainsci12080986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 01/10/2023] Open
Abstract
Introduction: The melanoma-associated antigen D2 (MAGED2) is one of the melanoma-associated antigen family members. It is commonly overexpressed in a variety of malignancies. However, the mechanism and function of MAGED2 in glioma remain unknown. Methods: The MAGED2 expression level and the correlations between clinical characteristics were analyzed with the data from the CGGA and TCGA datasets. MAGED2 expression in 98 glioma tissues was measured using RT-qPCR, Western blot, and immunohistochemistry. CCK-8, colony formation, and EdU assays were used to assess the effect of MAGED2 on U251-MG cell proliferation. Flow cytometry was used to track changes in the cell cycle and cell apoptosis following plasmid transfection with CRISPRi. Results: MAGED2 was shown to be highly expressed in glioma tissues, and high MAGED2 expression predicted poor prognosis. Furthermore, MAGED2 knockdown significantly inhibited the proliferation of U251-MG cells by preventing cell cycle arrest at the G0/G1 phase and triggering apoptosis. In line with in vitro findings, the results of the xenograft experiment and immunohistochemistry also showed that MAGED2 suppression inhibited tumor development and decreased Ki-67 expression levels. Conclusions: MAGED2 may be a possible biomarker for glioma and an important prognostic factor for glioma patients.
Collapse
|
8
|
Ellegate J, Mastri M, Isenhart E, Krolewski JJ, Chatta G, Kauffman E, Moffitt M, Eng KH. Loss of MAGEC3 Expression Is Associated with Prognosis in Advanced Ovarian Cancers. Cancers (Basel) 2022; 14:cancers14030731. [PMID: 35158998 PMCID: PMC8833712 DOI: 10.3390/cancers14030731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Familial studies connect variants in the X-linked gene MAGEC3 to early-onset ovarian cancers. In this retrospective cohort study, we determined that, unlike other MAGE family members, the MAGEC3 protein is normally expressed in ovarian tissue but is lost in half of the ovarian cancers. Similar to other predisposition genes like BRCA2, survival modeling suggests that expression loss is associated with favorable progression-free survival, and continued expression is associated with response to platinum therapy. Because of the assumed antigenicity of MAGE genes, we tested and observed associations with lymphocyte infiltration, NY-ESO-1 seropositivity, and the co-expression of tumor antigens at Xq28. Using transcriptomic modeling, we predicted that MAGEC3 expression is associated with stress-related cell cycle stalling and DNA repair pathway expression. Abstract Rare variants in MAGEC3 are associated with BRCA negative, early-onset ovarian cancers. Given this association, we evaluated the impact of MAGEC3 protein expression on prognosis and transcription. We quantified normal and tumor protein expression of MAGEC3 via immunohistochemistry in n = 394 advanced ovarian cancers, assessed the correlation of these values with clinicopathologic and immunological features and modeled survival using univariate and multivariate models. To extend these results, we quantified MAGEC3 protein expression in n = 180 cancers and used matching RNA sequencing data to determine MAGEC3-associated differentially expressed genes and to build an RNA-based model of MAGEC3 protein levels. This model was tested in a third independent cohort of patients from TCGA’s OV dataset (n = 282). MAGEC3 protein was sporadically lost in ovarian cancers, with half of the cases falling below the 9.5th percentile of normal tissue expression. Cases with MAGEC3 loss demonstrated better progression-free survival [HR = 0.71, p = 0.004], and analyses performed on predicted protein scores were consistent [HR = 0.57 p = 0.002]. MAGEC3 protein was correlated with CD8 protein expression [Pearson’s r = 0.176, p = 0.011], NY-ESO-1 seropositivity, and mRNA expression of tumor antigens at Xq28. Results of gene set enrichment analysis showed that genes associated with MAGEC3 protein expression cluster around G2/M checkpoint (NES = 3.20, FDR < 0.001) and DNA repair (NES = 2.28, FDR < 0.001) hallmark pathways. These results show that MAGEC3 is a prognostic biomarker in ovarian cancer.
Collapse
Affiliation(s)
- James Ellegate
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.E.J.); (M.M.); (E.I.); (J.J.K.)
| | - Michalis Mastri
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.E.J.); (M.M.); (E.I.); (J.J.K.)
| | - Emily Isenhart
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.E.J.); (M.M.); (E.I.); (J.J.K.)
| | - John J. Krolewski
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.E.J.); (M.M.); (E.I.); (J.J.K.)
| | - Gurkamal Chatta
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Eric Kauffman
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Melissa Moffitt
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Kevin H. Eng
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.E.J.); (M.M.); (E.I.); (J.J.K.)
