1
|
Fan K, Qian Z, He Y, Chen J, Ye F, Zhu X, Lin W, Cui L, Lan T, Li Z. Comprehensive molecular evolutionary analysis of small heat shock proteins in five diploid Gossypium species. THE PLANT GENOME 2024; 17:e20478. [PMID: 38863371 DOI: 10.1002/tpg2.20478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 06/13/2024]
Abstract
The small heat shock proteins (sHSPs) are important components in plant growth and development, and stress response. However, a systematical understanding of the sHSP family is yet to be reported in five diploid Gossypium species. In this study, 34 GlsHSPs, 36 GrsHSPs, 37 GtsHSPs, 37 GasHSPs, and 38 GhesHSPs were identified in Gossypium longicalyx, Gossypium raimondii, Gossypium turneri, Gossypium arboreum, and Gossypium herbaceum, respectively. These sHSP members can be clustered into 10 subfamilies. Different subfamilies had different member numbers, motif distributions, gene structures, gene duplication events, gene loss numbers, and cis-regulatory elements. Besides, the paleohexaploidization event in cotton ancestor led to expanding the sHSP members and it was also inherited by five diploid Gossypium species. After the cotton ancestor divergence, the sHSP members had the relatively conserved evolution in five diploid Gossypium species. The comprehensive evolutionary history of the sHSP family was revealed in five diploid Gossypium species. Furthermore, several GasHSPs and GhesHSPs were important candidates in plant growth and development, and stress response. These current findings can provide valuable information for the molecular evolution and further functional research of the sHSP family in cotton.
Collapse
Affiliation(s)
- Kai Fan
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
- Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhengyi Qian
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
- Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuxi He
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
- Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiayuan Chen
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
- Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fangting Ye
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
- Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaogang Zhu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
- Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
- Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lili Cui
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Tao Lan
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhaowei Li
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
- Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Zhu M, Su Y, Wang Y, Bo Y, Sun Y, Liu Q, Zhang H, Zhao C, Gu Y. Biodegradation characteristics of p-Chloroaniline and the mechanism of co-metabolism with aniline by Pseudomonas sp. CA-1. BIORESOURCE TECHNOLOGY 2024; 406:131086. [PMID: 38977036 DOI: 10.1016/j.biortech.2024.131086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Co-metabolism is a promising method to optimize the biodegradation of p-Chloroaniline (PCA). In this study, Pseudomonas sp. CA-1 could reduce 76.57 % of PCA (pH = 8, 70 mg/L), and 20 mg/L aniline as the co-substrate improved the degradation efficiency by 12.50 %. Further, the response and co-metabolism mechanism of CA-1 to PCA were elucidated. The results revealed that PCA caused deformation and damage on the surface of CA-1, and the -OH belonging to polysaccharides and proteins offered adsorption sites for the contact between CA-1 and PCA. Subsequently, PCA entered the cell through transporters and was degraded by various oxidoreductases accompanied by deamination, hydroxylation, and ring-cleavage reactions. Thus, the key metabolite 4-chlorocatechol was identified and two PCA degradation pathways were proposed. Besides, aniline further enhanced the antioxidant capacity of CA-1, stimulated the expression of catechol 2,3-dioxygenase and promoted meta-cleavage efficiency of PCA. The findings provide new insights into the treatment of PCA-aniline co-pollution.
Collapse
Affiliation(s)
- Mingjun Zhu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yuhua Su
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yaru Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yonglin Bo
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yufeng Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China.
| | - Hang Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| | - Yingying Gu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| |
Collapse
|
3
|
Ijaz A, Anwar Z, Ali A, Ditta A, Shani MY, Haidar S, Wang B, Fang L, Khan SMUD, Khan MKR. Unraveling the genetic and molecular basis of heat stress in cotton. Front Genet 2024; 15:1296622. [PMID: 38919956 PMCID: PMC11196824 DOI: 10.3389/fgene.2024.1296622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/29/2024] [Indexed: 06/27/2024] Open
Abstract
Human activities and climate change have resulted in frequent and intense weather fluctuations, leading to diverse abiotic stresses on crops which hampers greatly their metabolic activities. Heat stress, a prevalent abiotic factor, significantly influences cotton plant biological activities resulting in reducing yield and production. We must deepen our understanding of how plants respond to heat stress across various dimensions, encompassing genes, RNAs, proteins, metabolites for effective cotton breeding. Multi-omics methods, primarily genomics, transcriptomics, proteomics, metabolomics, and phenomics, proves instrumental in studying cotton's responses to abiotic stresses. Integrating genomics, transcriptomics, proteomics, and metabolomic is imperative for our better understanding regarding genetics and molecular basis of heat tolerance in cotton. The current review explores fundamental omics techniques, covering genomics, transcriptomics, proteomics, and metabolomics, to highlight the progress made in cotton omics research.
