1
|
Cheng C, Su S, Bo S, Zheng C, Liu C, Zhang L, Xu S, Wang X, Gao P, Fan K, He Y, Zhou D, Gong Y, Zhong G, Liu Z. A Bacillus velezensis strain isolated from oats with disease-preventing and growth-promoting properties. Sci Rep 2024; 14:12950. [PMID: 38839805 PMCID: PMC11153497 DOI: 10.1038/s41598-024-63756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024] Open
Abstract
Endophytes have been shown to promote plant growth and health. In the present study, a Bacillus velezensis CH1 (CH1) strain was isolated and identified from high-quality oats, which was capable of producing indole-3-acetic acid (IAA) and strong biofilms, and capabilities in the nitrogen-fixing and iron carriers. CH1 has a 3920 kb chromosome with 47.3% GC content and 3776 code genes. Compared genome analysis showed that the largest proportion of the COG database was metabolism-related (44.79%), and 1135 out of 1508 genes were associated with the function "biosynthesis, transport, and catabolism of secondary metabolites." Furthermore, thirteen gene clusters had been identified in CH1, which were responsible for the synthesis of fifteen secondary metabolites that exhibit antifungal and antibacterial properties. Additionally, the strain harbors genes involved in plant growth promotion, such as seven putative genes for IAA production, spermidine and polyamine synthase genes, along with multiple membrane-associated genes. The enrichment of these functions was strong evidence of the antimicrobial properties of strain CH1, which has the potential to be a biofertilizer for promoting oat growth and disease resistance.
Collapse
Affiliation(s)
- Chao Cheng
- School of Life Science and Technology, Jining Normal University, Ulanqab, 012000, China.
| | - Shaofeng Su
- Inner Mongolia Academy of Agriculture and Husbandry Science, Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Affairs, Hohhot, 010000, China
| | - Suling Bo
- College of Computer Information, Inner Mongolia Medical University, Hohhot, 010000, China
| | - Chengzhong Zheng
- Ulanqab Institute for Agricultural and Forestry Science, Ulanqab, 012000, China
| | - Chunfang Liu
- Ulanqab Center for Disease Control and Prevention, Ulanqab, 012000, China
| | - Linchong Zhang
- Jinyu Baoling Biological Drugs Co., LTD, Hohhot, 010000, China
| | - Songhe Xu
- School of Life Science and Technology, Jining Normal University, Ulanqab, 012000, China
| | - Xiaoyun Wang
- School of Life Science and Technology, Jining Normal University, Ulanqab, 012000, China
| | - Pengfei Gao
- Vocational and Technical College of Ulanqab, Ulanqab, 012000, China
| | - Kongxi Fan
- Inner Mongolia Agricultural University, Hohhot, 010000, China
| | - Yiwei He
- School of Life Science and Technology, Jining Normal University, Ulanqab, 012000, China
| | - Di Zhou
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010000, China
| | - Yanchun Gong
- Agriculture and Animal Husbandry Technology Promotion Center of Inner Mongolia, Hohhot, 010000, China
| | - Gang Zhong
- Agriculture and Animal Husbandry Technology Promotion Center of Inner Mongolia, Hohhot, 010000, China
| | - Zhiguo Liu
- Inner Mongolia Agricultural University, Hohhot, 010000, China.
- Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, 100000, China.
| |
Collapse
|
2
|
Patel JK, Mistry Y, Soni R, Jha A. Evaluation of Antifungal Activity of Endophytic Bacillus spp. and Identification of Secondary Metabolites Produced Against the Phytopathogenic Fungi. Curr Microbiol 2024; 81:128. [PMID: 38580768 DOI: 10.1007/s00284-024-03652-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/26/2024] [Indexed: 04/07/2024]
Abstract
Endophytic bacteria serve as a rich source of diverse antimicrobial compounds. Recently, there has been a growing interest in utilizing endophytic Bacillus spp. as biological agents against phytogenic fungi, owing to their potential to produce a wide range of antimicrobial substances. The objective of this research was to investigate the protective abilities of 15 endophytic Bacillus spp. isolated from previous study from wheat plant, against the phytopathogenic fungi, Fusarium graminearum and Macrophomina phaseolina. A dual culture plate assay was conducted as a preliminary analysis, revealing that 7 out of 15 endophytic Bacillus spp. demonstrated inhibition against one or both of the phytopathogenic fungi used in this study. All seven endophytes were further assessed for the presence of diffusible antifungal metabolites. The cultures were grown in potato dextrose broth for 120 h, and the cell-free supernatant was extracted and analyzed using the cup plate method. The methanolic extract yielded similar results to the dual culture plate analysis, except for WL2-15. Additionally, deformities in the mycelial structure were examined under the light microscope upon exposure to methanolic extract. Furthermore, the analysis and identification of metabolites were carried out via gas chromatography-mass spectrometry of methanolic extract from selected seven endophytic Bacillus spp. The chromatogram revealed the presence of some major peaks such as tridecanoic acid, methyl ester, hydroperoxide, 1-methylbutyl, 9-octadecenamide, (z)-, hexane-1,3,4-triol, 3,5-dimethyl- tetradecanoic acid. To the best of our knowledge, this is the first report of these biocontrol agents in endophytic Bacillus spp. Interestingly, volatile organic compound production was also seen in all the isolates against the phytopathogenic fungi.
