1
|
Li A, Li A, Gao X, Zhang T, Ma Z, Xiao Y, Zhao F. Elevated AKIP1 expression is associated with tumor invasion, shorter survival time and decreased chemosensitivity in endometrial carcinoma. Oncol Lett 2022; 24:268. [PMID: 35782897 PMCID: PMC9247666 DOI: 10.3892/ol.2022.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
A-kinase-interacting protein 1 (AKIP1), as a recently discovered oncoprotein, promotes cell malignant behaviors in gynecological malignancies. To the best of our knowledge, no study reports its clinical value in patients with endometrial carcinoma. The present study aimed to explore the association between AKIP1 expression and clinical features and survival in patients with endometrial carcinoma, and to assess the effect of AKIP1 knockdown on the regulation of chemosensitivity in vitro. The tumor and adjacent tissue specimens from 101 patients with endometrial carcinoma were retrieved for AKIP1 protein expression analysis using an immunohistochemistry (IHC) assay. Meanwhile, specimens from 54 patients with endometrial carcinoma were analyzed for AKIP1 mRNA expression using reverse transcription-quantitative PCR. Furthermore, an in vitro experiment was conducted in the Ishikawa cell line to determine the effect of AKIP1 modification on the chemosensitivity of cisplatin and paclitaxel. AKIP1 IHC score (P<0.001) and mRNA expression levels (P<0.001) were increased in tumor tissues compared with those in adjacent tissues. Moreover, increased AKIP1 IHC score was associated with lymphovascular invasion (P=0.007), advanced International Federation of Gynecology and Obstetrics (FIGO) stage (P=0.002) and shorter overall survival (OS) time (P=0.035) in the patients with endometrial carcinoma. Meanwhile, upregulated AKIP1 mRNA expression levels were associated with lymphovascular invasion (P=0.020) and advanced FIGO stage (P=0.027) in the patients with endometrial carcinoma. Multivariate Cox regression showed that tumor AKIP1 protein expression (high vs. low) independently predicted a shorter OS time (P=0.036). Silencing of AKIP1 decreased Ishikawa cell viability when treated with 5, 10, 20 and 40 µM cisplatin (all P<0.05) and decreased the half maximal inhibitory concentration value of cisplatin (P=0.003), whereas its effect on paclitaxel chemosensitivity was less obvious. Overall, elevated AKIP1 expression was associated with tumor invasion, shorter survival time and decreased chemosensitivity in endometrial carcinoma.
Collapse
Affiliation(s)
- Aili Li
- Department of Gynecology, Handan Central Hospital, Handan, Hebei 056001, P.R. China
| | - Aijing Li
- Department of Gynecology, Renqiu People's Hospital, Cangzhou, Hebei 062550, P.R. China
| | - Xiangpeng Gao
- School of Clinical Medicine, Graduate School of Hebei University, Baoding, Hebei 071002, P.R. China
| | - Tongyan Zhang
- Department of Gynecology, Handan Central Hospital, Handan, Hebei 056001, P.R. China
| | - Zhiling Ma
- Department of Gynecology, Handan Central Hospital, Handan, Hebei 056001, P.R. China
| | - Yalin Xiao
- Department of Gynecology, Handan Central Hospital, Handan, Hebei 056001, P.R. China
| | - Fei Zhao
- Department of Surgery, Handan Central Hospital, Handan, Hebei 056001, P.R. China
| |
Collapse
|
2
|
Shi YY, Meng XT, Xu YN, Tian XJ. Role of FOXO protein's abnormal activation through PI3K/AKT pathway in platinum resistance of ovarian cancer. J Obstet Gynaecol Res 2021; 47:1946-1957. [PMID: 33827148 DOI: 10.1111/jog.14753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 02/04/2021] [Accepted: 03/05/2021] [Indexed: 01/12/2023]
Abstract
AIM Platinum-based chemotherapy is the standard treatment for ovarian cancer. However, tumor cells' resistance to platinum drugs often occurs. This paper provides a review of Forkhead box O (FOXO) protein's role in platinum resistance of ovarian cancer which hopefully may provide some further guidance for the treatment of platinum-resistant ovarian cancer. METHODS We reviewed a 128 published papers from authoritative and professional journals on FOXO and platinum-resistant ovarian cancer, and adopts qualitative analyses and interpretation based on the literature. RESULTS Ovarian cancer often has abnormal activation of cellular pathways, the most important of which is the PI3K/AKT pathway. FOXOs act as crucial downstream factor of the PI3K/Akt pathway and are negatively regulated by it. DNA damage response and apoptosis including the relationship between FOXOs and ATM-Chk2-p53 are essential for platinum resistance of ovarian cancer. Through gene expression analysis in platinum-resistant ovarian cancer cell model, it was found that FoxO-1 is decreased in platinum-resistant ovarian cancer, so studying the role of FOXO in the pathway on platinum-induced apoptosis may further guide the treatment of platinum-resistant ovarian cancer. CONCLUSIONS There are many drug resistance mechanisms in ovarian cancer, wherein the decrease in cancer cells apoptosis is one of the important causes. Constituted by a series of transcription factors evolving conservatively and mainly working in inhibiting cancer, FOXO proteins play various roles in cells' antitumor response. More and more evidence suggests that we need to re-understand the role that FOXOs have played in cancer development and treatment.
