1
|
Gong Z, Qu Z, Liu Y, Wang T, Fan B, Ren A, Gao Y, Zhao N. Drought Adaptation and Responses of Stipa krylovii Vary Among Different Regions: Evidence From Growth, Physiology, and RNA-Seq Transcriptome Analysis. Ecol Evol 2025; 15:e70870. [PMID: 39839342 PMCID: PMC11747353 DOI: 10.1002/ece3.70870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/15/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025] Open
Abstract
In the context of global climate change, exploring how plant adaptation and responses to drought vary among different regions are crucial to understanding and predicting its geographic distribution. In this study, to explore the drought adaptation and responses of the dominant species in the semi-arid Eurasian Steppes and their differences among the different regions in terms of growth, physiology, and RNA-seq transcriptome, Stipa krylovii was chosen as the study material, and a seed source (three regions: eastern, middle, and western regions) × soil moisture treatment (three treatments: control, light drought, and heavy drought) two-factor experiment was conducted. (1) Four growth traits for individuals from the western region were significantly lower than those from the other two regions. By Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis on gene expressions of individuals from each treatment, unique enriched pathways were found under heavy drought. (2) The decrease in the number of tillers with the increasing drought was much lower for individuals from the western region than those from the other two regions. The differentially expressed genes (DEGs) of individuals from the eastern, middle, and western regions between heavy drought versus control were 4887, 1900, and 4896. By KEGG functional enrichment analysis, individuals from the eastern and middle regions mainly regulated energy metabolism and metabolism of other amino acids; and those from the western region mainly regulated biosynthesis of other secondary metabolites and carbohydrate metabolism. (3) Clustering analysis based on gene expressions separated the western region from the other two regions under the same drought treatment. This study indicates that drought adaptation and responses of S. krylovii vary among different regions, especially between individuals from the western region and the other two regions. These findings are essential to understanding the adaptive evolution of population and germplasm resource protection for this important species.
Collapse
Affiliation(s)
- Ziqing Gong
- Department of Plant Biology and Ecology, College of Life ScienceNankai UniversityTianjinP. R. China
| | - Zehang Qu
- Department of Plant Biology and Ecology, College of Life ScienceNankai UniversityTianjinP. R. China
| | - Yulin Liu
- Department of Plant Biology and Ecology, College of Life ScienceNankai UniversityTianjinP. R. China
| | - Tao Wang
- Department of Plant Biology and Ecology, College of Life ScienceNankai UniversityTianjinP. R. China
| | - Baijie Fan
- Department of Plant Biology and Ecology, College of Life ScienceNankai UniversityTianjinP. R. China
| | - Anzhi Ren
- Department of Plant Biology and Ecology, College of Life ScienceNankai UniversityTianjinP. R. China
| | - Yubao Gao
- Department of Plant Biology and Ecology, College of Life ScienceNankai UniversityTianjinP. R. China
| | - Nianxi Zhao
- Department of Plant Biology and Ecology, College of Life ScienceNankai UniversityTianjinP. R. China
| |
Collapse
|
2
|
Konecny T, Asatryan A, Nikoghosyan M, Binder H. Unveiling Iso- and Aniso-Hydric Disparities in Grapevine-A Reanalysis by Transcriptome Portrayal Machine Learning. PLANTS (BASEL, SWITZERLAND) 2024; 13:2501. [PMID: 39273985 PMCID: PMC11396901 DOI: 10.3390/plants13172501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Mechanisms underlying grapevine responses to water(-deficient) stress (WS) are crucial for viticulture amid escalating climate change challenges. Reanalysis of previous transcriptome data uncovered disparities among isohydric and anisohydric grapevine cultivars in managing water scarcity. By using a self-organizing map (SOM) transcriptome portrayal, we elucidate specific gene expression trajectories, shedding light on the dynamic interplay of transcriptional programs as stress duration progresses. Functional annotation reveals key pathways involved in drought response, pinpointing potential targets for enhancing drought resilience in grapevine cultivation. Our results indicate distinct gene expression responses, with the isohydric cultivar favoring plant growth and possibly stilbenoid synthesis, while the anisohydric cultivar engages more in stress response and water management mechanisms. Notably, prolonged WS leads to converging stress responses in both cultivars, particularly through the activation of chaperones for stress mitigation. These findings underscore the importance of understanding cultivar-specific WS responses to develop sustainable viticultural strategies in the face of changing climate.