Collapse
Affiliation(s)
- Janki K Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388 421, India.
| | - Yukta Mistry
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388 421, India
| | - Riya Soni
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388 421, India
| | - Anamika Jha
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388 421, India
| |
Collapse
|
3
|
Zhang T, Wei S, Liu Y, Cheng C, Ma J, Yue L, Gao Y, Cheng Y, Ren Y, Su S, Zhao X, Lu Z. Screening and genome-wide analysis of lignocellulose-degrading bacteria from humic soil. Front Microbiol 2023; 14:1167293. [PMID: 37637133 PMCID: PMC10450921 DOI: 10.3389/fmicb.2023.1167293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Crop straw contains huge amounts of exploitable energy, and efficient biomass degradation measures have attracted worldwide attention. Mining strains with high yields of cellulose-degrading enzymes is of great significance for developing clean energy and industrial production of related enzymes. In this study, we reported a high-quality genome sequence of Bacillus velezensis SSF6 strain using high-throughput sequencing technology (Illumina PE150 and PacBio) and assessed its lignocellulose degradation potential. The results demonstrated that the genome of B. velezensis SSF6 was 3.89 Mb and contained 4,015 genes, of which 2,972, 3,831 and 158 genes were annotated in the COGs (Clusters of Orthologous Groups), KEGG (Kyoto Encyclopedia of Genes and Genomes) and CAZyme (Carbohydrate-Active enZymes) databases, respectively, and contained a large number of genes related to carbohydrate metabolism. Furthermore, B. velezensis SSF6 has a high cellulose degradation capacity, with a filter paper assay (FPA) and an exoglucanase activity of 64.48 ± 0.28 and 78.59 ± 0.42 U/mL, respectively. Comparative genomic analysis depicted that B. velezensis SSF6 was richer in carbohydrate hydrolase gene. In conclusion, the cellulose-degrading ability of B. velezensis SSF6 was revealed by genome sequencing and the determination of cellulase activity, which laid a foundation for further cellulose degradation and bioconversion.
Collapse
Affiliation(s)
- Tianjiao Zhang
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Shuli Wei
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Yajie Liu
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Chao Cheng
- School of Life Science, Jining Normal University, Ulanqab, China
| | - Jie Ma
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Linfang Yue
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
| | - Yanrong Gao
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Yuchen Cheng
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Yongfeng Ren
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Shaofeng Su
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Xiaoqing Zhao
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Zhanyuan Lu
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| |
Collapse
|
4
|
Oh J, Durai P, Kannan P, Park J, Yeon YJ, Lee WK, Park K, Seo MH. Domain-wise dissection of thermal stability enhancement in multidomain proteins. Int J Biol Macromol 2023; 237:124141. [PMID: 36958447 DOI: 10.1016/j.ijbiomac.2023.124141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/25/2023]
Abstract
Stability is critical for the proper functioning of all proteins. Optimization of protein thermostability is a key step in the development of industrial enzymes and biologics. Herein, we demonstrate that multidomain proteins can be stabilized significantly using domain-based engineering followed by the recombination of the optimized domains. Domain-level analysis of designed protein variants with similar structures but different thermal profiles showed that the independent enhancement of the thermostability of a constituent domain improves the overall stability of the whole multidomain protein. The crystal structure and AlphaFold-predicted model of the designed proteins via domain-recombination provided a molecular explanation for domain-based stepwise stabilization. Our study suggests that domain-based modular engineering can minimize the sequence space for calculations in computational design and experimental errors, thereby offering useful guidance for multidomain protein engineering.
