1
|
Sun D, Zhang Z, Xue J. MiRNAs: a new target for Chinese medicine to repair the intestinal barrier in the treatment of ulcerative colitis. Front Pharmacol 2024; 15:1446554. [PMID: 39185319 PMCID: PMC11341499 DOI: 10.3389/fphar.2024.1446554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory bowel disease whose pathogenesis remains unclear. Dysfunction of the intestinal mucosal barrier is closely related to the pathogenesis of UC, which is characterised by damage to the colon epithelial barrier, disruption of immune homeostasis, and persistent inflammatory cell infiltration. MicroRNAs (miRNAs) exhibit specific or differential expression in both UC animal models and patients, implicating their involvement in the pathogenesis of UC. In recent years there has been progress in using Traditional Chinese medicine (TCM) to regulate miRNA expression for repairing the intestinal mucosal barrier in UC, as demonstrated in animal and cell experiments. However, it has not been applied in a clinical setting and its underlying molecular mechanisms require further investigation. Therefore, this study systematically described the role of miRNAs in UC-induced intestinal barrier damage and the application of TCM to repair this intestinal barrier by regulating miRNA expression, offering new therapeutic targets for UC treatment.
Collapse
Affiliation(s)
- Dajuan Sun
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhongtao Zhang
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Jingwei Xue
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| |
Collapse
|
2
|
Wang K, Liu F, Muchu B, Deng J, Peng J, Xu Y, Li F, Ouyang M. E3 ubiquitin ligase RNF180 mediates the ALKBH5/SMARCA5 axis to promote colon inflammation and Th17/Treg imbalance in ulcerative colitis mice. Arch Pharm Res 2024; 47:645-658. [PMID: 39060657 DOI: 10.1007/s12272-024-01507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
SMARCA5, a protein in the SWI/SNF family, has been previously implicated in the development of ulcerative colitis (UC) through methylation. However, the specific molecular mechanisms by which SMARCA5 contributes to colonic inflammation and the imbalance between Th17 and Treg cells remain unclear. This study was designed to explore these molecular mechanisms. A UC mouse model was established using dextran sulfate sodium induction, followed by measurements of mouse weight, disease activity index (DAI) score, colon length, pathological changes in the colon, and FITC-dextran concentration. The levels of IL-17a, IFN-γ, IL-6, TNF-α, TGF-β, and IL-10 were measured, along with the protein expression of ZO-1 and Occludin. Flow cytometry was used to assess the presence of IL-17 + CD4 + (Th17 +) cells and FOXP3 + CD25 + CD4 + (Treg +) cells in the spleen and mesenteric lymph nodes of UC mice. We observed that SMARCA5 and RNF180 were increased, while ALKBH5 was downregulated in UC mouse colon tissue. SMARCA5 or RNF180 knockdown or ALKBH5 overexpression ameliorated the colon inflammation and Th17/Treg cell imbalance in UC mice, shown by increased body weight, colon length, FOXP3 + CD25 + CD4 + T cells, and the levels of ZO-1, Occludin, TGF-β, IL-10, and FOXP3. It decreased DAI scores, IL-17 + CD4 + T cells, and levels of IL-17a, IFN-γ, IL-6, TNF-α, and ROR-γt. ALKBH5 inhibited SMARCA5 expression via m6A modification, while RNF180 reduced ALKBH5 expression via ubiquitination. Our findings indicate that RNF180 aggravated the colon inflammation and Th17/Treg cell imbalance in UC mice by regulating the ALKBH5/SMARCA5 axis.