Collapse
Affiliation(s)
- Tomas Konecny
- Armenian Bioinformatics Institute, Yerevan 0014, Armenia
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Armine Asatryan
- Armenian Bioinformatics Institute, Yerevan 0014, Armenia
- Group of Plant Genomics, Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan 0014, Armenia
| | - Maria Nikoghosyan
- Armenian Bioinformatics Institute, Yerevan 0014, Armenia
- Bioinformatics Group, Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan 0014, Armenia
| | - Hans Binder
- Armenian Bioinformatics Institute, Yerevan 0014, Armenia
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| |
Collapse
|
3
|
Zhang ZY, Xia HX, Yuan MJ, Gao F, Bao WH, Jin L, Li M, Li Y. Multi-omics analyses provide insights into the evolutionary history and the synthesis of medicinal components of the Chinese wingnut. PLANT DIVERSITY 2024; 46:309-320. [PMID: 38798724 PMCID: PMC11119516 DOI: 10.1016/j.pld.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/22/2024] [Accepted: 03/31/2024] [Indexed: 05/29/2024]
Abstract
Chinese wingnut (Pterocarya stenoptera) is a medicinally and economically important tree species within the family Juglandaceae. However, the lack of high-quality reference genome has hindered its in-depth research. In this study, we successfully assembled its chromosome-level genome and performed multi-omics analyses to address its evolutionary history and synthesis of medicinal components. A thorough examination of genomes has uncovered a significant expansion in the Lateral Organ Boundaries Domain gene family among the winged group in Juglandaceae. This notable increase may be attributed to their frequent exposure to flood-prone environments. After further differentiation between Chinese wingnut and Cyclocarya paliurus, significant positive selection occurred on the genes of NADH dehydrogenase related to mitochondrial aerobic respiration in Chinese wingnut, enhancing its ability to cope with waterlogging stress. Comparative genomic analysis revealed Chinese wingnut evolved more unique genes related to arginine synthesis, potentially endowing it with a higher capacity to purify nutrient-rich water bodies. Expansion of terpene synthase families enables the production of increased quantities of terpenoid volatiles, potentially serving as an evolved defense mechanism against herbivorous insects. Through combined transcriptomic and metabolomic analysis, we identified the candidate genes involved in the synthesis of terpenoid volatiles. Our study offers essential genetic resources for Chinese wingnut, unveiling its evolutionary history and identifying key genes linked to the production of terpenoid volatiles.
Collapse
Affiliation(s)
- Zi-Yan Zhang
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - He-Xiao Xia
- College of Landscape and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Meng-Jie Yuan
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Feng Gao
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Wen-Hua Bao
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Lan Jin
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Min Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Yong Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
4
|
Zhang W, Wang SC, Li Y. Molecular mechanism of thiamine in mitigating drought stress in Chinese wingnut (Pterocarya stenoptera): Insights from transcriptomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115307. [PMID: 37499386 DOI: 10.1016/j.ecoenv.2023.115307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/21/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Urban garden plants are frequently affected by drought, which can hinder their growth, development, and greening effect. Previous studies have indicated that Chinese wingnut (Pterocarya stenoptera) responds to drought stress by increasing the expression of thiamine synthesis genes. In this study, it was found that exogenous thiamine can effectively alleviate the negative effects of drought stress on plants. Forward transcriptome sequencing and physiological tests were further conducted to reveal the molecular mechanism of thiamine in alleviating drought stress. Results showed that exogenous thiamine activated the expression of eight chlorophyll synthesis genes in Chinese wingnut under drought stress. Moreover, physiological indicators proved that chlorophyll content increased in leaves of Chinese wingnut with thiamine treatment under drought stress. Photosynthesis genes were also activated in Chinese wingnut treated with exogenous thiamine under drought stress, as supported by photosynthetic indicators PIabs and PItotal. Additionally, exogenous thiamine stimulated the expression of genes in the auxin-activated signaling pathway, thus attenuating the effects of drought stress. This study demonstrates the molecular mechanism of thiamine in mitigating the effects of drought stress on non-model woody plants lacking transgenic systems. This study also provides an effective method to mitigate the negative impacts of drought stress on plants.