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Correspondence:
| |
Collapse
|
9
|
Liu Q, Zhang H, Yang X, Liu X, Yin F, Guo P, Yin Y, Zheng K, Yang Z, Han Y. Systemic characterization of alternative splicing related to prognosis, immune infiltration, and drug sensitivity analysis in ovarian cancer. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:126. [PMID: 35282039 PMCID: PMC8848412 DOI: 10.21037/atm-21-6422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022]
Abstract
Background Alternative splicing (AS) plays an essential role in tumorigenesis and progression. This study intended to construct an innovative prognostic model based on AS events to gain more precise survival prediction and search for potential therapeutic targets in ovarian cancer. Methods Seven types of AS events in ovarian serous cystadenocarcinoma (OV) patients with RNA-seq were obtained using The Cancer Genome Atlas (TCGA) SpliceSeq tool and database. Cox and Kaplan-Meier curve analyses were employed to establish the prognostic models. Relying on drug sensitivity data from the CellMiner database, Genomics of Drug Sensitivity (GDS) was adopted to estimate the platinum-sensitive analysis. Furthermore, a prognostic splicing factor (SF)-AS network was constructed using Cytoscape. Finally, in order to explore the influence of the tumor microenvironment on the prognosis of OV patients, we first combined a similar network fusion and consensus clustering (SNF-CC) algorithm to identify three OV subtypes based on survival-related AS events and then utilized single-sample Gene Set Enrichment Analysis (ssGSEA) method to perform immune cell infiltration analysis. Results A total of 48,049 AS events and 21,841 related genes were selected from 318 OV samples, and 2,206 AS events associated with disease-free survival (DFS) were identified. Multivariate Cox and Kaplan-Meier curve analyses were then employed to establish the prognostic models. Receiver operating characteristic (ROC) analysis from 0.59 to 0.75 showed that these models were highly efficient in distinguishing patient survival. GDS was adopted with the CellMiner database to provide some insights for platinum-sensitive analysis of OV. Furthermore, a prognostic SF-AS network, which discovered a significant connection between SFs and prognostic AS genes, was constructed using Cytoscape. The combined SNF-CC algorithm revealed three distinct OV subtypes based on the prognostic AS events, and the associations between this novel molecular classification and immune cell infiltration were further explored. Conclusions We developed a powerful prognostic AS signature for OV and provided a deeper understanding of SF-AS network regulatory mechanisms, as well as platinum-sensitive and cancer immune microenvironments. These results revealed various candidate biomarkers and potential targets for OV treatment strategies.
Collapse
Affiliation(s)
- Qingyang Liu
- School of Life and Pharmaceutical Science, Dalian University of Technology, Dalian, China
| | - Hao Zhang
- School of Life and Pharmaceutical Science, Dalian University of Technology, Dalian, China
| | - Xiaocheng Yang
- School of Life and Pharmaceutical Science, Dalian University of Technology, Dalian, China
| | - Xuesong Liu
- School of Health Professions, Yingkou Vocational and Technical College, Yingkou, China
| | - Fanxing Yin
- School of Life and Pharmaceutical Science, Dalian University of Technology, Dalian, China
| | - Panpan Guo
- School of Life and Pharmaceutical Science, Dalian University of Technology, Dalian, China
| | - Yuhan Yin
- School of Life and Pharmaceutical Science, Dalian University of Technology, Dalian, China
| | - Kaijiang Zheng
- School of Life and Pharmaceutical Science, Dalian University of Technology, Dalian, China
| | - Zhuo Yang
- Department of Gynecology, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, China
| | - Yanshuo Han
- School of Life and Pharmaceutical Science, Dalian University of Technology, Dalian, China
| |
Collapse
|
10
|