Collapse
MESH Headings
- Animals
- Male
- Mice
- AlkB Homolog 5, RNA Demethylase/metabolism
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/pathology
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/metabolism
- Dextran Sulfate/toxicity
- Disease Models, Animal
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation/immunology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
Collapse
Affiliation(s)
- Kailing Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Fan Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Budumu Muchu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jiawen Deng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jing Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yan Xu
- Department of Health Management Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Fujun Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Miao Ouyang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
3
|
James JP, Riis LB, Søkilde R, Malham M, Høgdall E, Langholz E, Nielsen BS. Short noncoding RNAs as predictive biomarkers for the development from inflammatory bowel disease unclassified to Crohn's disease or ulcerative colitis. PLoS One 2024; 19:e0297353. [PMID: 38408066 PMCID: PMC10896517 DOI: 10.1371/journal.pone.0297353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/22/2023] [Indexed: 02/28/2024] Open
Abstract
Numerous pathogenic processes are mediated by short noncoding RNAs (sncRNA). Twenty percent of inflammatory bowel disease (IBD) patients are labelled as IBD unclassified (IBDU) at disease onset. Most IBDU patients are reclassified as Crohn's disease (CD) or ulcerative colitis (UC) within few years. Since the therapeutic methods for CD and UC differ, biomarkers that can forecast the categorization of IBDU into CD or UC are highly desired. Here, we investigated whether sncRNAs can predict CD or UC among IBDU patients. 35 IBDU patients who were initially diagnosed with IBDU were included in this retrospective investigation; of them, 12, 15, and 8 were reclassified into CD (IBDU-CD), UC (IBDU-UC), or remained as IBDU (IBDU-IBDU), respectively. Eight IBD patients, were included as references. SncRNA profiling on RNA from mucosal biopsies were performed using Affymetrix miRNA 4.0 array. Selected probe sets were validated using RT-qPCR. Among all patients and only adults, 306 and 499 probe sets respectively were differentially expressed between IBDU-CD and IBDU-UC. Six of the probe sets were evaluated by RT-qPCR, of which miR-182-5p, miR-451a and ENSG00000239080 (snoU13) together with age and sex resulted in an AUC of 78.6% (95% CI: 60-97) in discriminating IBDU-CD from IBDU-UC. Based on the three sncRNAs profile it is possible to predict if IBDU patients within 3 years will be reclassified as CD or UC. We showed that the expression profile of IBDU patients differ from that of definite CD or UC, suggesting that a subgroup of IBDU patients may compose a third unique IBD subtype.
Collapse
Affiliation(s)
- Jaslin P. James
- Department of Pathology, Herlev University Hospital, Herlev, Denmark
| | - Lene Buhl Riis
- Department of Pathology, Herlev University Hospital, Herlev, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rolf Søkilde
- Bioneer A/S, Hørsholm, Kogle Allé 2, Hørsholm, Denmark
| | - Mikkel Malham
- The Pediatric Department, Copenhagen University Hospital—Amager and Hvidovre, Hvidovre, Denmark
- Copenhagen Center for Inflammatory Bowel Disease in Children, Adolescents and Adults, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Estrid Høgdall
- Department of Pathology, Herlev University Hospital, Herlev, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ebbe Langholz
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Gastroenheden, Herlev University Hospital, Herlev, Denmark
| | | |
Collapse
|
4
|
Zhang H, Kalla R, Chen J, Zhao J, Zhou X, Adams A, Noble A, Ventham NT, Wellens J, Ho GT, Dunlop MG, Nowak JK, Ding Y, Liu Z, Satsangi J, Theodoratou E, Li X. Altered DNA methylation within DNMT3A, AHRR, LTA/TNF loci mediates the effect of smoking on inflammatory bowel disease. Nat Commun 2024; 15:595. [PMID: 38238335 PMCID: PMC10796384 DOI: 10.1038/s41467-024-44841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
This work aims to investigate how smoking exerts effect on the development of inflammatory bowel disease (IBD). A prospective cohort study and a Mendelian randomization study are first conducted to evaluate the association between smoking behaviors, smoking-related DNA methylation and the risks of Crohn's disease (CD) and ulcerative colitis (UC). We then perform both genome-wide methylation analysis and co-localization analysis to validate the observed associations. Compared to never smoking, current and previous smoking habits are associated with increased CD (P = 7.09 × 10-10) and UC (P < 2 × 10-16) risk, respectively. DNA methylation alteration at cg17742416 [DNMT3A] is linked to both CD (P = 7.30 × 10-8) and UC (P = 1.04 × 10-4) risk, while cg03599224 [LTA/TNF] is associated with CD risk (P = 1.91 × 10-6), and cg14647125 [AHRR] and cg23916896 [AHRR] are linked to UC risk (P = 0.001 and 0.002, respectively). Our study identifies biological mechanisms and pathways involved in the effects of smoking on the pathogenesis of IBD.
