1
|
Wieser V, Tsibulak I, Reimer DU, Zeimet AG, Fiegl H, Hackl H, Marth C. An angiogenic tumor phenotype predicts poor prognosis in ovarian cancer. Gynecol Oncol 2023; 170:290-299. [PMID: 36758419 DOI: 10.1016/j.ygyno.2023.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023]
Abstract
OBJECTIVE Epithelial ovarian cancer (OC) is the deadliest gynecological malignancy worldwide. Blocking angiogenesis with bevacizumab, an antibody targeting vascular endothelial growth factor (VEGF), shows efficacy in different lines of OC therapy. This study investigates the clinical impact of tumoral expression of angiogenesis-related genes and their association with bevacizumab response in OC in retrospective analysis of three independent cohorts. METHODS mRNA expression of seven angiogenic genes (VEGF, VEGFR2, PDGFA, PDGFB, PDGFRA, PDGFRB, KIT) was quantified in an inception OC cohort (n = 195) and a transcriptional tumor angiogenesis score from 0 to 3 was established and linked to progression-free survival (PFS) and overall survival (OS). This score was corroborated in an independent publicly available cohort from The Cancer Genome Atlas (TCGA, n = 582) and prediction of therapeutic efficacy of bevacizumab by the angiogenesis score was analyzed in the Gene Expression Omnibus (GEO) dataset GSE140082 (n = 380) from the ICON7-trial. RESULTS The tumor angiogenesis score prognosticated PFS and OS in patients with OC from the inception cohort (p < 0.001, respectively). Tumoral PDGFA expression (PFS: HR 2.46, p = 0.005; OS: HR 2.26, p = 0.011) and a high tumoral transcriptional angiogenesis score (PFS: HR 1.41, p = 0.018) were identified as independent predictors of clinical outcome. The transcriptional angiogenesis score exhibited a significant though smaller effect size on PFS in the TCGA cohort. However, in the ICON7-trial, the angiogenesis score was not associated with benefit of bevacizumab treatment. CONCLUSIONS Our study indicates that tumoral expression of angiogenic genes is unfavorable in OC. The established score could be used to identify patients who respond to targeted angiogenic therapies, a concept that warrants prospective controlled clinical trials.
Collapse
Affiliation(s)
- Verena Wieser
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Irina Tsibulak
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Daniel Uwe Reimer
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Alain Gustave Zeimet
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Heidelinde Fiegl
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Hubert Hackl
- Biocenter, Institute of Bioinformatics, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Christian Marth
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Wilczyński JR, Wilczyński M, Paradowska E. Cancer Stem Cells in Ovarian Cancer-A Source of Tumor Success and a Challenging Target for Novel Therapies. Int J Mol Sci 2022; 23:ijms23052496. [PMID: 35269636 PMCID: PMC8910575 DOI: 10.3390/ijms23052496] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer is the most lethal neoplasm of the female genital organs. Despite indisputable progress in the treatment of ovarian cancer, the problems of chemo-resistance and recurrent disease are the main obstacles for successful therapy. One of the main reasons for this is the presence of a specific cell population of cancer stem cells. The aim of this review is to show the most contemporary knowledge concerning the biology of ovarian cancer stem cells (OCSCs) and their impact on chemo-resistance and prognosis in ovarian cancer patients, as well as to present the treatment options targeted exclusively on the OCSCs. The review presents data concerning the role of cancer stem cells in general and then concentrates on OCSCs. The surface and intracellular OCSCs markers and their meaning both for cancer biology and clinical prognosis, signaling pathways specifically activated in OCSCs, the genetic and epigenetic regulation of OCSCs function including the recent studies on the non-coding RNA regulation, cooperation between OCSCs and the tumor microenvironment (ovarian cancer niche) including very specific environment such as ascites fluid, the role of shear stress, autophagy and metabolic changes for the function of OCSCs, and finally mechanisms of OCSCs escape from immune surveillance, are described and discussed extensively. The possibilities of anti-OCSCs therapy both in experimental settings and in clinical trials are presented, including the recent II phase clinical trials and immunotherapy. OCSCs are a unique population of cancer cells showing a great plasticity, self-renewal potential and resistance against anti-cancer treatment. They are responsible for the progression and recurrence of the tumor. Several completed and ongoing clinical trials have tested different anti-OCSCs drugs which, however, have shown unsatisfactory efficacy in most cases. We propose a novel approach to ovarian cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
- Correspondence:
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| |
Collapse
|
3
|
Sun Y, Hu Y, Wan C, Lovell JF, Jin H, Yang K. Local biomaterial-assisted antitumour immunotherapy for effusions in the pleural and peritoneal cavities caused by malignancies. Biomater Sci 2021; 9:6381-6390. [PMID: 34582527 DOI: 10.1039/d1bm00971k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Malignant pleural effusion (MPE) and malignant ascites (MA), which are common but serious conditions caused by malignancies, are related to poor quality of life and high mortality. Current treatments, including therapeutic thoracentesis and indwelling pleural catheters or paracentesis and catheter drainage, are largely palliative. An effective treatment is urgently needed. MPE and MA are excellent candidates for intratumoural injections that have direct contact with tumour cells and kill tumour cells more effectively and efficiently with fewer side effects, and the fluid environment of MPE and MA can provide a homogeneous area for drug distribution. The immunosuppressive environments within the pleural and peritoneal cavities suggest the feasibility of local immunotherapy. In this review, we introduce the current management of MPE and MA, discuss the latest advances and challenges in utilizing local biomaterial-assisted antitumour therapies for the treatment of MPE and MA, and discuss further opportunities in this field.