Bhat M, Clotet-Freixas S, Baciu C, Pasini E, Hammad A, Ivanics T, Reid S, Azhie A, Angeli M, Ghanekar A, Fischer S, Sapisochin G, Konvalinka A. Combined proteomic/transcriptomic signature of recurrence post-liver transplantation for hepatocellular carcinoma beyond Milan. Clin Proteomics 2021; 18:27. [PMID: 34794390 PMCID: PMC8600773 DOI: 10.1186/s12014-021-09333-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Background and aims Liver transplantation (LT) can be offered to patients with Hepatocellular carcinoma (HCC) beyond Milan criteria. However, there are currently limited molecular markers on HCC explant histology to predict recurrence, which arises in up to 20% of LT recipients. The goal of our study was to derive a combined proteomic/transcriptomic signature on HCC explant predictive of recurrence post-transplant using unbiased, high-throughput approaches. Methods Patients who received a LT for HCC beyond Milan criteria in the context of hepatitis B cirrhosis were identified. Tumor explants from patients with post-transplant HCC recurrence (N = 7) versus those without recurrence (N = 4) were analyzed by mass spectrometry and gene expression array. Univariate analysis was used to generate a combined proteomic/transcriptomic signature linked to recurrence. Significantly predictive genes and proteins were verified and internally validated by immunoblotting and immunohistochemistry. Results Seventy-nine proteins and 636 genes were significantly differentially expressed in HCC tumors with subsequent recurrence (p < 0.05). Univariate survival analysis identified Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) gene (HR = 0.084, 95%CI 0.01–0.68, p = 0.0152), ALDH1A1 protein (HR = 0.039, 95%CI 0.16–0.91, p = 0.03), Galectin 3 Binding Protein (LGALS3BP) gene (HR = 7.14, 95%CI 1.20–432.96, p = 0.03), LGALS3BP protein (HR = 2.6, 95%CI 1.1–6.1, p = 0.036), Galectin 3 (LGALS3) gene (HR = 2.89, 95%CI 1.01–8.3, p = 0.049) and LGALS3 protein (HR = 2.6, 95%CI 1.2–5.5, p = 0.015) as key dysregulated analytes in recurrent HCC. In concordance with our proteome findings, HCC recurrence was linked to decreased ALDH1A1 and increased LGALS3 protein expression by Western Blot. LGALS3BP protein expression was validated in 29 independent HCC samples. Conclusions Significantly increased LGALS3 and LGALS3BP gene and protein expression on explant were associated with post-transplant recurrence, whereas increased ALDH1A1 was associated with absence of recurrence in patients transplanted for HCC beyond Milan criteria. This combined proteomic/transcriptomic signature could help in predicting HCC recurrence risk and guide post-transplant surveillance. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09333-x.
Collapse
Affiliation(s)
- Mamatha Bhat
- Ajmera Transplant Program, University Health Network, Toronto, Canada. .,Division of Gastroenterology and Hepatology, University of Toronto, Toronto, Canada. .,Toronto General Hospital Research Institute, Toronto, Canada. .,Institute of Medical Science, University of Toronto, Toronto, Canada.
| | - Sergi Clotet-Freixas
- Ajmera Transplant Program, University Health Network, Toronto, Canada.,Toronto General Hospital Research Institute, Toronto, Canada
| | - Cristina Baciu
- Ajmera Transplant Program, University Health Network, Toronto, Canada
| | - Elisa Pasini
- Ajmera Transplant Program, University Health Network, Toronto, Canada
| | - Ahmed Hammad
- Ajmera Transplant Program, University Health Network, Toronto, Canada.,Department of General Surgery, Mansoura University, Mansoura, Egypt
| | - Tommy Ivanics
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Canada
| | - Shelby Reid
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Amirhossein Azhie
- Ajmera Transplant Program, University Health Network, Toronto, Canada
| | - Marc Angeli
- Ajmera Transplant Program, University Health Network, Toronto, Canada
| | - Anand Ghanekar
- Ajmera Transplant Program, University Health Network, Toronto, Canada.,Toronto General Hospital Research Institute, Toronto, Canada.,Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Canada
| | - Sandra Fischer
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Canada
| | - Gonzalo Sapisochin
- Ajmera Transplant Program, University Health Network, Toronto, Canada.,Division of Multi-Organ Transplant and HPB Surgical Oncology, Department of General Surgery, University Health Network, Toronto, Canada
| | - Ana Konvalinka
- Ajmera Transplant Program, University Health Network, Toronto, Canada. .,Toronto General Hospital Research Institute, Toronto, Canada. .,Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Canada. .,Institute of Medical Science, University of Toronto, Toronto, Canada. .,Division of Nephrology, Department of Medicine, University Health Network, Toronto, Canada. .,University Health Network, 585 University Avenue, Room 11-PMB-189, Toronto, ON, M5G 2N2, Canada.