Collapse
Affiliation(s)
- Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Allah Ditta
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Muhammad Yousaf Shani
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Sajjad Haidar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Boahua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Liu Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | | | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| |
Collapse
|
4
|
Zheng R, Chen J, Peng Y, Zhu X, Niu M, Chen X, Xie K, Huang R, Zhan S, Su Q, Shen M, Peng D, Ahmad S, Zhao K, Liu ZJ, Zhou Y. General Analysis of Heat Shock Factors in the Cymbidium ensifolium Genome Provided Insights into Their Evolution and Special Roles with Response to Temperature. Int J Mol Sci 2024; 25:1002. [PMID: 38256078 PMCID: PMC10815800 DOI: 10.3390/ijms25021002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Heat shock factors (HSFs) are the key regulators of heat stress responses and play pivotal roles in tissue development and the temperature-induced regulation of secondary metabolites. In order to elucidate the roles of HSFs in Cymbidium ensifolium, we conducted a genome-wide identification of CeHSF genes and predicted their functions based on their structural features and splicing patterns. Our results revealed 22 HSF family members, with each gene containing more than one intron. According to phylogenetic analysis, 59.1% of HSFs were grouped into the A subfamily, while subfamily HSFC contained only two HSFs. And the HSF gene families were differentiated evolutionarily between plant species. Two tandem repeats were found on Chr02, and two segmental duplication pairs were observed on Chr12, Chr17, and Chr19; this provided evidence for whole-genome duplication (WGD) events in C. ensifolium. The core region of the promoter in most CeHSF genes contained cis-acting elements such as AP2/ERF and bHLH, which were associated with plant growth, development, and stress responses. Except for CeHSF11, 14, and 19, each of the remaining CeHSFs contained at least one miRNA binding site. This included binding sites for miR156, miR393, and miR319, which were responsive to temperature and other stresses. The HSF gene family exhibited significant tissue specificity in both vegetative and floral organs of C. ensifolium. CeHSF13 and CeHSF15 showed relatively significant expression in flowers compared to other genes. During flower development, CeHSF15 exhibited markedly elevated expression in the early stages of flower opening, implicating critical regulatory functions in organ development and floral scent-related regulations. During the poikilothermic treatment, CeHSF14 was upregulated over 200-fold after 6 h of heat treatment. CeHSF13 and CeHSF14 showed the highest expression at 6 h of low temperature, while the expression of CeHSF15 and CeHSF21 continuously decreased at a low temperature. The expression patterns of CeHSFs further confirmed their role in responding to temperature stress. Our study may help reveal the important roles of HSFs in plant development and metabolic regulation and show insight for the further molecular design breeding of C. ensifolium.
Collapse
Affiliation(s)
- Ruiyue Zheng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Jiemin Chen
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Yukun Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Xuanyi Zhu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Muqi Niu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Xiuming Chen
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Kai Xie
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Ruiliu Huang
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Suying Zhan
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Qiuli Su
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Mingli Shen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (M.S.); (K.Z.)
| | - Donghui Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Sagheer Ahmad
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (M.S.); (K.Z.)