Collapse
Affiliation(s)
- Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Jonathan F Lovell
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York. Buffalo, New York, 14260, USA
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Demuytere J, Ceelen W, Van Dorpe J, Hoorens A. The role of the peritoneal microenvironment in the pathogenesis of colorectal peritoneal carcinomatosis. Exp Mol Pathol 2020; 115:104442. [PMID: 32305340 DOI: 10.1016/j.yexmp.2020.104442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 01/06/2023]
Abstract
Recent insights have implicated mesothelial-to-mesenchymal transition (MMT) as a mechanism by which mesothelial cells can transdifferentiate into cancer-associated fibroblasts (CAFs) in several cancers metastasizing to the peritoneum. However, this was not evaluated extensively in colorectal cancer. We examined the presumed mesothelial origin of CAFs in three types of colorectal carcinoma: conventional type adenocarcinoma, mucinous carcinoma and signet ring cell carcinoma. We evaluated the expression of mesothelial, mesenchymal, angiogenesis and colorectal cancer-related markers in peritoneal samples of twelve colorectal cancer patients with peritoneal carcinomatosis and four control patients by immunohistochemistry. We observed morphological and immunohistochemical changes in the vicinity of tumor implants in all studied colorectal cancer types. Mesothelial cells acquired a spindle-shaped myofibroblast-like morphology, lost expression of mesothelial markers, and gained expression of mesenchymal markers. Analysis of consecutive tissue sections and double staining for mesothelial and mesenchymal markers revealed overlap in expression of mesothelial and CAF markers. These findings are highly suggestive of a mesothelial origin of CAFs in peritoneal carcinomatosis in colorectal cancer. Interfering with the process of MMT might be a valuable approach in treating and preventing peritoneal carcinomatosis. Differences observed between colorectal cancer types suggest that one single strategy might not be applicable.
Collapse
Affiliation(s)
- Jesse Demuytere
- Laboratory of Experimental Surgery, Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Wim Ceelen
- Laboratory of Experimental Surgery, Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Anne Hoorens
- Department of Pathology, Ghent University Hospital, Ghent, Belgium..
| |
Collapse
|
5
|
Klymenko Y, Nephew KP. Epigenetic Crosstalk between the Tumor Microenvironment and Ovarian Cancer Cells: A Therapeutic Road Less Traveled. Cancers (Basel) 2018; 10:E295. [PMID: 30200265 PMCID: PMC6162502 DOI: 10.3390/cancers10090295] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022] Open
Abstract
Metastatic dissemination of epithelial ovarian cancer (EOC) predominantly occurs through direct cell shedding from the primary tumor into the intra-abdominal cavity that is filled with malignant ascitic effusions. Facilitated by the fluid flow, cells distribute throughout the cavity, broadly seed and invade through peritoneal lining, and resume secondary tumor growth in abdominal and pelvic organs. At all steps of this unique metastatic process, cancer cells exist within a multidimensional tumor microenvironment consisting of intraperitoneally residing cancer-reprogramed fibroblasts, adipose, immune, mesenchymal stem, mesothelial, and vascular cells that exert miscellaneous bioactive molecules into malignant ascites and contribute to EOC progression and metastasis via distinct molecular mechanisms and epigenetic dysregulation. This review outlines basic epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA regulators, and summarizes current knowledge on reciprocal interactions between each participant of the EOC cellular milieu and tumor cells in the context of aberrant epigenetic crosstalk. Promising research directions and potential therapeutic strategies that may encompass epigenetic tailoring as a component of complex EOC treatment are discussed.
Collapse
Affiliation(s)
- Yuliya Klymenko
- Cell, Molecular and Cancer Biology Program, Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA.
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA.
| | - Kenneth P Nephew
- Cell, Molecular and Cancer Biology Program, Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA.
- Department of Cellular and Integrative Physiology and Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
6
|
Worzfeld T, Pogge von Strandmann E, Huber M, Adhikary T, Wagner U, Reinartz S, Müller R. The Unique Molecular and Cellular Microenvironment of Ovarian Cancer. Front Oncol 2017; 7:24. [PMID: 28275576 PMCID: PMC5319992 DOI: 10.3389/fonc.2017.00024] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
The reciprocal interplay of cancer cells and host cells is an indispensable prerequisite for tumor growth and progression. Cells of both the innate and adaptive immune system, in particular tumor-associated macrophages (TAMs) and T cells, as well as cancer-associated fibroblasts enter into a malicious liaison with tumor cells to create a tumor-promoting and immunosuppressive tumor microenvironment (TME). Ovarian cancer, the most lethal of all gynecological malignancies, is characterized by a unique TME that enables specific and efficient metastatic routes, impairs immune surveillance, and mediates therapy resistance. A characteristic feature of the ovarian cancer TME is the role of resident host cells, in particular activated mesothelial cells, which line the peritoneal cavity in huge numbers, as well as adipocytes of the omentum, the preferred site of metastatic lesions. Another crucial factor is the peritoneal fluid, which enables the transcoelomic spread of tumor cells to other pelvic and peritoneal organs, and occurs at more advanced stages as a malignancy-associated effusion. This ascites is rich in tumor-promoting soluble factors, extracellular vesicles and detached cancer cells as well as large numbers of T cells, TAMs, and other host cells, which cooperate with resident host cells to support tumor progression and immune evasion. In this review, we summarize and discuss our current knowledge of the cellular and molecular interactions that govern this interplay with a focus on signaling networks formed by cytokines, lipids, and extracellular vesicles; the pathophysiologial roles of TAMs and T cells; the mechanism of transcoelomic metastasis; and the cell type selective processing of signals from the TME.