Collapse
Affiliation(s)
- Jisung Oh
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, South Korea; Department of Biochemical Engineering, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Prasannavenkatesh Durai
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, South Korea
| | - Priyadharshini Kannan
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, South Korea
| | - Jaehui Park
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, South Korea
| | - Young Joo Yeon
- Department of Biochemical Engineering, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Won-Kyu Lee
- New Drug Development Center, Osong Medical Innovation Foundation, Chungbuk 28160, South Korea
| | - Keunwan Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, South Korea.
| | - Moon-Hyeong Seo
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, South Korea.
| |
Collapse
|
5
|
Chen Y, Wei Y, Cai B, Zhou D, Qi D, Zhang M, Zhao Y, Li K, Wedge DE, Pan Z, Xie J, Wang W. Discovery of Niphimycin C from Streptomyces yongxingensis sp. nov. as a Promising Agrochemical Fungicide for Controlling Banana Fusarium Wilt by Destroying the Mitochondrial Structure and Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12784-12795. [PMID: 36170206 DOI: 10.1021/acs.jafc.2c02810] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is the most destructive soil-borne fungal disease. Tropical race 4 (Foc TR4), one of the strains of Foc, can infect many commercial cultivars, which represents a threat to global banana production. Currently, there are hardly any effective chemical fungicides to control the disease. To search for natural product-based fungicides for controlling banana Fusarium wilt, we identified a novel strain Streptomyces yongxingensis sp. nov. (JCM 34965) from a marine soft coral, from which a bioactive compound, niphimycin C, was isolated using an activity-guided method. Niphimycin C exhibited a strong antifungal activity against Foc TR4 with a value of 1.20 μg/mL for EC50 and obviously inhibited the mycelial growth and spore germination of Foc TR4. It caused the functional loss of mitochondria and the disorder of metabolism of Foc TR4 cells. Further study showed that niphimycin C reduced key enzyme activities of the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC). It displayed broad-spectrum antifungal activities against the selected 12 phytopathogenic fungi. In pot experiments, niphimycin C reduced the disease indexes in banana plantlets and inhibited the infection of Foc TR4 in roots. Hence, niphimycin C could be a promising agrochemical fungicide for the management of fungal diseases.
Collapse
Affiliation(s)
- Yufeng Chen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yongzan Wei
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bingyu Cai
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Dengbo Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Dengfeng Qi
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Miaoyi Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yankun Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Kai Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - David E Wedge
- United States Department of Agriculture-Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677, United States
| | - Zhiqiang Pan
- United States Department of Agriculture-Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677, United States
| | - Jianghui Xie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wei Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
6
|
Luo Y, Chen L, Lu Z, Zhang W, Liu W, Chen Y, Wang X, Du W, Luo J, Wu H. Genome sequencing of biocontrol strain Bacillus amyloliquefaciens Bam1 and further analysis of its heavy metal resistance mechanism. BIORESOUR BIOPROCESS 2022; 9:74. [PMID: 38647608 PMCID: PMC10991351 DOI: 10.1186/s40643-022-00563-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) or Biocontrol strains inevitably encounter heavy metal excess stress during the product's processing and application. Bacillus amyloliquefaciens Bam1 was a potential biocontrol strain with strong heavy metal resistant ability. To understand its heavy metal resistance mechanism, the complete genome of Bam1 had been sequenced, and the comparative genomic analysis of Bam1 and FZB42, an industrialized PGPR and biocontrol strain with relatively lower heavy metal tolerance, was conducted. The comparative genomic analysis of Bam1 and the other nine B. amyloliquefaciens strains as well as one Bacillus velezensis (genetically and physiologically very close to B. amyloliquefaciens) was also performed. Our results showed that the complete genome size of Bam1 was 3.95 Mb, 4219 coding sequences were predicted, and it possessed the highest number of unique genes among the eleven analyzed strains. Nine genes related to heavy metal resistance were detected within the twelve DNA islands of Bam1, while only two of them were detected within the seventeen DNA islands of FZB42. When compared with B. amyloliquefaciens type strain DSM7, Bam1 lacked contig L, whereas FZB42 lacked contig D and I, as well as just possessed contig B with a very small size. Our results could also deduce that Bam1 promoted its essential heavy metal resistance mainly by decreasing the import and increasing the export of heavy metals with the corresponding homeostasis systems, which are regulated by different metalloregulators. While Bam1 promoted its non-essential heavy metal resistance mainly by the activation of some specific or non-specific exporters responding to different heavy metals. The variation of the genes related to heavy metal resistance and the other differences of the genomes, including the different number and arrangement of contigs, as well as the number of the heavy metal resistant genes in Prophages and Genomic islands, led to the significant different resistance of Bam1 and FZB42 to heavy metals.