| | - Zhong-Jian Liu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Yuzhen Zhou
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| |
Collapse
|
5
|
Misra V, Mall AK, Pandey H, Srivastava S, Sharma A. Advancements and prospects of CRISPR/Cas9 technologies for abiotic and biotic stresses in sugar beet. Front Genet 2023; 14:1235855. [PMID: 38028586 PMCID: PMC10665535 DOI: 10.3389/fgene.2023.1235855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Sugar beet is a crop with high sucrose content, known for sugar production and recently being considered as an emerging raw material for bioethanol production. This crop is also utilized as cattle feed, mainly when animal green fodder is scarce. Bioethanol and hydrogen gas production from this crop is an essential source of clean energy. Environmental stresses (abiotic/biotic) severely affect the productivity of this crop. Over the past few decades, the molecular mechanisms of biotic and abiotic stress responses in sugar beet have been investigated using next-generation sequencing, gene editing/silencing, and over-expression approaches. This information can be efficiently utilized through CRISPR/Cas 9 technology to mitigate the effects of abiotic and biotic stresses in sugar beet cultivation. This review highlights the potential use of CRISPR/Cas 9 technology for abiotic and biotic stress management in sugar beet. Beet genes known to be involved in response to alkaline, cold, and heavy metal stresses can be precisely modified via CRISPR/Cas 9 technology for enhancing sugar beet's resilience to abiotic stresses with minimal off-target effects. Similarly, CRISPR/Cas 9 technology can help generate insect-resistant sugar beet varieties by targeting susceptibility-related genes, whereas incorporating Cry1Ab and Cry1C genes may provide defense against lepidopteron insects. Overall, CRISPR/Cas 9 technology may help enhance sugar beet's adaptability to challenging environments, ensuring sustainable, high-yield production.
Collapse
Affiliation(s)
- Varucha Misra
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - A. K. Mall
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - Himanshu Pandey
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
- Khalsa College, Amritsar, India
| | | | - Avinash Sharma
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, India
| |
Collapse
|
6
|
Li Z, Zhang Z, Liu Y, Ma Y, Lv X, Zhang D, Gu Q, Ke H, Wu L, Zhang G, Ma Z, Wang X, Sun Z. Identification and Expression Analysis of EPSPS and BAR Families in Cotton. PLANTS (BASEL, SWITZERLAND) 2023; 12:3366. [PMID: 37836107 PMCID: PMC10574212 DOI: 10.3390/plants12193366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Weeds seriously affect the yield and quality of crops. Because manual weeding is time-consuming and laborious, the use of herbicides becomes an effective way to solve the harm caused by weeds in fields. Both 5-enolpyruvyl shikimate-3-phosphate synthetase (EPSPS) and acetyltransferase genes (bialaphos resistance, BAR) are widely used to improve crop resistance to herbicides. However, cotton, as the most important natural fiber crop, is not tolerant to herbicides in China, and the EPSPS and BAR family genes have not yet been characterized in cotton. Therefore, we explore the genes of these two families to provide candidate genes for the study of herbicide resistance mechanisms. In this study, 8, 8, 4, and 5 EPSPS genes and 6, 6, 5, and 5 BAR genes were identified in allotetraploid Gossypium hirsutum and Gossypium barbadense, diploid Gossypium arboreum and Gossypium raimondii, respectively. Members of the EPSPS and BAR families were classified into three subgroups based on the distribution of phylogenetic trees, conserved motifs, and gene structures. In addition, the promoter sequences of EPSPS and BAR family members included growth and development, stress, and hormone-related cis-elements. Based on the expression analysis, the family members showed tissue-specific expression and differed significantly in response to abiotic stresses. Finally, qRT-PCR analysis revealed that the expression levels of GhEPSPS3, GhEPSPS4, and GhBAR1 were significantly upregulated after exogenous spraying of herbicides. Overall, we characterized the EPSPS and BAR gene families of cotton at the genome-wide level, which will provide a basis for further studying the functions of EPSPS and BAR genes during growth and development and herbicide stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory for Crop Germplasm Resources of Hebei, College of Agronomy, Hebei Agricultural University, Baoding 071000, China; (Z.L.); (Z.Z.); (Y.L.); (Y.M.); (X.L.); (D.Z.); (Q.G.); (H.K.); (L.W.); (G.Z.); (Z.M.)
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory for Crop Germplasm Resources of Hebei, College of Agronomy, Hebei Agricultural University, Baoding 071000, China; (Z.L.); (Z.Z.); (Y.L.); (Y.M.); (X.L.); (D.Z.); (Q.G.); (H.K.); (L.W.); (G.Z.); (Z.M.)