Collapse
Affiliation(s)
- Yun-Yue Shi
- Department of Obstetrics and gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiang-Tian Meng
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ya-Nan Xu
- Department of Obstetrics and gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiu-Juan Tian
- Department of Obstetrics and gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
3
|
Cavalcanti E, Galleggiante V, Coletta S, Stasi E, Chieppa M, Armentano R, Serino G. Altered miRNAs Expression Correlates With Gastroenteropancreatic Neuroendocrine Tumors Grades. Front Oncol 2020; 10:1187. [PMID: 32766159 PMCID: PMC7379872 DOI: 10.3389/fonc.2020.01187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are rare and heterogeneous tumors that present a wide spectrum of different clinical and biological characteristics. Currently, tumor grading, determined by Ki-67 staining and mitotic counts, represents the most reliable predictor of prognosis. This time-consuming approach fails to reach high reproducibility standards thus requiring novel approaches to support histological evaluation and prognosis. In this study, starting from a microarray analysis of paraffin-embedded tissue specimens, we defined the miRNAs signature for poorly differentiated NETs (G3) compared to well-differentiated NETs (G1 and G2) consisting of 56 deregulated miRNAs. We identified 8 miRNAs that were expressed in all GEP-NETs grades but at different level. Among these miRNAs, miR-96-5p expression level was progressively higher from grade 1 to grade 3; inversely, its target FoxO1 expression decreased from grade 1 to grade 3. Our results reveal that the miRNAs expression profile of GEP-NET is correlated with the tumor grade, showing a potential advantage of miRNA quantification that could aid clinicians in the classification of common GEP-NETs subtypes. These findings could reliably support the histological evaluation of GEP-NETs paving the way toward personalized treatment approaches.
Collapse
Affiliation(s)
- Elisabetta Cavalcanti
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Vanessa Galleggiante
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Sergio Coletta
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Elisa Stasi
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Marcello Chieppa
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Raffaele Armentano
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Grazia Serino
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| |
Collapse
|
4
|
Winder A, Unno K, Yu Y, Lurain J, Kim JJ. The allosteric AKT inhibitor, MK2206, decreases tumor growth and invasion in patient derived xenografts of endometrial cancer. Cancer Biol Ther 2017; 18:958-964. [PMID: 28112582 DOI: 10.1080/15384047.2017.1281496] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The purpose of this study was to test the effect of MK2206, an allosteric inhibitor of AKT, on the growth and invasion of patient-derived xenografts (PDX) of endometrial cancer. Three PDX lines, USC1 (uterine serous), EEC2 (endometrioid grade 2) and EEC4 (endometrioid grade 3) of endometrial cancer were grafted under the renal capsule of NSG mice. After 2 weeks of tumor growth the mice were treated with vehicle or 120mg/kg MK2206 twice a week for 3 weeks. Growth of all 3 PDX lines of different type and grade was significantly inhibited in response to MK2206 compared with vehicle control. Histological analysis revealed invasion and spread of EEC2 and EEC4 tumors were significantly decreased with MK2206 treatment. Immunohistochemical analysis showed a decrease in Ki67 in EEC2 upon MK2206 treatment, while USC1 and EEC4 tumors did not show differences in Ki67 levels. PR levels were evident in EEC2 which dramatically increased upon MK2206 treatment. In vitro analysis of EEC4 and AN3CA cells showed a dose-dependent decrease in p(Ser473)-AKT and p(Thr308)-AKT with MK2206. Invasion of EEC4 and AN3CA cells also significantly decreased after 36h and 72h of MK2206 treatment. PDX tumors provide an appropriate model for the testing of compounds that incorporates the heterogeneous nature of endometrial cancer. Further studies to determine efficacy of MK2206 alone or in combination with other compounds can also identify predictors of response to these pathway inhibitors.