Collapse
Affiliation(s)
- Yuanchan Luo
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Lei Chen
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai, 201103, China
| | - Zhibo Lu
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weijian Zhang
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wentong Liu
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuwei Chen
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xinran Wang
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wei Du
- Agricultural Technology Extension Station of Ningxia, 2, West Shanghai Road, Yinchuan, 750001, China
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai, 201103, China.
| | - Hui Wu
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
- Key Laboratory of Bio-Based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
7
|
The Genome of Bacillus velezensis SC60 Provides Evidence for Its Plant Probiotic Effects. Microorganisms 2022; 10:microorganisms10040767. [PMID: 35456817 PMCID: PMC9025316 DOI: 10.3390/microorganisms10040767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/10/2022] Open
Abstract
Root colonization and plant probiotic function are important traits of plant growth-promoting rhizobacteria (PGPR). Bacillus velezensis SC60, a plant endophytic strain screened from Sesbania cannabina, has a strong colonization ability on various plant roots, which indicates that SC60 has a preferable adaptability to plants. However, the probiotic function of the strain SC60 is not well-understood. Promoting plant growth and suppressing soil-borne pathogens are key to the plant probiotic functions. In this study, the genetic mechanism of plant growth-promoting and antibacterial activity of the strain SC60 was analyzed by biological and bioinformatics methods. The complete genome size of strain SC60 was 3,962,671 bp, with 4079 predicted genes and an average GC content of 46.46%. SC60 was designated as Bacillus velezensis according to the comparative analysis, including average nucleotide polymorphism (ANI), digital DNA–DNA hybridization (dDDH), and phylogenetic analysis. Genomic secondary metabolite analyses indicated two clusters encoding potential new antimicrobials. The antagonism experiments revealed that strain SC60 had the ability to inhibit the growth of a variety of plant pathogens and its closely related strains of Bacillus spp., which was crucial to the rhizospheric competitiveness and growth-promoting effect of the strain. The present results further suggest that B. velezensis SC60 could be used as a PGPR strain to develop new biocontrol agents or microbial fertilizers.
Collapse
|
8
|
Medrano EG, Prom LK. Genome Sequence Data of Bacillus sp. Strain LP16S, Which Is Capable of Inhibiting the Growth of Multiple Sorghum Fungal Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:290-292. [PMID: 35139661 DOI: 10.1094/mpmi-10-21-0246-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Enrique G Medrano
- Insect Control & Cotton Disease Research Unit, US Department of Agriculture-Agricultural Research Service (USDA-ARS), College Station, TX, U.S.A
| | - Louis K Prom
- Crop Germplasm Research Unit, USDA-ARS, College Station, TX, U.S.A
| |
Collapse
|
9
|
Huynh T, Vörös M, Kedves O, Turbat A, Sipos G, Leitgeb B, Kredics L, Vágvölgyi C, Szekeres A. Discrimination between the Two Closely Related Species of the Operational Group B. amyloliquefaciens Based on Whole-Cell Fatty Acid Profiling. Microorganisms 2022; 10:microorganisms10020418. [PMID: 35208872 PMCID: PMC8877761 DOI: 10.3390/microorganisms10020418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
(1) Background: Bacillus velezensis and Bacillus amyloliquefaciens are closely related members of the “operational group B. amyloliquefaciens”, a taxonomical unit above species level within the ”Bacillus subtilis species complex”. They have similar morphological, physiological, biochemical, phenotypic, and phylogenetic characteristics. Thus, separating these two taxa from each another has proven to be difficult to implement and could not be pushed easily into the line of routine analyses. (2) Methods: The aim of this study was to determine whether whole FAME profiling could be used to distinguish between these two species, using both type strains and environmental isolates. Initially, the classification was determined by partial sequences of the gyrA and rpoB genes and the classified isolates and type strains were considered as samples to develop the identification method, based on FAME profiles. (3) Results: The dissimilarities in 16:0, 17:0 iso, and 17:0 FA components have drawn a distinction between the two species and minor differences in FA 14:0, 15:0 iso, and 16:0 iso were also visible. The statistical analysis of the FA profiles confirmed that the two taxa can be distinguished into two separate groups, where the isolates are identified without misreading. (4) Conclusions: Our study proposes that the developed easy and fast-automated identification tool based on cellular FA profiles can be routinely applied to distinguish B. velezensis and B. amyloliquefaciens.
Collapse
Affiliation(s)
- Thu Huynh
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (T.H.); (M.V.); (O.K.); (A.T.); (L.K.); (C.V.)