| |
Collapse
|
7
|
Li M, Zhang R, Zhou J, Du J, Li X, Zhang Y, Chen Q, Wang Y, Lin Y, Zhang Y, He W, Wang X, Xiong A, Luo Y, Tang H. Comprehensive analysis of HSF genes from celery ( Apium graveolens L.) and functional characterization of AgHSFa6-1 in response to heat stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1132307. [PMID: 37223803 PMCID: PMC10202177 DOI: 10.3389/fpls.2023.1132307] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/10/2023] [Indexed: 05/25/2023]
Abstract
High temperature stress is regarded as one of the significant abiotic stresses affecting the composition and distribution of natural habitats and the productivity of agriculturally significant plants worldwide. The HSF family is one of the most important transcription factors (TFs) families in plants and capable of responding rapidly to heat and other abiotic stresses. In this study, 29 AgHSFs were identified in celery and classified into three classes (A, B, and C) and 14 subgroups. The gene structures of AgHSFs in same subgroups were conserved, whereas in different classes were varied. AgHSF proteins were predicted to be involved in multiple biological processes by interacting with other proteins. Expression analysis revealed that AgHSF genes play a significant role in response to heat stress. Subsequently, AgHSFa6-1, which was significantly induced by high temperature, was selected for functional validation. AgHSFa6-1 was identified as a nuclear protein, and can upregulate the expression of certain downstream genes (HSP98.7, HSP70-1, BOB1, CPN60B, ADH2, APX1, GOLS1) in response to high-temperature treatment. Overexpression of AgHSFa6-1 in yeast and Arabidopsis displayed higher thermotolerance, both morphologically and physiologically. In response to heat stress, the transgenic plants produced considerably more proline, solute protein, antioxidant enzymes, and less MDA than wild-type (WT) plants. Overall, this study revealed that AgHSF family members perform a key role in response to high temperature, and AgHSFa6-1 acts as a positive regulator by augmenting the ROS-scavenging system to maintain membrane integrity, reducing stomatal apertures to control water loss, and upregulating the expression level of heat-stress sensitive genes to improve celery thermotolerance.
Collapse
Affiliation(s)
- Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ran Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jin Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jiageng Du
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyan Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Aisheng Xiong
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Ye F, Zhu X, Wu S, Du Y, Pan X, Wu Y, Qian Z, Li Z, Lin W, Fan K. Conserved and divergent evolution of the bZIP transcription factor in five diploid Gossypium species. PLANTA 2022; 257:26. [PMID: 36571656 DOI: 10.1007/s00425-022-04059-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
495 bZIP members with 12 subfamilies were identified in the five diploid cottons. Segmental duplication events in cotton ancestor might have led to primary expansion of the cotton bZIP members. The basic leucine zipper (bZIP) transcription factor is one of the largest and most diverse families in plants. The evolutionary history of the bZIP family is still unclear in cotton. In this study, a total of 495 bZIP members were identified in five diploid Gossypium species, including 100 members in Gossypium arboreum, 104 members in Gossypium herbaceum, 95 members in Gossypium raimondii, 96 members in Gossypium longicalyx, and 100 members in Gossypium turneri. The bZIP members could be divided into 12 subfamilies with biased gene proportions, gene structures, conserved motifs, expansion rates, gene loss rates, and cis-regulatory elements. A total of 239 duplication events were identified in the five Gossypium species, and mainly occurred in their common ancestor. Furthermore, some GabZIPs and GhebZIPs could be regarded as important candidates in cotton breeding. The bZIP members had a conserved and divergent evolution in the five diploid Gossypium species. The current study laid an important foundation on the evolutionary history of the bZIP family in cotton.
Collapse
Affiliation(s)
- Fangting Ye
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Xiaogang Zhu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Shaofang Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Yunyue Du
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Xinfeng Pan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Yuchen Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Zhengyi Qian
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Zhaowei Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Wenxiong Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Kai Fan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China.
| |
Collapse
|
9
|
Ma J, Zhang G, Ye Y, Shang L, Hong S, Ma Q, Zhao Y, Gu C. Genome-Wide Identification and Expression Analysis of HSF Transcription Factors in Alfalfa ( Medicago sativa) under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:2763. [PMID: 36297789 PMCID: PMC9609925 DOI: 10.3390/plants11202763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Alfalfa (Medicago sativa) is one of the most important legume forage species in the world. It is often affected by several abiotic stressors that result in reduced yields and poor growth. Therefore, it is crucial to study the resistance of M. sativa to abiotic stresses. Heat shock transcription factors (HSF) are key players in a number of transcriptional regulatory pathways. These pathways play an essential role in controlling how plants react to different abiotic stressors. Studies on the HSF gene family have been reported in many species but have not yet undergone a thorough analysis in M. sativa. Therefore, in order to identify a more comprehensive set of HSF genes, from the genomic data, we identified 16 members of the MsHSF gene, which were unevenly distributed over six chromosomes. We also looked at their gene architectures and protein motifs, and phylogenetic analysis allowed us to divide them into 3 groups with a total of 15 subgroups. Along with these aspects, we then examined the physicochemical properties, subcellular localization, synteny analysis, GO annotation and enrichment, and protein interaction networks of amino acids. Finally, the analysis of 16 MsHSF genes' expression levels across all tissues and under four abiotic stresses using publicly available RNA-Seq data revealed that these genes had significant tissue-specific expression. Moreover, the expression of most MsHSF genes increased dramatically under abiotic stress, further validating the critical function played by the MsHSF gene family in abiotic stress. These results provided basic information about MsHSF gene family and laid a foundation for further study on the biological role of MsHSF gene in response to stress in M. sativa.