Collapse
Affiliation(s)
- Abigail Winder
- a Division of Gynecologic Oncology, Department of Obstetrics and Gynecology , Northwestern University , Chicago , IL , USA
| | - Kenji Unno
- b Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology , Northwestern University , Chicago , IL , USA
| | - Yanni Yu
- b Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology , Northwestern University , Chicago , IL , USA
| | - John Lurain
- a Division of Gynecologic Oncology, Department of Obstetrics and Gynecology , Northwestern University , Chicago , IL , USA
| | - J Julie Kim
- b Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology , Northwestern University , Chicago , IL , USA
| |
Collapse
|
5
|
MiR-222 promotes drug-resistance of breast cancer cells to adriamycin via modulation of PTEN/Akt/FOXO1 pathway. Gene 2017; 596:110-118. [DOI: 10.1016/j.gene.2016.10.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022]
|
6
|
Lee SY, Lee YY, Choi JS, Yoon MS, Han JS. Phosphatidic acid induces decidualization by stimulating Akt-PP2A binding in human endometrial stromal cells. FEBS J 2016; 283:4163-4175. [PMID: 27696687 DOI: 10.1111/febs.13914] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/29/2016] [Indexed: 12/19/2022]
Abstract
Decidualization of human endometrial stromal cells (hESCs) is crucial for successful uterine implantation and maintaining pregnancy. We previously reported that phospholipase D1 (PLD1) is required for cAMP-induced decidualization of hESCs. However, the mechanism by which phosphatidic acid (PA), the product of PLD1 action, might regulate decidualization is not known. We confirmed that PA induced decidualization of hESCs by observing morphological changes and measuring increased levels of decidualization markers such as IGFBP1 and prolactin transcripts (P < 0.05). Treatment with PA reduced phosphorylation of Akt and consequently that of FoxO1, which led to the increased IGFBP1 and prolactin mRNA levels (P < 0.05). Conversely, PLD1 knockdown rescued Akt phosphorylation. Binding of PP2A and Akt increased in response to cAMP or PA, suggesting that their binding is directly responsible for the inactivation of Akt during decidualization. Consistent with this observation, treatment with okadaic acid, a PP2A inhibitor, also inhibited cAMP-induced decidualization by blocking Akt dephosphorylation.
Collapse
Affiliation(s)
- So Young Lee
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Yun Young Lee
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Joong Sub Choi
- Department of Obstetrics and Gynecology, College of Medicine, Hanyang University, Seoul, Korea
| | - Mee-Sup Yoon
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, Korea
| | - Joong-Soo Han
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Korea
| |
Collapse
|
7
|
|
8
|
Abstract
Progesterone plays an essential role in the maintenance of the endometrium; it prepares the endometrium for pregnancy, promotes decidualization, and inhibits estrogen-dependent proliferation. Progesterone function is often dysregulated in endometrial disease states. In addition, the PI3K/AKT signaling pathway is often overactive in endometrial pathologies and promotes the survival and proliferation of the diseased cells. Understanding how AKT influences progesterone action is critical in improving hormone-based therapies in endometrial pathologies. Here, we summarize recent studies investigating the crosstalk between the AKT pathway and progesterone receptor function in endometriosis and endometrial cancer.
Collapse
Affiliation(s)
- Irene I Lee
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - J Julie Kim
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
9
|
Hayashi T, Adachi K, Ohba S, Hirose Y. The Cdk inhibitor flavopiridol enhances temozolomide-induced cytotoxicity in human glioma cells. J Neurooncol 2013; 115:169-78. [PMID: 23943501 DOI: 10.1007/s11060-013-1220-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 08/04/2013] [Indexed: 12/11/2022]
Abstract
The recent progress in chemotherapy for malignant gliomas is attributable to the introduction of the DNA-methylating agent temozolomide (TMZ); however, drug resistance remains a major issue. Previous studies have shown that TMZ induces prolonged arrest of human glioma cells in the G2/M phase of the cell cycle followed by a senescence-like phenomenon or mitotic catastrophe. These findings suggest that the G2 checkpoint is linked to DNA repair mechanisms. We investigated the effect of a cyclin-dependent kinase (Cdk) inhibitor flavopiridol (FP) that inhibits the action of Cdc2, a key protein in the G2 checkpoint pathway, on TMZ-treated glioma cells. Colony formation efficiency revealed that FP potentiated the cytotoxicity of TMZ in glioma cells in a p53-independent manner. This effect was clearly associated with the suppression of key proteins at the G2-M transition, accumulation of the cells exclusively at the G2 phase, and increase in a double-stranded DNA break marker (seen on performing immunoblotting). TMZ-resistant clones showed activation of the G2 checkpoint in response to TMZ, while FP treatment resensitized these clones to TMZ. FP also enhanced the cytotoxicity of TMZ in U87MG-AktER cells. Moreover, administration of TMZ and/or FP to nude mice with xenografted U87MG cells revealed that FP sensitized xenografted U87MG cells to TMZ in these mice. Our findings suggest that TMZ resistance could be promoted by enhanced DNA repair activity in the G2-M transition and that a Cdk inhibitor could suppress this activity, leading to potentiation of TMZ action on glioma cells.