Collapse
Affiliation(s)
- Thomas Worzfeld
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), Philipps University, Marburg, Germany; Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Research, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| | - Magdalena Huber
- Institute of Medical Microbiology and Hygiene, Biomedical Research Center, Philipps University , Marburg , Germany
| | - Till Adhikary
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital of Giessen and Marburg (UKGM) , Marburg , Germany
| | - Silke Reinartz
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, Center for Tumor Biology and Immunology (ZTI), Philipps University , Marburg , Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| |
Collapse
|
7
|
Yunusova NV, Villert AB, Spirina LV, Frolova AE, Kolomiets LA, Kondakova IV. Insulin-Like Growth Factors and Their Binding Proteins in Tumors and Ascites of Ovarian Cancer Patients: Association With Response To Neoadjuvant Chemotherapy. Asian Pac J Cancer Prev 2016; 17:5315-5320. [PMID: 28125879 PMCID: PMC5454676 DOI: 10.22034/apjcp.2016.17.12.5315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Purpose: Tumor cell growth and sensitivity to chemotherapy depend on many factors, among which insulin-like growth factors (IGFs) may play important roles. The aim of the present study was to evaluate the levels of insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) in primary tumors and ascites as predictors of response to neoadjuvant chemotherapy in ovarian cancer (OC) patients. Materials and Methods: Tumor tissue samples and ascitic fluid were obtained from 59 patients with advanced OC. The levels of IGF-I, IGF-II, IGFBP-3, IGFBP-4 and PAPP-A were determined using ELISA kits. Taking into account the data on expression of these IGF-related proteins and outcome, logistic regression was performed to identify predictors of response to neoajuvant chemotherapy. Results: Human ovarian tumors expressed IGFs, IGFBP-3, IGFBP-4 and PAPP-A and these proteins were also present in ascites fluid and associated with its volume. IGFs and IGFBPs in ascites and soluble PAPP-A might play a key role in ovarian cancer progression . However, levels of proteins of the IGF system in tumors were not significant predictors of objective clinical response (oCR). Univariate analysis showed that the level of IGF-I in ascites was the only independent predictor for oCR. Conclusion: The level of IGF-I in ascites was shown to be an independent predictor of objective clinical response to chemotherapy for OC patients treated with neoadjuvant chemotherapy and debulking surgery.
Collapse
Affiliation(s)
- Natalia V Yunusova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | | | | | | | | | | |
Collapse
|
8
|
Kim S, Kim B, Song YS. Ascites modulates cancer cell behavior, contributing to tumor heterogeneity in ovarian cancer. Cancer Sci 2016; 107:1173-8. [PMID: 27297561 PMCID: PMC5021036 DOI: 10.1111/cas.12987] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 02/06/2023] Open
Abstract
Malignant ascites constitute a unique tumor microenvironment providing a physical structure for the accumulation of cellular and acellular components. Ascites is initiated and maintained by physical and biological factors resulting from underlying disease and forms an ecosystem that contributes to disease progression. It has been demonstrated that the cellular contents and the molecular signatures of ascites change continuously during the course of a disease. Over the past decade, increasing attention has been given to the characterization of components of ascites and their role in the progression of ovarian cancer, the most malignant gynecologic cancer in women. This review will discuss the role of ascites in disease progression, in terms of modulating cancer cell behavior and contributing to tumor heterogeneity.
Collapse
Affiliation(s)
- Soochi Kim
- Interdisciplinary Program in Cancer Biology, College of Medicine, Seoul National University, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Boyun Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Nano System Institute, Seoul National University, Seoul, Korea
| | - Yong Sang Song
- Interdisciplinary Program in Cancer Biology, College of Medicine, Seoul National University, Seoul, Korea. .,Cancer Research Institute, Seoul National University, Seoul, Korea. .,Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea. .,Department of Obstetrics and Gynecology, Seoul National University, Seoul, Korea.
| |
Collapse
|
9
|
Abdel-Hamid AA, Mesbah Y, Farouk MF. Tubal cytokine changes accompany the epithelial atypia of letrozole-stimulated ovaries. Acta Histochem 2016; 118:236-43. [PMID: 26837861 DOI: 10.1016/j.acthis.2016.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 12/20/2022]
Abstract
Letrozole (LTZ), one of ovulation induction medications, is increasingly prescribed in many gynecological conditions. Although its hazardous effect on the ovarian surface epithelium (OSE) as well as tubal epithelium cells (TEC) has been previously studied, the associated changes occurring in the inflammatory cytokines have not been elucidated. Therefore, the objective of our study is to investigate these changes that may accompany LTZ-induced tubo-ovarian epithelial abnormalities. A total of 45 Sprague-Dawley rats were used in this study, divided equally into; control, LTZ6 and LTZ12 groups (received saline, 6 and 12 cycles LTZ i.p. respectively). Samples from ovaries (OVs) as well as fallopian tubes (FTs) were histologically studied for the associated changes. An increased proliferative activity, Ki67 immunoexpression and abnormal invaginations were observed in the OSE of LTZ6 group accompanied with occasional pseudostratification and loss of cilia of TEC. These changes became more pronounced in the LTZ12 where micropapillae, hyperchromasia, frequent deep invaginations, cysts of OSE as well as papillae and multilayering of TEC were noticed. The tubal level of IL-1β, IL-6, TNF-α and serum MCP-1 progressively increased in LTZ6 and LTZ12 groups compared with the control group. The significant positive correlation observed between these cytokines in the LTZ6 group became stronger in the LTZ12 one. However, no significant changes in the tubal IL-10 and TGF-β were detected. Therefore, further studies are required to consider these cytokines as objective markers to precisely assess severity of the associated epithelial changes particularly in long periods of stimulation.
Collapse
|
10
|
The Mesothelial Origin of Carcinoma Associated-Fibroblasts in Peritoneal Metastasis. Cancers (Basel) 2015; 7:1994-2011. [PMID: 26426054 PMCID: PMC4695872 DOI: 10.3390/cancers7040872] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/14/2015] [Accepted: 09/23/2015] [Indexed: 01/15/2023] Open
Abstract
Solid tumors are complex and unstructured organs that, in addition to cancer cells, also contain other cell types. Carcinoma-associated fibroblasts (CAFs) represent an important population in the tumor microenviroment and participate in several stages of tumor progression, including cancer cell migration/invasion and metastasis. During peritoneal metastasis, cancer cells detach from the primary tumor, such as ovarian or gastrointestinal, disseminate through the peritoneal fluid and colonize the peritoneum. Tumor cells metastasize by attaching to and invading through the mesothelial cell (MC) monolayer that lines the peritoneal cavity, then colonizing the submesothelial compact zone where CAFs accumulate. CAFs may derive from different sources depending on the surrounding metastatic niche. In peritoneal metastasis, a sizeable subpopulation of CAFs originates from MCs through a mesothelial-to-mesenchymal transition (MMT), which promotes adhesion, invasion, vascularization and subsequent tumor growth. The bidirectional communication between cancer cells and MC-derived CAFs via secretion of a wide range of cytokines, growth factors and extracellular matrix components seems to be crucial for the establishment and progression of the metastasis in the peritoneum. This manuscript provides a comprehensive review of novel advances in understanding how peritoneal CAFs provide cancer cells with a supportive microenvironment, as well as the development of future therapeutic approaches by interfering with the MMT in the peritoneum.
