1
|
Galindo-Camacho RM, Blanco-Llamero C, da Ana R, Fuertes MA, Señoráns FJ, Silva AM, García ML, Souto EB. Therapeutic Approaches for Age-Related Macular Degeneration. Int J Mol Sci 2022; 23:11769. [PMID: 36233066 PMCID: PMC9570118 DOI: 10.3390/ijms231911769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Damage to the retinal pigment epithelium, Bruch's membrane and/or tissues underlying macula is known to increase the risk of age-related macular degeneration (AMD). AMD is commonly categorized in two distinct types, namely, the nonexudative (dry form) and the exudative (wet form). Currently, there is no ideal treatment available for AMD. Recommended standard treatments are based on the use of vascular endothelial growth factor (VEGF), with the disadvantage of requiring repeated intravitreal injections which hinder patient's compliance to the therapy. In recent years, several synthetic and natural active compounds have been proposed as innovative therapeutic strategies against this disease. There is a growing interest in the development of formulations based on nanotechnology because of its important role in the management of posterior eye segment disorders, without the use of intravitreal injections, and furthermore, with the potential to prolong drug release and thus reduce adverse effects. In the same way, 3D bioprinting constitutes an alternative to regeneration therapies for the human retina to restore its functions. The application of 3D bioprinting may change the current and future perspectives of the treatment of patients with AMD, especially those who do not respond to conventional treatment. To monitor the progress of AMD treatment and disease, retinal images are used. In this work, we revised the recent challenges encountered in the treatment of different forms of AMD, innovative nanoformulations, 3D bioprinting, and techniques to monitor the progress.
Collapse
Affiliation(s)
- Ruth M. Galindo-Camacho
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Cristina Blanco-Llamero
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Healthy Lipids Group, Departmental Section of Food Sciences, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Raquel da Ana
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Mayra A. Fuertes
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Francisco J. Señoráns
- Healthy Lipids Group, Departmental Section of Food Sciences, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Amélia M. Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - María L. García
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Battu P, Sharma K, Thangavel R, Singh R, Sharma S, Srivastava V, Anand A. Genotyping of Clinical Parameters in Age-Related Macular Degeneration. Clin Ophthalmol 2022; 16:517-529. [PMID: 35241908 PMCID: PMC8888136 DOI: 10.2147/opth.s318098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Priya Battu
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kaushal Sharma
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Ramandeep Singh
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Suresh Sharma
- Department of Statistics, Panjab University, Chandigarh, India
| | - Vinod Srivastava
- College of Health and Behavioral Sciences, Fort Hays State University, Hays, KS, USA
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
- Correspondence: Akshay Anand, Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India, Tel +911722756094, Email
| |
Collapse
|
3
|
Sharma K, Battu P, Singh R, Sharma SK, Anand A. Modulated anti-VEGF therapy under the influence of lipid metabolizing proteins in Age related macular degeneration: a pilot study. Sci Rep 2022; 12:714. [PMID: 35027571 PMCID: PMC8758686 DOI: 10.1038/s41598-021-04269-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/07/2021] [Indexed: 11/09/2022] Open
Abstract
Age-related macular degeneration (AMD) is a devastating retinal disease that results in irreversible vision loss in the aged population. The complex genetic nature and degree of genetic penetrance require a redefinition of the current therapeutic strategy for AMD. We aimed to investigate the role of modifiers for current anti-VEGF therapy especially for non-responder AMD patients. We recruited 78 wet AMD cases (out of 278 AMD patients) with their socio-demographic and treatment regimen. Serum protein levels were estimated by ELISA in AMD patients. Data pertaining to the number of anti-VEGF injections given (in 1 year) along with clinical images (FFA and OCT) of AMD patients were also included. Visual acuity data (logMAR) for 46 wet AMD cases out of a total of 78 patients were also retrieved to examine the response of anti-VEGF injections in wet AMD cases. Lipid metabolizing genes (LIPC and APOE) have been identified as chief biomarkers for anti-VEGF response in AMD patients. Both genotypes 'CC' and 'GC' of LIPC have found to be associated with a number of anti-VEGF injections in AMD patients which could influence the expression of B3GALTL,HTRA1, IER3, LIPC and SLC16A8 proteins in patients bearing both genotypes as compared to reference genotype. Elevated levels of APOE were also observed in group 2 wet AMD patients as compared to group 1 suggesting the significance of APOE levels in anti-VEGF response. The genotype of B3GALTL has also been shown to have a significant association with the number of anti-VEGF injections. Moreover, visual acuity of group 1 (≤ 4 anti-VEGF injections/year) AMD patients was found significantly improved after 3 doses of anti-VEGF injections and maintained longitudinally as compared to groups 2 and 3. Lipid metabolising genes may impact the outcome of anti-VEGF AMD treatment.
Collapse
Affiliation(s)
- Kaushal Sharma
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.,Advanced Pediatrics Centre, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Priya Battu
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ramandeep Singh
- Advanced Eye Centre, Department of Ophthalmology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | | | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
4
|
Sharma K, Singh R, Sharma SK, Anand A. Sleeping pattern and activities of daily living modulate protein expression in AMD. PLoS One 2021; 16:e0248523. [PMID: 34061866 PMCID: PMC8168906 DOI: 10.1371/journal.pone.0248523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/26/2021] [Indexed: 11/18/2022] Open
Abstract
Degeneration of macular photoreceptors is a prominent characteristic of age-related macular degeneration (AMD) which leads to devastating and irreversible vision loss in the elderly population. In this exploratory study, the contribution of environmental factors on the progression of AMD pathology by probing the expression of candidate proteins was analyzed. Four hundred and sixty four participants were recruited in the study comprising of AMD (n = 277) and controls (n = 187). Genetics related data was analyzed to demonstrate the activities of daily living (ADL) by using regression analysis and statistical modeling, including contrast estimate, multinomial regression analysis in AMD progression. Regression analysis revealed contribution of smoking, alcohol, and sleeping hours on AMD by altered expression of IER-3, HTRA1, B3GALTL, LIPC and TIMP3 as compared to normal levels. Contrast estimate supports the gender polarization phenomenon in AMD by significant decreased expression of SLC16A8 and LIPC in control population which was found to be unaltered in AMD patients. The smoking, food habits and duration of night sleeping hours also contributed in AMD progression as evident from multinomial regression analysis. Predicted model (prediction estimate = 86.7%) also indicated the crucial role of night sleeping hours along with the decreased expression of TIMP-3, IER3 and SLC16A8. Results revealed an unambiguous role of environmental factors in AMD progression mediated by various regulatory proteins which might result in intermittent AMD phenotypes and possibly influence the outcome of anti-VEGF treatment.
Collapse
Affiliation(s)
- Kaushal Sharma
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
- Advanced Pediatrics Centre, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ramandeep Singh
- Department of Ophthalmology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|