Collapse
Affiliation(s)
- Takuro Hayashi
- Department of Neurosurgery, Fujita Health University School of Medicine, 1-98 Kutsukake-cho Dengakugakubo, Toyoake, Aichi, 470-1192, Japan
| | | | | | | |
Collapse
|
10
|
Upregulation of miR-370 contributes to the progression of gastric carcinoma via suppression of FOXO1. Biomed Pharmacother 2013; 67:521-6. [PMID: 23721824 DOI: 10.1016/j.biopha.2013.04.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 04/19/2013] [Indexed: 12/20/2022] Open
Abstract
FOXO1 is downregulated in a number of cancers. However, the underlying mechanisms are poorly understood. In this study, we report that the expression of miR-370 was upregulated in gastric cancer cell lines and gastric cancer tissues. Overexpression of miR-370 in gastric cancer cells promoted the cell proliferation and anchorage-independent growth, while silencing of miR-370 showed opposite effects. miR-370-induced proliferation was correlated with the downregulation of cyclin-dependent kinase inhibitors, p27(Kip1) and p21(Cip1), and the upregulation of the cell cycle regulator cyclin D1. Furthermore, we identified that FOXO1 is the functional target of miR-370. Restored expression of FOXO1 together with miR-370 strongly abrogated miR-370-induced cell proliferation. Taken together, our results revealed a novel mechanism of FOXO1 suppression mediated by miR-370 in gastric cancer.
Collapse
|
11
|
Gray MJ, Mhawech-Fauceglia P, Yoo E, Yang W, Wu E, Lee AS, Lin YG. AKT inhibition mitigates GRP78 (glucose-regulated protein) expression and contribution to chemoresistance in endometrial cancers. Int J Cancer 2013; 133:21-30. [PMID: 23280503 DOI: 10.1002/ijc.27994] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/06/2012] [Indexed: 02/06/2023]
Abstract
Overexpression of the unfolded protein response master regulator GRP78 is associated with poor prognosis and therapeutic resistance in numerous human cancers, yet its role in endometrial cancers (EC) is undefined. To better understand the contribution of GRP78 to EC, we examined its expression levels in EC patient samples and EC cell lines. We demonstrate that GRP78 overexpression occurs more frequently in EC tissues compared with that found in normal endometrium, and that GRP78 expression occurs in most EC cell lines examined. Functional analysis demonstrated that GRP78 is inducible by cisplatin in EC cells, and siRNA knockdown of GRP78 augments chemotherapy-mediated cell death. Examination of AKT and GRP78 expression demonstrated that inhibition of AKT activity by MK2206 blocks GRP78 expression in EC cells. SiRNA studies also revealed that knockdown of GRP78 reduces but does not abrogate AKT activity, demonstrating that GRP78 is required for optimal AKT activity. In the presence of MK2206, siRNA knockdown of GRP78 does not augment AKT mediated survival in response to cisplatin treatment, suggesting that GRP78's antiapoptosis functions are part of the AKT survival pathway. Targeted therapies that reduce GRP78 expression or activity in cancers may serve to increase the effectiveness of current therapies for EC patients.
Collapse
Affiliation(s)
- Michael J Gray
- Women's Cancer Program, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Concurrent blockade of NF-κB and Akt pathways potentiates cisplatin’s antitumor activity in vivo. Anticancer Drugs 2012; 23:1039-46. [DOI: 10.1097/cad.0b013e32835679b8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Guo Y, Liu H, Zhang H, Shang C, Song Y. miR-96 regulates FOXO1-mediated cell apoptosis in bladder cancer. Oncol Lett 2012; 4:561-565. [PMID: 23741253 DOI: 10.3892/ol.2012.775] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/20/2012] [Indexed: 11/06/2022] Open
Abstract
Transitional cell carcinoma (TCC) is one of the most common types of malignancies and a leading cause of genitourinary system cancer mortality worldwide. The tumor suppressor gene FOXO1, a member of the forkhead box O (FOXO) subfamily of transcription factors, is downregulated in a number of cancers, including TCC; however, the underlying mechanisms are poorly understood. In the present study, we used microRNA (miRNA) target prediction algorithms to identify a conserved potential miR-96 binding site in the 3'-untranslated region (3'-UTR) of FOXO1. Using quantitative real-time PCR (qRT-PCR) and northern blot analysis, we identified that miR-96 was downregulated in TCC tissues compared to normal bladder tissues (NB), suggesting that the loss of FOXO1 expression in TCC may be mediated by miR-96. To confirm this, we transfected pre-miR-96/anti-miR-96 into the T24 TCC cell line and revealed that miR-96 expression was sufficient to significantly reduce FOXO1 expression. Conversely, FOXO1 expression was not completely restored by the inhibition of miR-96 in T24 cells. Moreover, RNA silencing of FOXO1 significantly reduced miR-96 inhibitor-mediated T24 cell apoptosis. In conclusion, our study demonstrates that the miR-96 targeting of FOXO1 is upregulated in TCC; in addition, TCC tumorigenesis may be partly due to the ability of miR-96 to promote FOXO1 repression, thereby bypassing cell apoptosis controls.