Collapse
|
11
|
BRCA1 185delAG Mutation Enhances Interleukin-1β Expression in Ovarian Surface Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:652017. [PMID: 26357657 PMCID: PMC4556869 DOI: 10.1155/2015/652017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/17/2015] [Indexed: 12/19/2022]
Abstract
Familial history remains the strongest risk factor for developing ovarian cancer (OC) and is associated with germline BRCA1 mutations, such as the 185delAG founder mutation. We sought to determine whether normal human ovarian surface epithelial (OSE) cells expressing the BRCA1 185delAG mutant, BRAT, could promote an inflammatory phenotype by investigating its impact on expression of the proinflammatory cytokine, Interleukin-1β (IL-1β). Cultured OSE cells with and without BRAT were analyzed for differential target gene expression by real-time PCR, western blot, ELISA, luciferase reporter, and siRNA assays. We found that BRAT cells expressed increased cellular and secreted levels of active IL-1β. BRAT-expressing OSE cells exhibited 3-fold enhanced IL-1β mRNA expression, transcriptionally regulated, in part, through CREB sites within the (−1800) to (−900) region of its promoter. In addition to transcriptional regulation, BRAT-mediated IL-1β expression appears dualistic through enhanced inflammasome-mediated caspase-1 cleavage and activation of IL-1β. Further investigation is warranted to elucidate the molecular mechanism(s) of BRAT-mediated IL-1β expression since increased IL-1β expression may represent an early step contributing to OC.
Collapse
|
12
|
Yeung TL, Leung CS, Yip KP, Au Yeung CL, Wong STC, Mok SC. Cellular and molecular processes in ovarian cancer metastasis. A Review in the Theme: Cell and Molecular Processes in Cancer Metastasis. Am J Physiol Cell Physiol 2015. [PMID: 26224579 DOI: 10.1152/ajpcell.00188.2015] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ovarian cancer is the most lethal gynecological malignancy. It is usually diagnosed at a late stage, with a 5-yr survival rate of <30%. The majority of ovarian cancer cases are diagnosed after tumors have widely spread within the peritoneal cavity, limiting the effectiveness of debulking surgery and chemotherapy. Owing to a substantially lower survival rate at late stages of disease than at earlier stages, the major cause of ovarian cancer deaths is believed to be therapy-resistant metastasis. Although metastasis plays a crucial role in promoting ovarian tumor progression and decreasing patient survival rates, the underlying mechanisms of ovarian cancer spread have yet to be thoroughly explored. For many years, researchers have believed that ovarian cancer metastasizes via a passive mechanism by which ovarian cancer cells are shed from the primary tumor and carried by the physiological movement of peritoneal fluid to the peritoneum and omentum. However, the recent discovery of hematogenous metastasis of ovarian cancer to the omentum via circulating tumor cells instigated rethinking of the mode of ovarian cancer metastasis and the importance of the "seed-and-soil" hypothesis for ovarian cancer metastasis. In this review we discuss the possible mechanisms by which ovarian cancer cells metastasize from the primary tumor to the omentum, the cross-talk signaling events between ovarian cancer cells and various stromal cells that play crucial roles in ovarian cancer metastasis, and the possible clinical implications of these findings in the management of this deadly, highly metastatic disease.
Collapse
Affiliation(s)
- Tsz-Lun Yeung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cecilia S Leung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Kay-Pong Yip
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Chi Lam Au Yeung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas; NCI Center for Modeling Cancer Development, Houston Methodist Research Institute, Houston, Texas
| | - Samuel C Mok
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas;
| |
Collapse
|
13
|
Ovarian cancer microenvironment: implications for cancer dissemination and chemoresistance acquisition. Cancer Metastasis Rev 2015; 33:17-39. [PMID: 24357056 DOI: 10.1007/s10555-013-9456-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ovarian adenocarcinoma is characterized by a late detection, dissemination of cancer cells into the whole peritoneum, and the frequent acquisition of chemoresistance. If these particularities can be explained in part by intrinsic properties of ovarian cancer cells, an increased number of studies show the importance of the tumor microenvironment in tumor progression. Ovarian cancer cells can regulate the composition of their stroma in promoting the formation of ascitic fluid, rich in cytokines and bioactive lipids, and in stimulating the differentiation of stromal cells into a pro-tumoral phenotype. In return, cancer-associated fibroblasts, cancer-associated mesenchymal stem cells, tumor-associated macrophages, or other peritoneal cells, such as adipocytes and mesothelial cells can regulate tumor growth, angiogenesis, dissemination, and chemoresistance. This review focuses on the current knowledge about the roles of stromal cells and the associated secreted factors on tumor progression. We also summarize the different studies showing that targeting the microenvironment represents a great potential for improving the prognosis of patients with ovarian adenocarcinoma.
Collapse
|
14
|
The homeoprotein DLX4 stimulates NF-κB activation and CD44-mediated tumor-mesothelial cell interactions in ovarian cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2298-308. [PMID: 26067154 DOI: 10.1016/j.ajpath.2015.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/09/2015] [Accepted: 04/07/2015] [Indexed: 12/13/2022]
Abstract
Ovarian cancers often highly express inflammatory cytokines and form implants throughout the peritoneal cavity. However, the mechanisms that drive inflammatory signaling and peritoneal metastasis of ovarian cancer are poorly understood. We previously identified that high expression of DLX4, a transcription factor encoded by a homeobox gene, is associated with reduced survival of ovarian cancer patients. In this study, we identified that DLX4 stimulates attachment of ovarian tumor cells to peritoneal mesothelial cells in vitro and increases the numbers of peritoneal implants in xenograft models. DLX4 induced expression of the cell surface molecule CD44 in ovarian tumor cells, and inhibition of CD44 abrogated the ability of DLX4 to stimulate tumor-mesothelial cell interactions. The induction of CD44 by DLX4 was attributed to increased activity of NF-κB that was stimulated by the inflammatory cytokine IL-1β, a transcriptional target of DLX4. The stimulatory effects of DLX4 on CD44 levels and tumor-mesothelial cell interactions were abrogated when IL-1β or NF-κB was inhibited in tumor cells. Furthermore, DLX4 expression levels strongly correlated with NF-κB activation and disease stage in clinical specimens of ovarian cancer. Collectively, these findings indicate that DLX4 induces CD44 by stimulating IL-1β-mediated NF-κB activity, thereby promoting peritoneal metastasis of ovarian cancer.