| |
Collapse
|
11
|
Reusch B, Bartram MP, Dafinger C, Palacio-Escat N, Wenzel A, Fenton RA, Saez-Rodriguez J, Schermer B, Benzing T, Altmüller J, Beck BB, Rinschen MM. MAGED2 controls vasopressin-induced aquaporin-2 expression in collecting duct cells. J Proteomics 2021; 252:104424. [PMID: 34775100 DOI: 10.1016/j.jprot.2021.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022]
Abstract
Mutations in the Melanoma-Associated Antigen D2 (MAGED2) cause antenatal Bartter syndrome type 5 (BARTS5). This rare disease is characterized by perinatal loss of urinary concentration capability and large urine volumes. The underlying molecular mechanisms of this disease are largely unclear. Here, we study the effect of MAGED2 knockdown on kidney cell cultures using proteomic and phosphoproteomic analyses. In HEK293T cells, MAGED2 knockdown induces prominent changes in protein phosphorylation rather than changes in protein abundance. MAGED2 is expressed in mouse embryonic kidneys and its expression declines during development. MAGED2 interacts with G-protein alpha subunit (GNAS), suggesting a role in G-protein coupled receptors (GPCR) signalling. In kidney collecting duct cell lines, Maged2 knockdown subtly modulated vasopressin type 2 receptor (V2R)-induced cAMP-generation kinetics, rewired phosphorylation-dependent signalling, and phosphorylation of CREB. Maged2 knockdown resulted in a large increase in aquaporin-2 abundance during long-term V2R activation. The increase in aquaporin-2 protein was mediated transcriptionally. Taken together, we link MAGED2 function to cellular signalling as a desensitizer of V2R-induced aquaporin-2 expression. SIGNIFICANCE: In most forms of Bartter Syndrome, the underlying cause of the disease is well understood. In contrast, the role of MAGED2 mutations in a newly discovered form of Bartter Syndrome (BARTS5) is unknown. In our manuscript we could show that MAGED2 modulates vasopressin-induced protein and phosphorylation patterns in kidney cells, providing a broad basis for further studies of MAGED2 function in development and disease.
Collapse
Affiliation(s)
- Björn Reusch
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Malte P Bartram
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Claudia Dafinger
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nicolàs Palacio-Escat
- Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; Institute of Computational Biomedicine, Bioquant, Faculty of Medicine, Heidelberg University, 69120 Heidelberg, Germany
| | - Andrea Wenzel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Julio Saez-Rodriguez
- Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; Institute of Computational Biomedicine, Bioquant, Faculty of Medicine, Heidelberg University, 69120 Heidelberg, Germany; European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge CB10 1SD, United Kingdom
| | - Bernhard Schermer
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Thomas Benzing
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany; Berlin Institute of Health at Charité, Core Facility Genomics, 10178 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Bodo B Beck
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.
| | - Markus M Rinschen
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000 Aarhus, Denmark.
| |
Collapse
|
12
|
Damiris K, Abbad H, Pyrsopoulos N. Cellular based treatment modalities for unresectable hepatocellular carcinoma. World J Clin Oncol 2021; 12:290-308. [PMID: 34131562 PMCID: PMC8173328 DOI: 10.5306/wjco.v12.i5.290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and is unfortunately associated with an overall poor prognosis and high mortality. Early and intermediate stages of HCC allow for treatment with surgical resection, ablation and even liver transplantation, however disease progression warrants conventional systemic therapy. For years treatment options were limited to molecular-targeting medications, of which sorafenib remains the standard of care. The recent development and success of immune checkpoint inhibitors has proven to be a breakthrough in the treatment of HCC, but there is an urgent need for the development of further novel therapeutic treatments that prolong overall survival and minimize recurrence. Current investigation is focused on adoptive cell therapy including chimeric antigen receptor-T cells (CAR-T cells), T cell receptor (TCR) engineered T cells, dendritic cells, natural killer cells, and tumor infiltrating lymphocyte cells, which have shown remarkable success in the treatment of hematological and solid tumor malignancies. In this review we briefly introduce readers to the currently approved systemic treatment options and present clinical and experimental evidence of HCC immunotherapeutic treatments that will hopefully one day allow for revolutionary change in the treatment modalities used for unresectable HCC. We also provide an up-to-date compilation of ongoing clinical trials investigating CAR-T cells, TCR engineered T cells, cancer vaccines and oncolytic viruses, while discussing strategies that can help overcome commonly faced challenges when utilizing cellular based treatments.