Collapse
Affiliation(s)
- Yan Guo
- Central Laboratory, School of Stomatology, China Medical University, Shenyang, Liaoning 110002
| | | | | | | | | |
Collapse
|
14
|
Neubauer NL, Ward EC, Patel P, Lu Z, Lee I, Blok LJ, Hanifi-Moghaddam P, Schink J, Kim JJ. Progesterone receptor-B induction of BIRC3 protects endometrial cancer cells from AP1-59-mediated apoptosis. Discov Oncol 2011; 2:170-81. [PMID: 21760855 DOI: 10.1007/s12672-011-0065-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Progesterone is a growth inhibitory hormone in the endometrium. While progestins can be used for the treatment of well-differentiated endometrial cancers, resistance to progestin therapy occurs for reasons that remain unclear. We have previously demonstrated that progesterone receptors (PR) A and B differentially regulate apoptosis in response to overexpression of the forkhead transcription factor, FOXO1. In this study, we further examined the PR-isoform-dependent cellular response to the AKT pathway. Treatment of PRA and PRB-expressing Ishikawa cells (PRA14, PRB23), with an AKT inhibitor API-59CJ-OMe (API-59) promoted apoptosis in the presence and absence of the ligand, R5020 preferentially in PRA14 cells. Upon PR knockdown using small interfering RNA, an increase in apoptosis was observed in PRB23 cells treated with API-59 with or without R5020 while there was no influence in PRA14 cells. Using an apoptosis-focused real-time PCR array, genes regulated by API-59 and R5020 were identified both common and unique to PRA14 and PRB23 cells. BIRC3 was identified as the only gene regulated by R5020 which occurred only in PRB cells. Knockdown of BIRC3 in PRB23 cells promoted a decrease in cell viability in response to API-59 + R5020. Furthermore, the important role of inhibitors of apoptosis (IAPs) in the PRB23 cells to promote cell survival was demonstrated using an antagonist to IAPs, a second mitochondria-derived activator of caspase (Smac also known as DIABLO) mimetic. Treatment of PRB23 cells with Smac mimetic increased apoptosis in response to API-59 + R5020. In summary, our findings indicate a mechanism by which PRB can promote cell survival in the setting of high AKT activity in endometrial cancer cells.
Collapse
Affiliation(s)
- Nikki L Neubauer
- Division of Gynecologic Oncology, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Melnik BC. Isotretinoin and FoxO1: A scientific hypothesis. DERMATO-ENDOCRINOLOGY 2011; 3:141-65. [PMID: 22110774 PMCID: PMC3219165 DOI: 10.4161/derm.3.3.15331] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 02/21/2011] [Accepted: 02/24/2011] [Indexed: 12/13/2022]
Abstract
Oral isotretinoin (13-cis retinoic acid) is the most effective drug in the treatment of acne and restores all major pathogenetic factors of acne vulgaris. isotretinoin is regarded as a prodrug which after isomerizisation to all-trans-retinoic acid (ATRA) induces apoptosis in cells cultured from human sebaceous glands, meibomian glands, neuroblastoma cells, hypothalamic cells, hippocampus cells, Dalton's lymphoma ascites cells, B16F-10 melanoma cells, and neuronal crest cells and others. By means of translational research this paper provides substantial indirect evidence for isotretinoin's mode of action by upregulation of forkhead box class O (FoxO) transcription factors. FoxOs play a pivotal role in the regulation of androgen receptor transactivation, insulin/insulin like growth factor-1 (IGF-1)-signaling, peroxisome proliferator-activated receptor-γ (PPArγ)- and liver X receptor-α (LXrα)-mediated lipogenesis, β-catenin signaling, cell proliferation, apoptosis, reactive oxygene homeostasis, innate and acquired immunity, stem cell homeostasis, as well as anti-cancer effects. An accumulating body of evidence suggests that the therapeutic, adverse, teratogenic and chemopreventive effecs of isotretinoin are all mediated by upregulation of FoxO-mediated gene transcription. These FoxO-driven transcriptional changes of the second response of retinoic acid receptor (RAR)-mediated signaling counterbalance gene expression of acne due to increased growth factor signaling with downregulated nuclear FoxO proteins. The proposed isotretinoin→ATRA→RAR→FoxO interaction offers intriguing new insights into the mode of isotretinoin action and explains most therapeutic, adverse and teratogenic effects of isotretinoin in the treatment of acne by a common mode of FoxO-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology; Environmental Medicine and Health Theory; University of Osnabrück; Osnabrück, Germany
| |
Collapse
|
16
|
Jang ER, Kim YJ, Myung SC, Kim W, Lee CS. Different effect of protein kinase B/Akt and extracellular signal-regulated kinase inhibition on trichostatin A-induced apoptosis in epithelial ovarian carcinoma cell lines. Mol Cell Biochem 2011; 353:1-11. [PMID: 21380726 DOI: 10.1007/s11010-011-0768-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/24/2011] [Indexed: 01/09/2023]
Abstract
Histone deacetylase inhibitor-induced apoptosis in cancer cells may be mediated by the Ras/Raf/MEK/ERK and protein kinase B/Akt signaling pathways. However, inhibition of ERK and Akt activity has different effects on proliferation and apoptosis in cancer cells. We assessed and compared the inhibitory effects of Akt and ERK pathways on the apoptotic effect of trichostatin A using the human epithelial carcinoma cell lines OVCAR-3 and SK-OV-3. Trichostatin A induced nuclear damage, decrease in Bid and Bcl-2 protein levels, increase in Bax levels, cytochrome c release, activation of caspases (8, 9, and 3) and increase in tumor suppressor p53 levels. Akt inhibitor potentiated trichostatin A-induced apoptosis-related protein activation and cell death, whereas ERK inhibitor exhibited an additive toxic effect. These results suggest that the Akt and ERK inhibitors may have a differential effect on trichostatin A-induced apoptosis in human epithelial ovarian carcinoma cell lines. Akt inhibitor may potentiate the apoptotic effect of trichostatin A on ovarian carcinoma cell lines by increasing the activation of the caspase-8-dependent pathway and the mitochondria-mediated cell death pathway, leading to caspase activation. In contrast, ERK inhibitor may exhibit an additive toxic effect on trichostatin A toxicity by increasing apoptosis-related protein activation.
