1
|
Wei W, Liu Z, Pan X, Yang T, An C, Wang Y, Li L, Liao W, Wang C. Effects of reactive oxygen species on fruit ripening and postharvest fruit quality. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112391. [PMID: 39805341 DOI: 10.1016/j.plantsci.2025.112391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Reactive oxygen species (ROS) serve as important signaling molecule, involved in numerous biological processes, particularly in the physiological changes associated with fruit ripening and postharvest handing. This review explores ROS key role in plant fruit ripening and postharvest quality. The mechanism of ROS production and degradation in maintaining ROS homeostasis are analyzed in detail. Fruit ripening is a complex and highly coordinated process involving physiological and biochemical changes. Studies have observed that the content of ROS, mainly hydrogen peroxide (H2O2), dynamically changes in various types of fruits during ripening. Furthermore, ROS have significant effects on fruit softening, color change, and other ripening processes. In addition, in the postharvest stage, the abnormal accumulation of ROS isclosely related to the decline in fruit quality and the occurrence of decay browning, which seriously affects the market value and shelf life of fruit. Overall, this review demonstrates the crucial role of ROS in regulating the ripening process and postharvest quality of fruit.
Collapse
Affiliation(s)
- Wenying Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zesheng Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuejuan Pan
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Tingyue Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Caiting An
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanhui Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Long Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
2
|
Wang Y, Ma L, Ma Y, Tian T, Zhang J, Wang H, Liu Z, Chen Q, He W, Lin Y, Zhang Y, Li M, Yang S, Zhang Y, Luo Y, Tang H, Wang X. Comparative physiological and transcriptomic analyses provide insights into fruit softening in Chinese cherry [ Cerasus pseudocerasus (Lindl.) G.Don]. FRONTIERS IN PLANT SCIENCE 2023; 14:1190061. [PMID: 37528967 PMCID: PMC10388103 DOI: 10.3389/fpls.2023.1190061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023]
Abstract
Fruit softening is a complex, genetically programmed and environmentally regulated process, which undergoes biochemical and physiological changes during fruit development. The molecular mechanisms that determine these changes in Chinese cherry [Cerasus peseudocerasus (Lindl.) G.Don] fruits are still unknown. In the present study, fruits of hard-fleshed 'Hongfei' and soft-fleshed 'Pengzhoubai' varieties of Chinese cherry were selected to illustrate the fruit softening at different developmental stages. We analyzed physiological characteristics and transcriptome profiles to identify key cell wall components and candidate genes related to fruit softening and construct the co-expression networks. The dynamic changes of cell wall components (cellulose, hemicellulose, pectin, and lignin), the degrading enzyme activities, and the microstructure were closely related to the fruit firmness during fruit softening. A total of 6,757 and 3,998 differentially expressed genes (DEGs) were screened between stages and varieties, respectively. Comprehensive functional enrichment analysis supported that cell wall metabolism and plant hormone signal transduction pathways were involved in fruit softening. The majority of structural genes were significantly increased with fruit ripening in both varieties, but mainly down-regulated in Hongfei fruits compared with Pengzhoubai, especially DEGs related to cellulose and hemicellulose metabolism. The expression levels of genes involving lignin biosynthesis were decreased with fruit ripening, while mainly up-regulated in Hongfei fruits at red stage. These obvious differences might delay the cell all degrading and loosening, and enhance the cell wall stiffing in Hongfei fruits, which maintained a higher level of fruit firmness than Pengzhoubai. Co-expressed network analysis showed that the key structural genes were correlated with plant hormone signal genes (such as abscisic acid, auxin, and jasmonic acid) and transcription factors (MADS, bHLH, MYB, ERF, NAC, and WRKY). The RNA-seq results were supported using RT-qPCR by 25 selected DEGs that involved in cell wall metabolism, hormone signal pathways and TF genes. These results provide important basis for the molecular mechanism of fruit softening in Chinese cherry.