Collapse
|
15
|
Matte I, Lane D, Laplante C, Garde-Granger P, Rancourt C, Piché A. Ovarian cancer ascites enhance the migration of patient-derived peritoneal mesothelial cells via cMet pathway through HGF-dependent and -independent mechanisms. Int J Cancer 2014; 137:289-98. [PMID: 25482018 DOI: 10.1002/ijc.29385] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 11/14/2014] [Accepted: 11/24/2014] [Indexed: 12/11/2022]
Abstract
Ovarian cancer ascites consist of a proinflammatory environment that is characterized by the presence of abundant human peritoneal mesothelial cells (HPMCs). Cytokines and growth factors in ascites modulate cell activities of tumor cells. The expression of proinflammatory cytokines in ascites is associated with a more aggressive tumor phenotype. The effect of ascites on HPMCs is for the most part unknown but this interplay is thought to be important for epithelial ovarian cancer (EOC) progression. Here, we examine the components of ascites, which stimulate patient-derived HPMC migration, from women with advanced EOC. We show that ovarian cancer ascites enhanced the migration of HPMCs. This effect was inhibited by heat treatment, hepatocyte growth factor (HGF) blocking antibodies and a HGF receptor (cMet) inhibitor. In ovarian cancer ascites, HGF is present at high concentration compared to benign fluids. Ascites-mediated activation of cMet was associated with Akt and EKR1/2 phosphorylation. This response was partly inhibited by heat treatment and cMet inhibitor. Ascites-induced migration and a cMet phosphorylation were strongly inhibited by epidermal growth factor receptor (EGFR) inhibitor PD153035, suggesting the transactivation of cMet by EGFR. Our study suggests that HGF and ligands of EGFR are factors that mediate ovarian cancer ascites-mediated migration of HPMCs by activating cMet and possibly downstream ERK1/2 and Akt pathways. The study provides evidence for the first time that ascites not only support tumor growth but also enhance the migratory potential of cancer-associated mesothelial cells, which in turn may support cancer progression.
Collapse
Affiliation(s)
- Isabelle Matte
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Canada
| | - Denis Lane
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Canada
| | - Claude Laplante
- Département de Pathologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Canada
| | - Perrine Garde-Granger
- Département de Pathologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Canada
| | - Claudine Rancourt
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Canada
| | - Alain Piché
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
16
|
Mikuła-Pietrasik J, Sosińska P, Kucińska M, Murias M, Maksin K, Malińska A, Ziółkowska A, Piotrowska H, Woźniak A, Książek K. Peritoneal mesothelium promotes the progression of ovarian cancer cells in vitro and in a mice xenograft model in vivo. Cancer Lett 2014; 355:310-5. [PMID: 25301450 DOI: 10.1016/j.canlet.2014.09.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/25/2014] [Accepted: 09/29/2014] [Indexed: 01/21/2023]
Abstract
The role of mesothelial cells in the intraperitoneal spread of ovarian cancer is still elusive. In particular, it is unclear whether these cells constitute a passive barrier preventing cancer cell progression or perhaps act as an active promoter of this process. In this report we show that omental human peritoneal mesothelial cells (HPMCs) stimulate adhesion and proliferation of ovarian cancer cells (A2780, OVCAR-3, SKOV-3). The latter was associated with the paracrine activity of GRO-1, IL-6, and IL-8 released to the environment by HPMCs. Furthermore, the growth dynamics of ovarian cancer xenografts produced in response to i.p. injection of ovarian cancer cells together with HPMCs was remarkably greater than for implantation of cancer cells alone. A layer of peritoneal mesothelium was consistently present in close proximity to the tumor mass in every xenograft model. In conclusion, our results indicate that HPMCs play a supporting role in the intraperitoneal invasiveness of ovarian malignancy, whose effect may be attributed to their ability to stimulate adhesion and proliferation of cancer cells.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Laboratory of Gerontology, Department of Pathophysiology, Poznań University of Medical Sciences, Rokietnicka 8 Str., 60-806 Poznań, Poland
| | - Patrycja Sosińska
- Laboratory of Gerontology, Department of Pathophysiology, Poznań University of Medical Sciences, Rokietnicka 8 Str., 60-806 Poznań, Poland
| | - Małgorzata Kucińska
- Department of Toxicology, Poznań University of Medical Sciences, Dojazd 30 Str., 60-631 Poznań, Poland
| | - Marek Murias
- Department of Toxicology, Poznań University of Medical Sciences, Dojazd 30 Str., 60-631 Poznań, Poland
| | - Konstantin Maksin
- Department of Clinical Pathology, Poznań University of Medical Sciences, Przybyszewskiego 49 Str., 60-355 Poznań, Poland
| | - Agnieszka Malińska
- Department of Histology and Embryology, Poznań University of Medical Sciences, Święcickiego 6 Str, 60-781 Poznań, Poland
| | - Agnieszka Ziółkowska
- Department of Histology and Embryology, Poznań University of Medical Sciences, Święcickiego 6 Str, 60-781 Poznań, Poland
| | - Hanna Piotrowska
- Department of Toxicology, Poznań University of Medical Sciences, Dojazd 30 Str., 60-631 Poznań, Poland
| | - Aldona Woźniak
- Department of Clinical Pathology, Poznań University of Medical Sciences, Przybyszewskiego 49 Str., 60-355 Poznań, Poland
| | - Krzysztof Książek
- Laboratory of Gerontology, Department of Pathophysiology, Poznań University of Medical Sciences, Rokietnicka 8 Str., 60-806 Poznań, Poland.