Collapse
Affiliation(s)
- Eun-Ra Jang
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 156-756, South Korea
| | | | | | | | | |
Collapse
|
17
|
Maiese K, Chong ZZ, Shang YC, Hou J. Novel avenues of drug discovery and biomarkers for diabetes mellitus. J Clin Pharmacol 2011; 51:128-52. [PMID: 20220043 PMCID: PMC3033756 DOI: 10.1177/0091270010362904] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Globally, developed nations spend a significant amount of their resources on health care initiatives that poorly translate into increased population life expectancy. As an example, the United States devotes 16% of its gross domestic product to health care, the highest level in the world, but falls behind other nations that enjoy greater individual life expectancy. These observations point to the need for pioneering avenues of drug discovery to increase life span with controlled costs. In particular, innovative drug development for metabolic disorders such as diabetes mellitus becomes increasingly critical given that the number of diabetic people will increase exponentially over the next 20 years. This article discusses the elucidation and targeting of novel cellular pathways that are intimately tied to oxidative stress in diabetes mellitus for new treatment strategies. Pathways that involve wingless, β-nicotinamide adenine dinucleotide (NAD(+)) precursors, and cytokines govern complex biological pathways that determine both cell survival and longevity during diabetes mellitus and its complications. Furthermore, the role of these entities as biomarkers for disease can further enhance their utility irrespective of their treatment potential. Greater understanding of the intricacies of these unique cellular mechanisms will shape future drug discovery for diabetes mellitus to provide focused clinical care with limited or absent long-term complications.
Collapse
Affiliation(s)
- Kenneth Maiese
- Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
18
|
Maiese K, Hou J, Chong ZZ, Shang YC. A fork in the path: Developing therapeutic inroads with FoxO proteins. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2:119-29. [PMID: 20592766 PMCID: PMC2763237 DOI: 10.4161/oxim.2.3.8916] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 04/23/2009] [Accepted: 04/27/2009] [Indexed: 12/13/2022]
Abstract
Advances in clinical care for disorders involving any system of the body necessitates novel therapeutic strategies that can focus upon the modulation of cellular proliferation, metabolism, inflammation and longevity. In this respect, members of the mammalian forkhead transcription factors of the O class (FoxOs) that include FoxO1, FoxO3, FoxO4 and FoxO6 are increasingly being recognized as exciting prospects for multiple disorders. These transcription factors govern development, proliferation, survival and longevity during multiple cellular environments that can involve oxidative stress. Furthermore, these transcription factors are closely integrated with several novel signal transduction pathways, such as erythropoietin and Wnt proteins, that may influence the ability of FoxOs to act as a “double-edge sword” to sometimes promote cell survival, but at other times lead to cell injury. Here we discuss the fascinating but complex role of FoxOs during cellular injury and oxidative stress, progenitor cell development, fertility, angiogenesis, cardiovascular function, cellular metabolism and diabetes, cell longevity, immune surveillance and cancer.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
19
|
Ellis PE, Ghaem-Maghami S. Molecular Characteristics and Risk Factors in Endometrial Cancer. Int J Gynecol Cancer 2010; 20:1207-16. [DOI: 10.1111/igc.0b013e3181f1a400] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
20
|
Maiese K, Shang YC, Chong ZZ, Hou J. Diabetes mellitus: channeling care through cellular discovery. Curr Neurovasc Res 2010; 7:59-64. [PMID: 20158461 DOI: 10.2174/156720210790820217] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 12/29/2009] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus (DM) impacts a significant portion of the world's population and care for this disorder places an economic burden on the gross domestic product for any particular country. Furthermore, both Type 1 and Type 2 DM are becoming increasingly prevalent and there is increased incidence of impaired glucose tolerance in the young. The complications of DM are protean and can involve multiple systems throughout the body that are susceptible to the detrimental effects of oxidative stress and apoptotic cell injury. For these reasons, innovative strategies are necessary for the implementation of new treatments for DM that are generated through the further understanding of cellular pathways that govern the pathological consequences of DM. In particular, both the precursor for the coenzyme beta-nicotinamide adenine dinucleotide (NAD(+)), nicotinamide, and the growth factor erythropoietin offer novel platforms for drug discovery that involve cellular metabolic homeostasis and inflammatory cell control. Interestingly, these agents and their tightly associated pathways that consist of cell cycle regulation, protein kinase B, forkhead transcription factors, and Wnt signaling also function in a broader sense as biomarkers for disease onset and progression.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