Collapse
Affiliation(s)
- Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu, Sichuan, China
| | - Lan Ma
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Ma
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tai Tian
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hao Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhenshan Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu, Sichuan, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu, Sichuan, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaofeng Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Li S, Li Q, Cao J, Qu G, Jiang W. Comparative transcriptomic analysis provides novel insights into the difference in textural alteration between mealy and crisp apple patterns. Food Res Int 2023; 169:112941. [PMID: 37254365 DOI: 10.1016/j.foodres.2023.112941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023]
Abstract
Mealiness is a common textural deterioration of several fruit after harvest. To unravel the underlying mechanism involved in mealiness, biochemical characterization and global transcriptomic profiling were comparatively performed between mealy 'Hongjiangjun' (HJJ) and crisp 'Fuji' apples. Sensory evaluation and SEM-based microstructure observation showed that HJJ apples appeared to be mealy in only 3 d at 23 ± 1 °C, while Fuji apples did not appear to be mealy even after 28 d of storage. Textural deterioration and ethylene burst occurred more sharply in HJJ apples than in Fuji apples during storage. The results obtained from the dimensional RNA-sequencing analysis showed that a much stronger upregulation of the transcription of genes encoding polygalacturonase (PG), pectin acetylesterase (PAE), pectinesterase (PE), β-galactosidase (GAL), α-l-arabinofuranase (AF), and expansin (EXP) was observed in the pair of mealy HJJ apples vs. harvest than in the pair of Fuji apples after 28 d vs. harvest. The gene expression of ethylene responsive factor (ERF) was found to be strongly upregulated in HJJ apples compared with Fuji apples, which may mediate the regulation of downstream genes encoding cell wall-modifying enzymes. Weighted gene co-expression network analysis showed that the transcription factors MdbHLH63 and MdERF-like, and a constructure gene of MdGAL had strong connectivity with mealiness. Validation by qRT-PCR further confirmed the main findings obtained by RNA-sequencing. The occurrence of apple mealiness involves altered expression patterns of cell wall-modifying enzymes as well as MdbHLH63 and MdERF-like, which are core genes regulating the mealiness process. The above findings provide global insight into the difference in textural alteration between mealy and crisp apple patterns.
Collapse
Affiliation(s)
- Shihao Li
- College of Food Science and Nutritional Engineering, China Agricultural University, 17, Qinghuadonglu Road, Beijing 100083, PR China
| | - Qianqian Li
- College of Food Science and Nutritional Engineering, China Agricultural University, 17, Qinghuadonglu Road, Beijing 100083, PR China; Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, 17, Qinghuadonglu Road, Beijing 100083, PR China.
| | - Guiqin Qu
- College of Food Science and Nutritional Engineering, China Agricultural University, 17, Qinghuadonglu Road, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, 17, Qinghuadonglu Road, Beijing 100083, PR China
| |
Collapse
|
4
|
Gao G, Yang F, Wang C, Duan X, Li M, Ma Y, Wang F, Qi H. The transcription factor CmERFI-2 represses CmMYB44 expression to increase sucrose levels in oriental melon fruit. PLANT PHYSIOLOGY 2023; 192:1378-1395. [PMID: 36938625 PMCID: PMC10231561 DOI: 10.1093/plphys/kiad155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/01/2023]
Abstract
Soluble sugar accumulation in fruit ripening determines fleshy fruit quality. However, the molecular mechanism for this process is not yet understood. Here, we showed a transcriptional repressor, CmMYB44 regulates sucrose accumulation and ethylene synthesis in oriental melon (Cucumis. melo var. makuwa Makino) fruit. Overexpressing CmMYB44 suppressed sucrose accumulation and ethylene production. Furthermore, CmMYB44 repressed the transcriptional activation of CmSPS1 (sucrose phosphate synthase 1) and CmACO1 (ACC oxidase 1), two key genes in sucrose and ethylene accumulation, respectively. During the later stages of fruit ripening, the repressive effect of CmMYB44 on CmSPS1 and CmACO1 could be released by overexpressing CmERFI-2 (ethylene response factor I-2) and exogenous ethylene in "HS" fruit (high sucrose accumulation fruit). CmERFI-2 acted upstream of CmMYB44 as a repressor by directly binding the CmMYB44 promoter region, indirectly stimulating the expression level of CmSPS1 and CmACO1. Taken together, we provided a molecular regulatory pathway mediated by CmMYB44, which determines the degree of sucrose and ethylene accumulation in oriental melon fruit and sheds light on transcriptional responses triggered by ethylene sensing that enable the process of fruit ripening.