Collapse
Affiliation(s)
- Han Zhang
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Rahul Kalla
- Edinburgh IBD Science Unit, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Jie Chen
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianhui Zhao
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuan Zhou
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Centre for Population Health Sciences, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Alex Adams
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alexandra Noble
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nicholas T Ventham
- Academic Coloproctology, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Judith Wellens
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Gwo-Tzer Ho
- Edinburgh IBD Science Unit, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Malcolm G Dunlop
- Cancer Research UK Scotland Centre and Medical Research Council Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Jan Krzysztof Nowak
- Department of Paediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhanju Liu
- Center for IBD Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Evropi Theodoratou
- Cancer Research UK Scotland Centre and Medical Research Council Human Genetics Unit, University of Edinburgh, Edinburgh, UK.
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK.
| | - Xue Li
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Centre for Population Health Sciences, Usher Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
5
|
Yan L, Gu C, Gao S, Wei B. Epigenetic regulation and therapeutic strategies in ulcerative colitis. Front Genet 2023; 14:1302886. [PMID: 38169708 PMCID: PMC10758477 DOI: 10.3389/fgene.2023.1302886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease, and is characterized by the diffuse inflammation and ulceration in the colon and rectum mucosa, even extending to the caecum. Epigenetic modifications, including DNA methylations, histone modifications and non-coding RNAs, are implicated in the differentiation, maturation, and functional modulation of multiple immune and non-immune cell types, and are influenced and altered in various chronic inflammatory diseases, including UC. Here we review the relevant studies revealing the differential epigenetic features in UC, and summarize the current knowledge about the immunopathogenesis of UC through epigenetic regulation and inflammatory signaling networks, regarding DNA methylation, histone modification, miRNAs and lncRNAs. We also discuss the epigenetic-associated therapeutic strategies for the alleviation and treatment of UC, which will provide insights to intervene in the immunopathological process of UC in view of epigenetic regulation.
Collapse
Affiliation(s)
- Liwei Yan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Departments of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Gu
- Departments of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shanyu Gao
- Departments of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Benzheng Wei
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Macias-Ceja DC, Mendoza-Ballesteros MT, Ortega-Albiach M, Barrachina MD, Ortiz-Masià D. Role of the epithelial barrier in intestinal fibrosis associated with inflammatory bowel disease: relevance of the epithelial-to mesenchymal transition. Front Cell Dev Biol 2023; 11:1258843. [PMID: 37822869 PMCID: PMC10562728 DOI: 10.3389/fcell.2023.1258843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
In inflammatory bowel disease (IBD), chronic inflammation in the gastrointestinal tract can lead to tissue damage and remodelling, which can ultimately result in fibrosis. Prolonged injury and inflammation can trigger the activation of fibroblasts and extracellular matrix (ECM) components. As fibrosis progresses, the tissue becomes increasingly stiff and less functional, which can lead to complications such as intestinal strictures, obstructive symptoms, and eventually, organ dysfunction. Epithelial cells play a key role in fibrosis, as they secrete cytokines and growth factors that promote fibroblast activation and ECM deposition. Additionally, epithelial cells can undergo a process called epithelial-mesenchymal transition, in which they acquire a more mesenchymal-like phenotype and contribute directly to fibroblast activation and ECM deposition. Overall, the interactions between epithelial cells, immune cells, and fibroblasts play a critical role in the development and progression of fibrosis in IBD. Understanding these complex interactions may provide new targets for therapeutic interventions to prevent or treat fibrosis in IBD. In this review, we have collected and discussed the recent literature highlighting the contribution of epithelial cells to the pathogenesis of the fibrotic complications of IBD, including evidence of EMT, the epigenetic control of the EMT, the potential influence of the intestinal microbiome in EMT, and the possible therapeutic strategies to target EMT. Finally we discuss the pro-fibrotic interactions epithelial-immune cells and epithelial-fibroblasts cells.