Collapse
Affiliation(s)
- Konstantinos Damiris
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States
| | - Hamza Abbad
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States
| | - Nikolaos Pyrsopoulos
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, Newark, NJ 07103, United States
| |
Collapse
|
13
|
Liang Y, Su Q, Wu X. Identification and Validation of a Novel Six-Gene Prognostic Signature of Stem Cell Characteristic in Colon Cancer. Front Oncol 2021; 10:571655. [PMID: 33680915 PMCID: PMC7933554 DOI: 10.3389/fonc.2020.571655] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells play crucial roles in the development of colon cancer (COAD). This study tried to explore new markers for predicting the prognosis of colon cancer based on stem cell-related genes. In our study, 424 COAD samples from TCGA were divided into three subtypes based on 412 stem cell-related genes; there were significant differences in prognosis, clinical characteristics, and immune scores between these subtypes. 694 genes were screened between subgroups. Subsequently a six-gene signature (DYDC2, MS4A15, MAGEA1, WNT7A, APOD, and SERPINE1) was established. This model had strong robustness and stable predictive performance in cohorts of different platforms. Taken together, the six-gene signature constructed in this study could be used as a novel prognostic marker for COAD patients.
Collapse
Affiliation(s)
- Yichao Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Su
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Adoptive Cell Therapy in Hepatocellular Carcinoma: Biological Rationale and First Results in Early Phase Clinical Trials. Cancers (Basel) 2021; 13:cancers13020271. [PMID: 33450845 PMCID: PMC7828372 DOI: 10.3390/cancers13020271] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
The mortality of hepatocellular carcinoma (HCC) is quickly increasing worldwide. In unresectable HCC, the cornerstone of systemic treatments is switching from tyrosine kinase inhibitors to immune checkpoints inhibitors (ICI). Next to ICI, adoptive cell transfer represents another promising field of immunotherapy. Targeting tumor associated antigens such as alpha-fetoprotein (AFP), glypican-3 (GPC3), or New York esophageal squamous cell carcinoma-1 (NY-ESO-1), T cell receptor (TCR) engineered T cells and chimeric antigen receptors (CAR) engineered T cells are emerging as potentially effective therapies, with objective responses reported in early phase trials. In this review, we address the biological rationale of TCR/CAR engineered T cells in advanced HCC, their mechanisms of action, and results from recent clinical trials.
Collapse
|
15
|
Ni Z, Lu J, Huang W, Khan H, Wu X, Huang D, Shi G, Niu Y, Huang H. Transcriptomic identification of HBx-associated hub genes in hepatocellular carcinoma. PeerJ 2021; 9:e12697. [PMID: 35036167 PMCID: PMC8710059 DOI: 10.7717/peerj.12697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignancies around the world. Among the risk factors involved in liver carcinogenesis, hepatitis B virus (HBV) X protein (HBx) is considered to be a key regulator in hepatocarcinogenesis. Whether HBx promotes or protects against HCC remains controversial, therefore exploring new HBx-associated genes is still important. METHODS HBx was overexpressed in HepG2, HepG2.2.15 and SMMC-7721 cell lines, primary mouse hepatocytes and livers of C57BL/6N mice. High-throughput RNA sequencing profiling of HepG2 cells with HBx overexpression and related differentially-expressed genes (DEGs), pathway enrichment analysis, protein-protein interaction networks (PPIs), overlapping analysis were conducted. In addition, Gene Expression Omnibus (GEO) and proteomic datasets of HBV-positive HCC datasets were used to verify the expression and prognosis of selected DEGs. Finally, we also evaluated the known oncogenic role of HBx by oncogenic array analysis. RESULTS A total of 523 DEGs were obtained from HBx-overexpressing HepG2 cells. Twelve DEGs were identified and validated in cells transiently transfected with HBx and three datasets of HBV-positive HCC transcription profiles. In addition, using the Kaplan-Meier plotter database, the expression levels of the twelve different genes were further analyzed to predict patient outcomes. CONCLUSION Among the 12 identified HBx-associated hub genes, HBV-positive HCC patients expressing ARG1 and TAT showed a good overall survival (OS) and relapse-free survival (RFS). Thus, ARG1 and TAT expression could be potential prognostic markers.
Collapse
Affiliation(s)
- Zhengzhong Ni
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jun Lu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Weiyi Huang
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Hanif Khan
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xuejun Wu
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Danmei Huang
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Haihua Huang
- Department of Pathology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|