Collapse
Affiliation(s)
- Ge Gao
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Fan Yang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Cheng Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Xiaoyu Duan
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Meng Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Yue Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Feng Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| |
Collapse
|
5
|
De Pascale S, Troise AD, Petriccione M, Nunziata A, Cice D, Magri A, Salzano AM, Scaloni A. Investigating phenotypic relationships in persimmon accessions through integrated proteomic and metabolomic analysis of corresponding fruits. FRONTIERS IN PLANT SCIENCE 2023; 14:1093074. [PMID: 36794209 PMCID: PMC9923171 DOI: 10.3389/fpls.2023.1093074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Together with phenological and genomic approaches, gel-based and label-free proteomic as well metabolomic procedures were separately applied to plants to highlight differences between ecotypes, to estimate genetic variability within/between organism populations, or to characterize specific mutants/genetically modified lines at metabolic level. To investigate the possible use of tandem mass tag (TMT)-based quantitative proteomics in the above-mentioned contexts and based on the absence of combined proteo-metabolomic studies on Diospyros kaki cultivars, we here applied integrated proteomic and metabolomic approaches to fruits from Italian persimmon ecotypes with the aim to characterize plant phenotypic diversity at molecular level. We identified 2255 proteins in fruits, assigning 102 differentially represented components between cultivars, including some related to pomological, nutritional and allergenic characteristics. Thirty-three polyphenols were also identified and quantified, which belong to hydroxybenzoic acid, flavanol, hydroxycinnamic acid, flavonol, flavanone and dihydrochalcone sub-classes. Heat-map representation of quantitative proteomic and metabolomic results highlighted compound representation differences in various accessions, whose elaboration through Euclidean distance functions and other linkage methods defined dendrograms establishing phenotypic relationships between cultivars. Principal component analysis of proteomic and metabolomic data provided clear information on phenotypic differences/similarities between persimmon accessions. Coherent cultivar association results were observed between proteomic and metabolomic data, emphasizing the utility of integrating combined omic approaches to identify and validate phenotypic relationships between ecotypes, and to estimate corresponding variability and distance. Accordingly, this study describes an original, combined approach to outline phenotypic signatures in persimmon cultivars, which may be used for a further characterization of other ecotypes of the same species and an improved description of nutritional characteristics of corresponding fruits.
Collapse
Affiliation(s)
- Sabrina De Pascale
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Italy
| | - Antonio Dario Troise
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Italy
| | - Milena Petriccione
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Research Centre for Olive, Fruit and Citrus Crops, Caserta, Italy
| | - Angelina Nunziata
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Research Centre for Olive, Fruit and Citrus Crops, Caserta, Italy
| | - Danilo Cice
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Research Centre for Olive, Fruit and Citrus Crops, Caserta, Italy
| | - Anna Magri
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Research Centre for Olive, Fruit and Citrus Crops, Caserta, Italy
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Anna Maria Salzano
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Italy
| |
Collapse
|
6
|
Li R, Ma J, Gu H, Jia W, Shao Y, Li W. 1-Methylcyclopropene counteracts ethylene promotion of fruit softening and roles of MiERF2/8 and MiPG in postharvest mangoes. FRONTIERS IN PLANT SCIENCE 2022; 13:971050. [PMID: 36204066 PMCID: PMC9531572 DOI: 10.3389/fpls.2022.971050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Ethylene burst is an important sign of the initiation of postharvest mango ripening and softening is a typical characteristic of fruit ripening. However, the intrinsic link between ethylene release and fruit softening during ripening of postharvest mangoes is still not clear. The aim of this study was to investigate the effects of ethylene and its action inhibitor 1-methylcyclopropene (1-MCP) on fruit softening and ripening and the underlying regulatory mechanisms. Results showed that ethephon (ETH) promoted ethylene release and enhanced MDA content and activities of cell wall degrading enzymes, whereas 1-MCP treatment exhibited an opposite effect. Moreover, real-time quantitative polymerase chain reaction indicated that the transcription levels of genes involved in cell wall degradation (MiPG, Miβ-GAL and MiPE), ethylene biosynthesis (MiACO1 and MiACS6) and ethylene response factor (MiERF8) were remarkably induced by ETH. Correlation analysis further revealed that the production of ethylene was significantly negatively correlated with firmness, but positively correlated with MDA content, activities of cell wall degrading enzymes and expressions of MiPG and Miβ-GAL. Furthermore, yeast one hybrid (Y1H) assay showed that MiERF2 and MiERF8 could directly bind to the promotor of MiPG and then regulate its transcription. These findings suggest that ethylene production is closely associated with fruit softening, and MiERF2 and MiERF8 and MiPG may play crucial roles in regulation of ripening and softening of postharvest mangoes.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Jiheng Ma
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Hui Gu
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Wenjun Jia
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Yuanzhi Shao
- School of Life Sciences, Hainan University, Haikou, China