- Department of Biotechnology, Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 72607, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 71351, Vietnam
| | - Mónika Vörös
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (T.H.); (M.V.); (O.K.); (A.T.); (L.K.); (C.V.)
| | - Orsolya Kedves
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (T.H.); (M.V.); (O.K.); (A.T.); (L.K.); (C.V.)
| | - Adiyadolgor Turbat
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (T.H.); (M.V.); (O.K.); (A.T.); (L.K.); (C.V.)
| | - György Sipos
- Functional Genomics and Bioinformatics Group, Research Center for Forestry and Wood Industry, University of Sopron, Bajcsy-Zsilinszky Str. 4, H-9400 Sopron, Hungary;
| | - Balázs Leitgeb
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary;
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (T.H.); (M.V.); (O.K.); (A.T.); (L.K.); (C.V.)
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (T.H.); (M.V.); (O.K.); (A.T.); (L.K.); (C.V.)
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (T.H.); (M.V.); (O.K.); (A.T.); (L.K.); (C.V.)
- Correspondence: ; Tel.: +36-62-544516
| |
Collapse
|
10
|
Enhanced Activity by Genetic Complementarity: Heterologous Secretion of Clostridial Cellulases by Bacillus licheniformis and Bacillus velezensis. Molecules 2021; 26:molecules26185625. [PMID: 34577096 PMCID: PMC8468253 DOI: 10.3390/molecules26185625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
To adapt to various ecological niches, the members of genus Bacillus display a wide spectrum of glycoside hydrolases (GH) responsible for the hydrolysis of cellulose and lignocellulose. Being abundant and renewable, cellulose-containing plant biomass may be applied as a substrate in second-generation biotechnologies for the production of platform chemicals. The present study aims to enhance the natural cellulase activity of two promising 2,3-butanediol (2,3-BD) producers, Bacillus licheniformis 24 and B. velezensis 5RB, by cloning and heterologous expression of cel8A and cel48S genes of Acetivibrio thermocellus. In B. licheniformis, the endocellulase Cel8A (GH8) was cloned to supplement the action of CelA (GH9), while in B. velezensis, the cellobiohydrolase Cel48S (GH48) successfully complemented the activity of endo-cellulase EglS (GH5). The expression of the natural and heterologous cellulase genes in both hosts was demonstrated by reverse-transcription PCR. The secretion of clostridial cellulases was additionally enhanced by enzyme fusion to the subtilisin-like signal peptide, reaching a significant increase in the cellulase activity of the cell-free supernatants. The results presented are the first to reveal the possibility of genetic complementation for enhancement of cellulase activity in bacilli, thus opening the prospect for genetic improvement of strains with an important biotechnological application.
Collapse
|
11
|
Sultana OF, Lee S, Seo H, Mahmud HA, Kim S, Seo A, Kim M, Song HY. Biodegradation and Removal of PAHs by Bacillus velezensis Isolated from Fermented Food. J Microbiol Biotechnol 2021; 31:999-1010. [PMID: 34024889 PMCID: PMC9705940 DOI: 10.4014/jmb.2104.04023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment. They are highly toxigenic and carcinogenic. Probiotic bacteria isolated from fermented foods were tested to check their ability to degrade and/or detoxify PAHs. Five probiotic bacteria with distinct morphologies were isolated from a mixture of 26 fermented foods co-cultured with benzo(a)pyrene (BaP) containing Bushnell Haas minimal broth. Among them, B. velezensis (PMC10) significantly reduced the abundance of BaP in the broth. PMC10 completely degraded BaP presented at a lower concentration in broth culture. B. velezensis also showed a clear zone of degradation on a BaP-coated Bushnell Haas agar plate. Gene expression profiling showed significant increases of PAH ringhydroxylating dioxygenases and 4-hydroxybenzoate 3-monooxygenase genes in B. velezensis in response to BaP treatment. In addtion, both live and heat-killed B. velezensis removed BaP and naphthalene (Nap) from phosphate buffer solution. Live B. velezensis did not show any cytotoxicity to macrophage or human dermal fibroblast cells. Live-cell and cell-free supernatant of B. velezensis showed potential anti-inflammatory effects. Cell-free supernatant and extract of B. velezensis also showed free radical scavenging effects. These results highlight the prospective ability of B. velezensis to biodegrade and remove toxic PAHs from the human body and suggest that the biodegradation of BaP might be regulated by ring-hydroxylating dioxygenase-initiated metabolic pathway.
Collapse
Affiliation(s)
- Omme Fatema Sultana
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Saebim Lee
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Hoonhee Seo
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Hafij Al Mahmud
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Sukyung Kim
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Ahyoung Seo
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Mijung Kim
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea,Corresponding author Phone: +82-41-570-2412 Fax: +82-41-577-2415 E-mail:
| |
Collapse
|