Collapse
Affiliation(s)
- Jin Ma
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Guozhe Zhang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yacheng Ye
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Linxue Shang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Sidan Hong
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Qingqing Ma
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yu Zhao
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Cuihua Gu
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| |
Collapse
|
10
|
Chen W, Diao W, Liu H, Guo Q, Song Q, Guo G, Wan H, Chen Y. Molecular characterization of SUT Gene Family in Solanaceae with emphasis on expression analysis of pepper genes during development and stresses. Bioengineered 2022; 13:14780-14798. [PMID: 36260305 PMCID: PMC9586639 DOI: 10.1080/21655979.2022.2107701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Sucrose, an essential carbohydrate, is transported from source to sink organs in the phloem and is involved in a variety of physiological and metabolic processes in plants. Sucrose transporter proteins (SUTs) may play significant parts in the phloem loading and unloading of sucrose. In our study, the SUT gene family was identified in four Solanaceae species (Capsicum annuum, Solanum lycopersicum, S. melongena, and S. tuberosum) and other 14 plant species ranged from lower and high plants. The comprehensive analysis was performed by integration of chromosomal distribution, gene structure, conserved motifs, evolutionary relationship and expression profiles during pepper growth under stresses. Chromosome mapping revealed that SUT genes in Solanaceae were distributed on chromosomes 4, 10 and 11. Gene structure analysis showed that the subgroup 1 members have the same number of introns and exons. All the SUTs had 12 transmembrane structural domains exception from CaSUT2 and SmSUT2, indicating that a structure variation might occurred among the Solanaceae SUT proteins. We also found a total of 20 conserved motifs, with over half of them shared by all SUT proteins, and the SUT proteins from the same subgroup shared common motifs. Phylogenetic analysis divided a total of 72 SUT genes in the plant species tested into three groups, and subgroup 1 might have diverged from a single common ancestor prior to the mono-dicot split. Finally, expression levels of CaSUTs were induced significantly under heat, cold, and salt treatments, indicating diverse functions of the CaSUTs to adapt to adverse environments.
Collapse
Affiliation(s)
- Wenqi Chen
- College of Horticulture, Anhui Agricultural University, Hefei, China,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou310021, PR China
| | - Weiping Diao
- Institute of Vegetable crops, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Huiqing Liu
- Quzhou Academy of Agricultural and Forestry Sciences, Quzhou, 324000, China
| | - Qinwei Guo
- Quzhou Academy of Agricultural and Forestry Sciences, Quzhou, 324000, China
| | - Qiuping Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou310021, PR China
| | - Guangjun Guo
- Institute of Vegetable crops, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou310021, PR China,Hongjian Wan State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou310021, PR China
| | - Yougen Chen
- College of Horticulture, Anhui Agricultural University, Hefei, China,CONTACT Yougen Chen College of Horticulture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
11
|