21
|
Concurrent blockade of the NF-kappaB and Akt pathways potently sensitizes cancer cells to chemotherapeutic-induced cytotoxicity. Cancer Lett 2010; 295:38-43. [PMID: 20207071 DOI: 10.1016/j.canlet.2010.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/08/2010] [Accepted: 02/11/2010] [Indexed: 11/22/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) and Akt are two major cell survival pathways that are often constitutively activated and can be further stimulated by chemotherpeutics in cancer cells. Although individually targeting the NF-kappaB or Akt has been reported to sensitize caner therapy, the effectiveness of concurrent blocking these two pathways for chemosensitizing of cancer cells to genotoxic therapeutics has not been investigated. In the present study, we investigate the activation of the NF-kappaB and Akt pathways by two frontline anticancer drugs cisplatin and etopside in a variety of cancer cell lines. The effects of blocking these two survival pathways individually or concurrently on cisplatin- or etopside-induced cytotoxicity were detected. The results show that cisplatin and etopside activate both NF-kappaB and Akt in cancer cells. Blockade of either of these pathways with chemical inhibitors or siRNA moderately sensitized cancer cells to cisplatin- or etopside-induced cytotoxicity. Strikingly, much more effective potentiation of cytotoxicity to these anticancer drugs was achieved when NF-kappaB and Akt were concurrently blocked. These data suggest that NF-kappaB and Akt cooperatively attenuate therapeutic-induced cytotoxicity and concurrently blocking these pathways is an effective strategy for improving the anticancer efficacy of therapeutics.
Collapse
|
22
|
Akt inhibitor enhances apoptotic effect of carboplatin on human epithelial ovarian carcinoma cell lines. Eur J Pharmacol 2010; 632:7-13. [PMID: 20096282 DOI: 10.1016/j.ejphar.2010.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 12/06/2009] [Accepted: 01/12/2010] [Indexed: 01/08/2023]
Abstract
Carboplatin and Akt inhibitor have been shown to induce apoptosis in cancer cells. However, the combined effect of Akt inhibitor on the apoptotic effect of carboplatin in epithelial ovarian cancer cells remains uncertain. In the respect of the induction of cell death signaling pathways, we assessed the combined effect of Akt inhibitor on the carboplatin toxicity in the human epithelial ovarian carcinoma cell lines OVCAR-3 and SK-OV-3. Carboplatin and Akt inhibitor induced nuclear damage, decreased Bid and Bcl-2 protein levels, induced cytochrome c release, activated caspase-3 and increased tumor suppressor p53 levels. Carboplatin increased in Bax levels, whereas Akt inhibitor decreased Bax levels. Akt inhibitor enhanced the carboplatin-induced apoptosis-related protein activation and cell death. Combination of carboplatin and Akt inhibitor-induced cell viability loss was reduced by selective inhibitors of caspase-8, -9 and -3. The results suggest that Akt inhibitor may enhance a carboplatin toxicity against ovarian carcinoma cell lines by increasing activation of the caspase-8 and Bid pathway as well as activation of the mitochondria-mediated apoptotic pathway, leading to mitochondrial cytochrome c release and subsequent caspase-3 activation. Combination of carboplatin and Akt inhibitor may provide a therapeutic benefit against ovarian adenocarcinoma.
Collapse
|
23
|
Oxidative stress: Biomarkers and novel therapeutic pathways. Exp Gerontol 2010; 45:217-34. [PMID: 20064603 DOI: 10.1016/j.exger.2010.01.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 12/28/2009] [Accepted: 01/07/2010] [Indexed: 01/12/2023]
Abstract
Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO) and members of the mammalian forkhead transcription factors of the O class (FoxOs) may offer the greatest promise for new treatment regimens since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. However, biological outcome with EPO and FoxOs may sometimes be both unexpected and undesirable that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as complicated role EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.