| |
Collapse
|
17
|
Chang CYY, Chen Y, Lai MT, Chang HW, Cheng J, Chan C, Chen CM, Lee SC, Lin YJ, Wan L, Tsai PW, Yang SH, Chung C, Sheu JJC, Tsai FJ. BMPR1B up-regulation via a miRNA binding site variation defines endometriosis susceptibility and CA125 levels. PLoS One 2013; 8:e80630. [PMID: 24339876 PMCID: PMC3855056 DOI: 10.1371/journal.pone.0080630] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 10/04/2013] [Indexed: 12/11/2022] Open
Abstract
Background Bone morphogenetic protein receptor I B (BMPR1B) is a transmembrane receptor mediating TGF-β signal transduction. Recent studies indicate a tumor suppressor role for BMPR1B in ovarian cancer. Polymorphism at BMPR1B 3′UTR within the miR-125b binding site alters its binding affinity toward the miRNA, which may result in insufficient post-transcriptional repression. Methods Single-nucleotide polymorphisms rs1970801, rs1434536, and rs11097457 near the miR-125b binding site in BMPR1B were genotyped by Taqman assay on 193 endometriosis patients and 202 healthy controls. BMPR1B and CA125 levels in ectopic endometrial tissues were evaluated by quantitative PCR and immunohistochemistry. Luciferase reporter assay was utilized to verify regulatory roles of BMPR1B 3′UTR with allelic variants of rs1434536 in a cell line model. Cell proliferation and migration were recorded, while expression of BMPR1B, CA125, glucocorticoid receptor (GCCR) and IL-1β were measured by quantitative PCR in endometrial cells transfected with wild-type or mutated miR-125b. Results This study found two endometriosis-associated SNPs, rs1434536 (P = 0.010) and rs1970801 (P = 0.0087), located within and next to a miR-125b binding site on BMPR1B. Interestingly, patients with homozygous variant alleles at rs1434536 showed significantly lower serum CA125 levels. Immunohistochemistry staining further confirmed inverse correlation between BMPR1B and CA125 levels in three rs1434536 genotypes. Cell assays demonstrated the variant allele of rs1434536 up-regulating BMPR1B at both mRNA and protein levels, which negatively correlated with CA125 and IL-1β levels. Disruption of the binding between miR-125b and BMPR1B hampered abnormal cell proliferation. Conclusions SNPs of BMPR1B within and next to the miR-125b binding site manifested strong correlation with endometriosis development in a Taiwanese cohort. Disrupting the binding of miR-125b toward BMPR1B would increase protein expression, diminishing abnormal cell proliferation as well as serum and cellular CA125 levels. Genetic variation at the miR-125b binding site may play functional roles to protect against endometriosis progression.
Collapse
Affiliation(s)
- Cherry Yin-Yi Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan ; Department of Public Health, China Medical University, Taichung, Taiwan ; School of Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ahmed N, Stenvers KL. Getting to know ovarian cancer ascites: opportunities for targeted therapy-based translational research. Front Oncol 2013; 3:256. [PMID: 24093089 PMCID: PMC3782691 DOI: 10.3389/fonc.2013.00256] [Citation(s) in RCA: 321] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/11/2013] [Indexed: 01/13/2023] Open
Abstract
More than one third of ovarian cancer patients present with ascites at diagnosis, and almost all have ascites at recurrence. The presence of ascites correlates with the peritoneal spread of ovarian cancer and is associated with poor disease prognosis. Malignant ascites acts as a reservoir of a complex mixture of soluble factors and cellular components which provide a pro-inflammatory and tumor-promoting microenvironment for the tumor cells. Subpopulations of these tumor cells exhibit cancer stem-like phenotypes, possess enhanced resistance to therapies and the capacity for distal metastatic spread and recurrent disease. Thus, ascites-derived malignant cells and the ascites microenvironment represent a major source of morbidity and mortality for ovarian cancer patients. This review focuses on recent advances in our understanding of the molecular, cellular, and functional characteristics of the cellular populations within ascites and discusses their contributions to ovarian cancer metastasis, chemoresistance, and recurrence. We highlight in particular recent translational findings which have used primary ascites-derived tumor cells as a tool to understand the pathogenesis of the disease, yielding new insights and targets for therapeutic manipulation.
Collapse
Affiliation(s)
- Nuzhat Ahmed
- Women's Cancer Research Centre, Royal Women's Hospital , Parkville, VIC , Australia ; Department of Obstetrics and Gynaecology, University of Melbourne , Parkville, VIC , Australia ; Reproductive Development and Cancer Laboratory, Prince Henry's Institute for Medical Research , Melbourne, VIC , Australia
| | | |
Collapse
|
19
|
Gavalas NG, Liontos M, Trachana SP, Bagratuni T, Arapinis C, Liacos C, Dimopoulos MA, Bamias A. Angiogenesis-related pathways in the pathogenesis of ovarian cancer. Int J Mol Sci 2013; 14:15885-909. [PMID: 23903048 PMCID: PMC3759892 DOI: 10.3390/ijms140815885] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/13/2013] [Accepted: 06/27/2013] [Indexed: 12/29/2022] Open
Abstract
Ovarian Cancer represents the most fatal type of gynecological malignancies. A number of processes are involved in the pathogenesis of ovarian cancer, especially within the tumor microenvironment. Angiogenesis represents a hallmark phenomenon in cancer, and it is responsible for tumor spread and metastasis in ovarian cancer, among other tumor types, as it leads to new blood vessel formation. In recent years angiogenesis has been given considerable attention in order to identify targets for developing effective anti-tumor therapies. Growth factors have been identified to play key roles in driving angiogenesis and, thus, the formation of new blood vessels that assist in "feeding" cancer. Such molecules include the vascular endothelial growth factor (VEGF), the platelet derived growth factor (PDGF), the fibroblast growth factor (FGF), and the angiopoietin/Tie2 receptor complex. These proteins are key players in complex molecular pathways within the tumor cell and they have been in the spotlight of the development of anti-angiogenic molecules that may act as stand-alone therapeutics, or in concert with standard treatment regimes such as chemotherapy. The pathways involved in angiogenesis and molecules that have been developed in order to combat angiogenesis are described in this paper.