Yang P, Sun X, Liu X, Wang W, Hao Y, Chen L, Liu J, He H, Zhang T, Bao W, Tang Y, He X, Ji M, Guo K, Liu D, Teng Z, Liu D, Zhang J, Zhang Z. Identification of Candidate Genes for Lint Percentage and Fiber Quality Through QTL Mapping and Transcriptome Analysis in an Allotetraploid Interspecific Cotton CSSLs Population. FRONTIERS IN PLANT SCIENCE 2022; 13:882051. [PMID: 35574150 PMCID: PMC9100888 DOI: 10.3389/fpls.2022.882051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Upland cotton (Gossypium hirsutum) has long been an important fiber crop, but the narrow genetic diversity of modern G. hirsutum limits the potential for simultaneous improvement of yield and fiber quality. It is an effective approach to broaden the genetic base of G. hirsutum through introgression of novel alleles from G. barbadense with excellent fiber quality. In the present study, an interspecific chromosome segment substitution lines (CSSLs) population was established using G. barbadense cultivar Pima S-7 as the donor parent and G. hirsutum cultivar CCRI35 as the recipient parent. A total of 105 quantitative trait loci (QTL), including 85 QTL for fiber quality and 20 QTL for lint percentage (LP), were identified based on phenotypic data collected from four environments. Among these QTL, 25 stable QTL were detected in two or more environments, including four for LP, eleven for fiber length (FL), three for fiber strength (FS), six for fiber micronaire (FM), and one for fiber elongation (FE). Eleven QTL clusters were observed on nine chromosomes, of which seven QTL clusters harbored stable QTL. Moreover, eleven major QTL for fiber quality were verified through analysis of introgressed segments of the eight superior lines with the best comprehensive phenotypes. A total of 586 putative candidate genes were identified for 25 stable QTL associated with lint percentage and fiber quality through transcriptome analysis. Furthermore, three candidate genes for FL, GH_A08G1681 (GhSCPL40), GH_A12G2328 (GhPBL19), and GH_D02G0370 (GhHSP22.7), and one candidate gene for FM, GH_D05G1346 (GhAPG), were identified through RNA-Seq and qRT-PCR analysis. These results lay the foundation for understanding the molecular regulatory mechanism of fiber development and provide valuable information for marker-assisted selection (MAS) in cotton breeding.
Collapse
|
12
|
Hou Q, Li S, Shang C, Wen Z, Cai X, Hong Y, Qiao G. Genome-wide characterization of chalcone synthase genes in sweet cherry and functional characterization of CpCHS1 under drought stress. FRONTIERS IN PLANT SCIENCE 2022; 13:989959. [PMID: 36061761 PMCID: PMC9437463 DOI: 10.3389/fpls.2022.989959] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/03/2022] [Indexed: 05/22/2023]
Abstract
Cherries are one of the important fruit trees. The growth of cherry is greatly affected by abiotic stresses such as drought, which hinders its development. Chalcone synthase (CHS, EC 2.3.1.74) is a crucial rate-limiting enzyme in the flavonoid biosynthetic pathway that plays an important role in regulating plant growth, development, and abiotic stress tolerance. In the current study, three genes encoding chalcone synthase were identified in the genome of sweet cherry (Prunus avium L.). The three genes contained fewer introns and showed high homology with CHS genes of other Rosaceae members. All members are predicted to localize in the cytoplasm. The conserved catalytic sites may be located at the Cys163, Phe214, His302, and Asn335 residues. These genes were differentially expressed during flower bud dormancy and fruit development. The total flavonoid content of Chinese cherry (Cerasus pseudocerasus Lindl.) was highest in the leaves and slightly higher in the pulp than in the peel. No significant difference in total flavonoid content was detected between aborted kernels and normally developing kernels. Overexpression of Chinese cherry CpCHS1 in tobacco improved the germination frequency of tobacco seeds under drought stress, and the fresh weight of transgenic seedlings under drought stress was higher than that of the wild type, and the contents of SOD, POD, CAT, and Pro in OE lines were significantly increased and higher than WT under drought stress. These results indicate cherry CHS genes are conserved and functionally diverse and will assist in elucidating the functions of flavonoid synthesis pathways in cherry and other Rosaceae species under drought stress.