| | - Wen Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| |
Collapse
|
7
|
Wang N, Nian Y, Li R, Shao Y, Li W. Transcription Factor CpbHLH3 and CpXYN1 Gene Cooperatively Regulate Fruit Texture and Counteract 1-Methylcyclopropene Inhibition of Softening in Postharvest Papaya ( Carica papaya L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9919-9930. [PMID: 35921197 DOI: 10.1021/acs.jafc.2c01908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Papaya (Carica papaya L.) is a climacteric fruit susceptible to postharvest losses attributable to ethylene-induced ripening and softening. In this study, we examined the effect of 1-methylcyclopropene (1-MCP) treatment (1 μL L-1 for 20 h) on the textural properties of "SunUp" papaya fruit and investigated the regulatory mechanisms of molecular profiles. Compared with control, postharvest 1-MCP treatment significantly inhibited fruit softening, which is associated with higher hemicellulose content and lower xylanase activity of papaya fruit. Moreover, RNA-seq and qRT-PCR analyses indicated that CpbHLH3 and CpXYN1 were differentially expressed during storage. Yeast one-hybrid, electrophoretic mobility shift assays, and dual-luciferase reporter assays disclosed that CpbHLH3 activated the transcription of CpXYN1 by binding directly to its promoter. Transient overexpression of CpbHLH3 alleviates the inhibitory effect of 1-MCP on softening by increasing xylanase activity and upregulating the gene expression. Our observations provide new insights into the transcriptional regulatory mechanisms that govern softening of postharvest papaya fruit.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, P. R. China
| | - Yuwei Nian
- School of Life Sciences, Hainan University, Haikou 570228, P. R. China
| | - Rui Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, P. R. China
| | - Yuanzhi Shao
- School of Life Sciences, Hainan University, Haikou 570228, P. R. China
| | - Wen Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, P. R. China
| |
Collapse
|
8
|
Kou X, Feng Y, Yuan S, Zhao X, Wu C, Wang C, Xue Z. Different regulatory mechanisms of plant hormones in the ripening of climacteric and non-climacteric fruits: a review. PLANT MOLECULAR BIOLOGY 2021; 107:477-497. [PMID: 34633626 DOI: 10.1007/s11103-021-01199-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/24/2021] [Indexed: 05/24/2023]
Abstract
This review contains the regulatory mechanisms of plant hormones in the ripening process of climacteric and non-climacteric fruits, interactions between plant hormones and future research directions. The fruit ripening process involves physiological and biochemical changes such as pigment accumulation, softening, aroma and flavor formation. There is a great difference in the ripening process between climacteric fruits and non-climacteric fruits. The ripening of these two types of fruits is affected by endogenous signals and exogenous environments. Endogenous signaling plant hormones play an important regulatory role in fruit ripening. This paper systematically reviews recent progress in the regulation of plant hormones in fruit ripening, including ethylene, abscisic acid, auxin, jasmonic acid (JA), gibberellin, brassinosteroid (BR), salicylic acid (SA) and melatonin. The role of plant hormones in both climacteric and non-climacteric fruits is discussed, with emphasis on the interaction between ethylene and other adjustment factors. Specifically, the research progress and future research directions of JA, SA and BR in fruit ripening are discussed, and the regulatory network between JA and other signaling molecules remains to be further revealed. This study is meant to expand the understanding of the importance of plant hormones, clarify the hormonal regulation network and provide a basis for targeted manipulation of fruit ripening.
Collapse
Affiliation(s)
- Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yuan Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Shuai Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xiaoyang Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Chao Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
9
|
Yang H, Wu Y, Wu W, Lyu L, Li W. Transcriptomic analysis of blackberry plant (Rubus spp.) reveals a comprehensive metabolic network involved in fruit ripening process. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00896-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Yield, Fruit Quality, and Storability of 'Canino' Apricot in Response to Aminoethoxyvinylglycine, Salicylic Acid, and Chitosan. PLANTS 2021; 10:plants10091838. [PMID: 34579371 PMCID: PMC8468234 DOI: 10.3390/plants10091838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022]
Abstract
Ethylene plays a pivotal role in the climacteric fruit ripening and senescence process. The effect of three ethylene inhibitors on the yield, quality, and storability of ‘Canino’ apricot fruit was studied. Foliar sprays of distilled water (control), aminoethoxyvinylglycine (AVG) (150 and 100 mg·L−1), salicylic acid (SA) (4 and 2 mM), and chitosan (2.5% and 1.5%) were applied 30 and 15 days before harvest. Results indicated that the high concentrations of AVG and SA recorded the lowest percentage of preharvest fruit drop and, hence, the highest yield. Trees receiving either concentration of AVG showed the highest fruit firmness. High concentrations of all three ethylene inhibitors reduced fruit weight loss, total carotenoids, and soluble solid content (SSC), but increased total acidity (TA) during cold storage (2 °C). A high score of overall taste acceptability was observed with a higher concentration of SA, which was also recorded the lowest fruit malondialdehyde content (MDA) at harvest and during storage. The highest concentrations of SA and chitosan recorded no decay for 28 days of storage. Gene expression analysis reflected higher expression of PaACS1 gene with the highest concentrations of ethylene inhibitors, suggesting that SA (4 mM) is recommended for optimal yield, quality, and storability of ‘Canino’ apricot fruit grown under Egyptian conditions.
Collapse
|