Collapse
Affiliation(s)
- Wei Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Shu-Chen Wang
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Yong Li
- College of Life Science and Technology, Inner Mongolia Normal University, Huhehaote, China; State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.
| |
Collapse
|
5
|
He Y, Ding N, Yu G, Sunahara GI, Lin H, Zhang X, Ullah H, Liu J. High-resolution imaging of O 2 dynamics and metal solubilization in the rhizosphere of the hyperaccumulator Leersia hexandra Swartz. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131580. [PMID: 37167872 DOI: 10.1016/j.jhazmat.2023.131580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
The mobilization of trace metals in the rhizosphere can be affected by the redox potential, which is closely related to the O2 dynamics. This study examined the distributions of O2 and trace metals in the rhizosphere of the subaquatic hyperaccumulator Leersia hexandra Swartz under chromium (Cr) stress using planar optodes and the diffusive gradients in thin films technique coupled with laser ablation inductively coupled plasma mass spectrometry. The O2 concentrations and oxidized areas in the rhizosphere significantly increased with increases in the light intensity, air humidity, and atmospheric CO2 concentrations (p < 0.05). The O2 concentration first increased with increasing ambient temperatures, then decreased when the temperature increased from 25 to 32 ℃. The O2 concentration in the rhizosphere was significantly decreased under Cr stress (p < 0.05), with a prolonged response time to the altered ambient temperature. Cr stress led to decreased mobilities of As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Sb, V, W, and Zn in the rhizosphere, which were negatively correlated with the concentrations of O2. These results provide new insights into the role of changes in the O2 concentration induced by the roots of hyperaccumulator plants in controlling the mobility of trace metals in soils.
Collapse
Affiliation(s)
- Yao He
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Na Ding
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Guo Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 541000 Guilin, China.
| | - Geoffrey I Sunahara
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 541000 Guilin, China.
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 541000 Guilin, China
| | - Habib Ullah
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 541000 Guilin, China
| |
Collapse
|
6
|
Li Y, Shi LC, Cushman SA. Transcriptomic responses and physiological changes to cold stress among natural populations provide insights into local adaptation of weeping forsythia. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:94-103. [PMID: 34034164 DOI: 10.1016/j.plaphy.2021.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/13/2021] [Indexed: 05/15/2023]
Abstract
Genetic mechanisms of species local adaptation are an emerging topic of great interest in evolutionary biology and molecular ecology. In this study, we compared the changes of physiological and phenotypic indexes and gene expression of four weeping forsythia populations under cold stress through a common garden experiment. Physiological and phenotypic results showed that there were differences in cold tolerance among populations. cold tolerance of high the latitude population (HBWZ) was the strongest, followed by the middle latitude population (SXWL), while the low latitude populations (SXHM) and (SXLJ) expressed the weakest cold tolerance. We identified significant differences in gene expression of cold tolerance related pathways and ontologies, including genes of oxylipin and isoquinoline alkaloid biosynthetic process, galactose, tyrosine and unsaturated fatty acids metabolism, among these populations under the same experimental temperature treatments. Even under the same degree of stress, there were notable differences in gene expression among natural populations. In this study, we present a working model of weeping forsythia populations which evolved in the context of different intensities of cold stress. Our study provides new insights for comprehending the genetic mechanisms of local adaptation for non-model species.
Collapse
Affiliation(s)
- Yong Li
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China.
| | - Long-Chen Shi
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Samuel A Cushman
- U.S. Forest Service, Rocky Mountain Research Station, 2500 S. Pine Knoll Dr., Flagstaff, AZ, USA
| |
Collapse
|
7
|
Li Y, Shi LC, Pei NC, Cushman SA, Si YT. Transcriptomic responses to drought stress among natural populations provide insights into local adaptation of weeping forsythia. BMC PLANT BIOLOGY 2021; 21:273. [PMID: 34130656 PMCID: PMC8204298 DOI: 10.1186/s12870-021-03075-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/26/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Understanding the genetic mechanisms of local adaptation is an important emerging topic in molecular ecology and evolutionary biology. RESULTS Here, we identify the physiological changes and differential expression of genes among different weeping forsythia populations under drought stress in common garden experiments. Physiological results showed that HBWZ might have higher drought tolerance among four populations. RNA-seq results showed that significant differential expression in the genes responding to the synthesis of flavonoids, aromatic substances, aromatic amino acids, oxidation-reduction process, and transmembrane transport occured among four populations. By further reanalysis of results of previous studies, sequence differentiation was found in the genes related to the synthesis of aromatic substances among different weeping forsythia populations. CONCLUSIONS Overall, our study supports the hypothesis that the dual differentiation in gene efficiency and expression increases among populations in response to heterogeneous environments and is an important evolutionary process of local adaptation. Here, we proposed a new working model of local adaptation of weeping forsythia populations under different intensities of drought stress, which provides new insights for understanding the genetic mechanisms of local adaptation for non-model species.
Collapse
Affiliation(s)
- Yong Li
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Long-Chen Shi
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Nan-Cai Pei
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Samuel A. Cushman
- U.S. Forest Service, Rocky Mountain Research Station, 2500 S. Pine Knoll Dr., Flagstaff, AZ USA
| | - Yu-Tao Si
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|