Collapse
Affiliation(s)
- Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Shuang Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Chunqiong Shang
- College of Forestry, Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, China
| | - Zhuang Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Xiaowei Cai
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Yi Hong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- *Correspondence: Guang Qiao,
| |
Collapse
|
13
|
Li XT, Feng XY, Zeng Z, Liu Y, Shao ZQ. Comparative Analysis of HSF Genes From Secale cereale and its Triticeae Relatives Reveal Ancient and Recent Gene Expansions. Front Genet 2021; 12:801218. [PMID: 34887907 PMCID: PMC8650501 DOI: 10.3389/fgene.2021.801218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022] Open
Abstract
Plants have evolved sophisticated systems to cope with the environmental stresses, with the heat shock factor (HSF) family proteins composing an integral part of the transcriptional regulation system. Understanding the evolutionary history and functional diversity of HSFs will facilitate improving tolerance of crops to adverse environmental conditions. In this study, genome-wide analysis of Secale cereale identified 31 HSF genes. The total number of HSF genes in S. cereale is larger than that in barley and the three subgenomes of wheat, suggesting it is a valuable resource for mining functional HSFs. Chromosome analysis revealed an uneven distribution of HSF genes among the 7 S. cereale chromosomes, with no HSF gene was detected on chromosome 4. Further interspecies synteny analysis revealed that chromosome reorganization during species-speciation may lead to the escape of HSF genes from the S. cereale chromosome 4. Phylogenetic analysis revealed that S. cereale experienced more HSF gene duplications than barley and the three wheat subgenomes. Expression analysis demonstrated that S. cereale HSF genes showed diverse expression patterns across plant developmental stages and upon drought and freezing treatment, suggesting functional diversity of the gene family. Notably, we detected distinct expression patterns for a recently duplicated HSF gene pair, indicating functional divergence may have occurred between the two genes. The study presents the genome organization, evolutionary features and expression patterns of the S. cereale HSF genes. These results provide new insights into the evolution of HSF genes in Triticeae and may serve as a resource for Triticeae molecular breeding.
Collapse
Affiliation(s)
- Xiao-Tong Li
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Xing-Yu Feng
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhen Zeng
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Liu
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhu-Qing Shao
- School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
14
|
Li X, Cai K, Pei X, Li Y, Hu Y, Meng F, Song X, Tigabu M, Ding C, Zhao X. Genome-Wide Identification of NAC Transcription Factor Family in Juglans mandshurica and Their Expression Analysis during the Fruit Development and Ripening. Int J Mol Sci 2021; 22:ijms222212414. [PMID: 34830294 PMCID: PMC8625062 DOI: 10.3390/ijms222212414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
The NAC (NAM, ATAF and CUC) gene family plays a crucial role in the transcriptional regulation of various biological processes and has been identified and characterized in multiple plant species. However, genome-wide identification of this gene family has not been implemented in Juglans mandshurica, and specific functions of these genes in the development of fruits remain unknown. In this study, we performed genome-wide identification and functional analysis of the NAC gene family during fruit development and identified a total of 114 JmNAC genes in the J. mandshurica genome. Chromosomal location analysis revealed that JmNAC genes were unevenly distributed in 16 chromosomes; the highest numbers were found in chromosomes 2 and 4. Furthermore, according to the homologues of JmNAC genes in Arabidopsis thaliana, a phylogenetic tree was constructed, and the results demonstrated 114 JmNAC genes, which were divided into eight subgroups. Four JmNAC gene pairs were identified as the result of tandem duplicates. Tissue-specific analysis of JmNAC genes during different developmental stages revealed that 39 and 25 JmNAC genes exhibited upregulation during the mature stage in walnut exocarp and embryos, indicating that they may serve key functions in fruit development. Furthermore, 12 upregulated JmNAC genes were common in fruit ripening stage in walnut exocarp and embryos, which demonstrated that these genes were positively correlated with fruit development in J. mandshurica. This study provides new insights into the regulatory functions of JmNAC genes during fruit development in J. mandshurica, thereby improving the understanding of characteristics and evolution of the JmNAC gene family.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (K.C.); (Y.L.); (Y.H.); (F.M.); (X.S.)
| | - Kewei Cai
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (K.C.); (Y.L.); (Y.H.); (F.M.); (X.S.)
| | - Xiaona Pei
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China;
| | - Yan Li
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (K.C.); (Y.L.); (Y.H.); (F.M.); (X.S.)
| | - Yanbo Hu
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (K.C.); (Y.L.); (Y.H.); (F.M.); (X.S.)
| | - Fanjuan Meng
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (K.C.); (Y.L.); (Y.H.); (F.M.); (X.S.)
| | - Xingshun Song
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (K.C.); (Y.L.); (Y.H.); (F.M.); (X.S.)
| | - Mulualem Tigabu
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden;
| | - Changjun Ding
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Correspondence: (C.D.); (X.Z.); Tel.: +86-15246668860 (X.Z.)
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (K.C.); (Y.L.); (Y.H.); (F.M.); (X.S.)
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China;
- Correspondence: (C.D.); (X.Z.); Tel.: +86-15246668860 (X.Z.)
| |
Collapse
|