Collapse
Affiliation(s)
- Dulce C. Macias-Ceja
- Departamento de Farmacología and CIBEREHD, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | | | - M. Dolores Barrachina
- Departamento de Farmacología and CIBEREHD, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Dolores Ortiz-Masià
- Departamento de Farmacología and CIBEREHD, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
7
|
MicroRNA Profiles in Intestinal Epithelial Cells in a Mouse Model of Sepsis. Cells 2023; 12:cells12050726. [PMID: 36899862 PMCID: PMC10001189 DOI: 10.3390/cells12050726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Sepsis is a systemic inflammatory disorder that leads to the dysfunction of multiple organs. In the intestine, the deregulation of the epithelial barrier contributes to the development of sepsis by triggering continuous exposure to harmful factors. However, sepsis-induced epigenetic changes in gene-regulation networks within intestinal epithelial cells (IECs) remain unexplored. In this study, we analyzed the expression profile of microRNAs (miRNAs) in IECs isolated from a mouse model of sepsis generated via cecal slurry injection. Among 239 miRNAs, 14 miRNAs were upregulated, and 9 miRNAs were downregulated in the IECs by sepsis. Upregulated miRNAs in IECs from septic mice, particularly miR-149-5p, miR-466q, miR-495, and miR-511-3p, were seen to exhibit complex and global effects on gene regulation networks. Interestingly, miR-511-3p has emerged as a diagnostic marker in this sepsis model due to its increase in blood in addition to IECs. As expected, mRNAs in the IECs were remarkably altered by sepsis; specifically, 2248 mRNAs were decreased, while 612 mRNAs were increased. This quantitative bias may be possibly derived, at least partly, from the direct effects of the sepsis-increased miRNAs on the comprehensive expression of mRNAs. Thus, current in silico data indicate that there are dynamic regulatory responses of miRNAs to sepsis in IECs. In addition, the miRNAs that were increased with sepsis had enriched downstream pathways including Wnt signaling, which is associated with wound healing, and FGF/FGFR signaling, which has been linked to chronic inflammation and fibrosis. These modifications in miRNA networks in IECs may lead to both pro- and anti-inflammatory effects in sepsis. The four miRNAs discovered above were shown to putatively target LOX, PTCH1, COL22A1, FOXO1, or HMGA2, via in silico analysis, which were associated with Wnt or inflammatory pathways and selected for further study. The expressions of these target genes were downregulated in sepsis IECs, possibly through posttranscriptional modifications of these miRNAs. Taken together, our study suggests that IECs display a distinctive miRNA profile which is capable of comprehensively and functionally reshaping the IEC-specific mRNA landscape in a sepsis model.
Collapse
|
8
|
Zheng L, Duan SL, Wen XL, Dai YC. Molecular regulation after mucosal injury and regeneration in ulcerative colitis. Front Mol Biosci 2022; 9:996057. [PMID: 36310594 PMCID: PMC9606627 DOI: 10.3389/fmolb.2022.996057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease with a complex etiology. Intestinal mucosal injury is an important pathological change in individuals with UC. Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5+) intestinal stem cells (ISCs) exhibit self-renewal and high differentiation potential and play important roles in the repair of intestinal mucosal injury. Moreover, LGR5+ ISCs are intricately regulated by both the Wnt/β-catenin and Notch signaling pathways, which jointly maintain the function of LGR5+ ISCs. Combination therapy targeting multiple signaling pathways and transplantation of LGR5+ ISCs may lead to the development of new clinical therapies for UC.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yan-Cheng Dai,
| |
Collapse
|