Collapse
Affiliation(s)
- Nikos G. Gavalas
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vas. Sofias Avenue, Athens 115 28, Greece; E-Mails: (N.G.G.); (L.M.); (S.-P.T.); (T.B.); (C.A.); (C.L.); (M.A.G.)
| | - Michalis Liontos
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vas. Sofias Avenue, Athens 115 28, Greece; E-Mails: (N.G.G.); (L.M.); (S.-P.T.); (T.B.); (C.A.); (C.L.); (M.A.G.)
| | - Sofia-Paraskevi Trachana
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vas. Sofias Avenue, Athens 115 28, Greece; E-Mails: (N.G.G.); (L.M.); (S.-P.T.); (T.B.); (C.A.); (C.L.); (M.A.G.)
| | - Tina Bagratuni
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vas. Sofias Avenue, Athens 115 28, Greece; E-Mails: (N.G.G.); (L.M.); (S.-P.T.); (T.B.); (C.A.); (C.L.); (M.A.G.)
| | - Calliope Arapinis
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vas. Sofias Avenue, Athens 115 28, Greece; E-Mails: (N.G.G.); (L.M.); (S.-P.T.); (T.B.); (C.A.); (C.L.); (M.A.G.)
| | - Christine Liacos
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vas. Sofias Avenue, Athens 115 28, Greece; E-Mails: (N.G.G.); (L.M.); (S.-P.T.); (T.B.); (C.A.); (C.L.); (M.A.G.)
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vas. Sofias Avenue, Athens 115 28, Greece; E-Mails: (N.G.G.); (L.M.); (S.-P.T.); (T.B.); (C.A.); (C.L.); (M.A.G.)
| | - Aristotle Bamias
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vas. Sofias Avenue, Athens 115 28, Greece; E-Mails: (N.G.G.); (L.M.); (S.-P.T.); (T.B.); (C.A.); (C.L.); (M.A.G.)
| |
Collapse
|
20
|
Kipps E, Tan DSP, Kaye SB. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nat Rev Cancer 2013; 13:273-82. [PMID: 23426401 PMCID: PMC4673904 DOI: 10.1038/nrc3432] [Citation(s) in RCA: 404] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Malignant ascites presents a considerable clinical challenge to the management of ovarian cancer, but also provides a wealth of opportunities for translational research. The accessibility of ascitic fluid and its cellular components make it an excellent source of tumour tissue for the investigation of prognostic and predictive biomarkers, pharmacodynamic markers and for molecular profiling analysis. In this Opinion article, we discuss recent advances in our understanding of its pathophysiology, the development of new methods to characterize its molecular features and how these findings can be used to improve the treatment of malignant ascites, particularly in the context of ovarian cancer.
Collapse
Affiliation(s)
- Emma Kipps
- The Institute of Cancer Research/Royal Marsden Hospital, Medicine, Downs Road, Sutton SM2 5PT, UK
| | | | | |
Collapse
|
21
|
Masoumi Moghaddam S, Amini A, Morris DL, Pourgholami MH. Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer. Cancer Metastasis Rev 2012; 31:143-62. [PMID: 22101807 PMCID: PMC3350632 DOI: 10.1007/s10555-011-9337-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis which drives endothelial cell survival, proliferation, and migration while increasing vascular permeability. Playing an important role in the physiology of normal ovaries, VEGF has also been implicated in the pathogenesis of ovarian cancer. Essentially by promoting tumor angiogenesis and enhancing vascular permeability, VEGF contributes to the development of peritoneal carcinomatosis associated with malignant ascites formation, the characteristic feature of advanced ovarian cancer at diagnosis. In both experimental and clinical studies, VEGF levels have been inversely correlated with survival. Moreover, VEGF inhibition has been shown to inhibit tumor growth and ascites production and to suppress tumor invasion and metastasis. These findings have laid the basis for the clinical evaluation of agents targeting VEGF signaling pathway in patients with ovarian cancer. In this review, we will focus on VEGF involvement in the pathophysiology of ovarian cancer and its contribution to the disease progression and dissemination.
Collapse
Affiliation(s)
- Samar Masoumi Moghaddam
- Cancer Research Laboratories, Department of Surgery, St George Hospital, University of New South Wales, Sydney, NSW 2217 Australia
| | - Afshin Amini
- Cancer Research Laboratories, Department of Surgery, St George Hospital, University of New South Wales, Sydney, NSW 2217 Australia
| | - David L. Morris
- Department of Surgery, St George Hospital, University of New South Wales, Sydney, NSW 2217 Australia
| | - Mohammad H. Pourgholami
- Cancer Research Laboratories, Department of Surgery, St George Hospital, University of New South Wales, Sydney, NSW 2217 Australia
| |
Collapse
|
22
|
Ovarian epithelial-stromal interactions: role of interleukins 1 and 6. Obstet Gynecol Int 2011; 2011:358493. [PMID: 21765834 PMCID: PMC3135012 DOI: 10.1155/2011/358493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/12/2011] [Accepted: 04/27/2011] [Indexed: 01/03/2023] Open
Abstract
Ovarian epithelial cancer is the most lethal gynecologic malignancy. The high mortality is attributed to the fact that most cases typically present in late stage when ovarian cancer (OC) has already spread beyond the ovary. Ovarian epithelial cancer cells are shed into intraperitoneal ascites and easily disseminate throughout the peritoneal cavity with preferential metastasis to the omentum, peritoneum, and local organs. Understanding how ovarian epithelial cells interact with and modulate their microenvironment can provide insight into the molecular mechanism(s) involved with malignant transformation and progression which may eventually identify novel diagnostic, prognostic, and therapeutic targets. The objective of this paper is to provide a brief consideration of ovarian surface epithelial-stromal interactions in regard to normal physiological function and tumor progression as influenced by two potentially key interleukins, interleukins-1 (IL-1) and -6 (IL-6), present in the microenvironment. Lastly, we will consider the clinical implications of IL-1 and IL-6 for OC patients.
Collapse
|
23
|
Kobold S, Hegewisch-Becker S, Oechsle K, Jordan K, Bokemeyer C, Atanackovic D. Intraperitoneal VEGF inhibition using bevacizumab: a potential approach for the symptomatic treatment of malignant ascites? Oncologist 2009; 14:1242-51. [PMID: 20008305 DOI: 10.1634/theoncologist.2009-0109] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Despite overall improvements in oncological care in the palliative setting, symptomatic malignant ascites remains a severe clinical problem. This form of effusion is known to be widely resistant to established modes of systemic therapy. Accordingly, frequent paracentesis often represents the only effective way for symptom relief in patients with advanced cancer. This invasive mode of therapy, however, is often very burdensome for the patient who is already severely distressed by the underlying malignancy. Recently, the trifunctional monoclonal antibody catumaxomab given i.p. has shown symptom relief in patients with ovarian cancer and malignant ascites. On another front, the release of vascular endothelial growth factor (VEGF) by tumor cells has been identified as a main factor promoting the i.p. secretion of fluid. Accordingly, recent evidence suggests that targeting VEGF may have the potential to suspend the ascites production resulting from peritoneal metastasis. Here, we review preclinical and clinical data supporting this hypothesis. We show current evidence suggesting that the i.p. application of the anti-VEGF antibody bevacizumab, which is already in use as an i.v. therapeutic drug for a variety of tumors, might represent an effective way to prevent local fluid accumulation. Because such an effect would result in significant relief for patients, future clinical studies should stringently assess the effectiveness of this targeted therapy for the treatment of malignant i.p. effusions.
Collapse
Affiliation(s)
- Sebastian Kobold
- Department of Oncology/Hematology/Bone Marrow Transplantation with the Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Hatakeyama M, Imaizumi T, Sakaki H, Yoshida H, Tanaka H, Kimura H, Fukuda I, Satoh K. Interleukin-1 induces the expression of vascular endothelial growth factor in human pericardial mesothelial cells. Heart Vessels 2007; 22:123-7. [PMID: 17390208 DOI: 10.1007/s00380-006-0942-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 08/04/2006] [Indexed: 01/15/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a mitogen for endothelial cells. We have studied the production of VEGF by human pericardial mesothelial cells. Mesothelial cells were separated by scraping the pericardial surface during cardiac surgery and cultured. When stimulated with interleukin (IL)-1alpha, pericardial mesothelial cells expressed VEGF mRNA and protein in concentration- and time-dependent manners. Hypoxia was also found to enhance mesothelial VEGF mRNA expression. The cells expressed mRNA for Flt-1 (VEGF receptor 1) and Flk-1 (VEGF receptor 2), and exogenous VEGF was found to have migration-promoting activity on cultured cells. We conclude that pericardial mesothelial cells express VEGF, which may serve as an autocrine growth-regulatory mechanism.
Collapse
Affiliation(s)
- Masaharu Hatakeyama
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University School of Medicine, Hirosaki 036-8562, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ioana Braicu E, Mustea A, Toliat MR, Pirvulescu C, Könsgen D, Sun P, Nürnberg P, Lichtenegger W, Sehouli J. Polymorphism of IL-1α, IL-1β and IL-10 in patients with advanced ovarian cancer: Results of a prospective study with 147 patients. Gynecol Oncol 2007; 104:680-5. [PMID: 17141301 DOI: 10.1016/j.ygyno.2006.10.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 10/09/2006] [Accepted: 10/09/2006] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Interleukin 1 (IL-1) and IL-10 are critically involved in tumorigenesis. We investigated polymorphisms of IL-1 and IL-10 genes in patients with ovarian cancer (OC). METHODS In a prospective, case-control study 147 patients with OC and 129 patients without history of any malignancy (CG) were genotyped for IL-1 gene (IL-1alpha -889 T/C and IL-1beta -511 C/T) and IL-10 gene (IL-10 -1082 G/A, -819 C/T and -592 C/A) using pyrosequencing. RESULTS IL-10 polymorphisms in -819 and -592 positions correlated with the postoperative residual tumor mass (p=0.036 and p=0.035, respectively). The chance of achieving optimal tumor debulking was 1.49 times greater for patients with the C/C genotype at -819 and -512 positions than for patients with other genotypes. There were no significant associations between allelic frequencies for IL-1alpha and IL-1beta in OC. IL-10 -819 CC and -592 CC genotypes were associated in univariate analysis with a better disease-free and overall survival. CONCLUSIONS IL-10 promoter polymorphism may be related with the ability to achieve optimal tumor debulking. Polymorphism in IL-10 gene seems to influence the overall and disease-free survival rate. Subsequent multi-institutional studies with high number of patients are warranted to confirm these results.
Collapse
Affiliation(s)
- Elena Ioana Braicu
- Department of Gynecology and Obstetrics, Charité/Campus Virchow-Klinikum, Charité Medical University of Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Metastasis from epithelial ovarian cancer can occur via the transcoelomic, haematogeneous, or lymphatic route. Of these, transcoelomic metastasis is the most common, and is responsible for the greatest morbidity and mortality in women with this disease. Unfortunately, very little is known about the mechanisms behind this process. This review assesses the current evidence and ideas about the biology of transcoelomic dissemination. The mechanisms of cell detachment, migration, and implantation in transcoelomic metastasis are placed within the context of clinical observations of ovarian cancer to derive a stepwise hypothesis of this process. Evidence for transcoelomic dissemination versus transcoelomic metaplasia in ovarian cancer is presented. Future high throughput microarray studies that compare changes at a genomic and gene expression level between primary ovarian tumours and their peritoneal metastases are hoped to lead to a more conclusive picture of transcoelomic metastasis, and to delineate the key molecular players in this process. These studies might also result in the identification of potential new therapeutic targets in ovarian cancer.
Collapse
Affiliation(s)
- David S P Tan
- Section of Medicine, Royal Marsden Hospital and Institute of Cancer Research, Sutton, Surrey, UK.
| | | | | |
Collapse
|