Collapse
|
24
|
Myatt SS, Wang J, Monteiro LJ, Christian M, Ho KK, Fusi L, Dina RE, Brosens JJ, Ghaem-Maghami S, Lam EWF. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res 2010; 70:367-77. [PMID: 20028871 PMCID: PMC2880714 DOI: 10.1158/0008-5472.can-09-1891] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endometrial cancer is the most common malignancy of the lower female reproductive tract. The tumor suppressor FOXO1 is downregulated in endometrial cancer compared with normal endometrium but the underlying mechanisms are not well understood. Using microRNA (miR) target prediction algorithms, we identified several miRs that potentially bind the 3'-untranslated region of FOXO1 transcripts. Expression profiling of normal and malignant endometrial samples by quantitative real-time PCR and Northern blot analysis revealed an inverse correlation between the levels of FOXO1 protein and the abundance of several of the in silico-predicted miRs, suggesting that loss of FOXO1 expression in endometrial cancer may be mediated by miRs. To determine the role of candidate miRs, we used the endometrial cancer cell lines HEC-1B and Ishikawa, which express FOXO1 at high and low levels, respectively. Expression of miR-9, miR-27, miR-96, miR-153, miR-182, miR-183, or miR-186, but not miR-29a, miR-128, miR-152, or miR-486 mimetics in HEC-1B cells was sufficient to significantly reduce the abundance of FOXO1. Conversely, FOXO1 expression was efficiently restored in the Ishikawa cell line upon simultaneous inhibition of miR-9, miR-27, miR-96, miR-153, miR-183, and miR-186. Moreover, induction of FOXO1 in Ishikawa cells by miR inhibitors was accompanied by G1 cell cycle arrest and cell death, and was attenuated by the small interfering RNA-mediated downregulation of FOXO1 expression. Our findings identify several miRs overexpressed in endometrial cancer that function in concert to repress FOXO1 expression. Further, aberrant miR expression results in deregulated cell cycle control and impaired apoptotic responses, and thus, may be central to endometrial tumorigenesis.
Collapse
Affiliation(s)
- Stephen S. Myatt
- Cancer Research-UK Labs and Department of Oncology, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 ONN, United Kingdom
| | - Jun Wang
- Cancer Research-UK Labs and Department of Oncology, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 ONN, United Kingdom
| | - Lara J. Monteiro
- Cancer Research-UK Labs and Department of Oncology, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 ONN, United Kingdom
| | - Mark Christian
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 ONN, United Kingdom
| | - Ka-Kei Ho
- Cancer Research-UK Labs and Department of Oncology, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 ONN, United Kingdom
| | - Luca Fusi
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 ONN, United Kingdom
| | - Roberto E. Dina
- Histopathology Department, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 ONN, United Kingdom
| | - Jan J. Brosens
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 ONN, United Kingdom
| | - Sadaf Ghaem-Maghami
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 ONN, United Kingdom
| | - Eric W.-F. Lam
- Cancer Research-UK Labs and Department of Oncology, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 ONN, United Kingdom
| |
Collapse
|
25
|
Maiese K, Hou J, Chong ZZ, Shang YC. Erythropoietin, forkhead proteins, and oxidative injury: biomarkers and biology. ScientificWorldJournal 2009; 9:1072-104. [PMID: 19802503 PMCID: PMC2762199 DOI: 10.1100/tsw.2009.121] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO), and members of the mammalian forkhead transcription factors of the O class (FoxOs), may offer the greatest promise for new treatment regimens, since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. Yet, EPO and FoxOs may sometimes have unexpected and undesirable effects that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as the complex role that EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan, USA.
| | | | | | | |
Collapse
|
26
|
|
27
|
The "O" class: crafting clinical care with FoxO transcription factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 665:242-60. [PMID: 20429429 DOI: 10.1007/978-1-4419-1599-3_18] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Forkhead Transcription Factors: Vital Elements in Biology and Medicine provides a unique platform for the presentation of novel work and new insights into the vital role that forkhead transcription factors play in both cellular physiology as well as clinical medicine. Internationally recognized investigators provide their insights and perspectives for a number of forkhead genes and proteins that may have the greatest impact for the development of new strategies for a broad array of disorders that can involve aging, cancer, cardiac function, neurovascular integrity, fertility, stem cell differentiation, cellular metabolism, and immune system regulation. Yet, the work clearly sets a precedent for the necessity to understand the cellular and molecular function of forkhead proteins since this family of transcription factors can limit as well as foster disease progression depending upon the cellular environment. With this in mind, our concluding chapter for Forkhead Transcription Factors: Vital Elements in Biology andMedicine offers to highlight both the diversity and complexity of the forkhead transcription family by focusing upon the mammalian forkhead transcription factors of the O class (FoxOs) that include FoxO1, FoxO3, FoxO4, and FoxO6. FoxO proteins are increasingly considered to represent unique cellular targets that can control numerous processes such as angiogenesis, cardiovascular development, vascular tone, oxidative stress, stem cell proliferation, fertility, and immune surveillance. Furthermore, FoxO transcription factors are exciting considerations for disorders such as cancer in light of their pro-apoptotic and inhibitory cell cycle effects as well as diabetes mellitus given the close association FoxOs hold with cellular metabolism. In addition, these transcription factors are closely integrated with several novel signal transduction pathways, such as erythropoietin and Wnt proteins, that may influence the ability of FoxOs to lead to cell survival or cell injury. Further understanding of both the function and intricate nature of the forkhead transcription factor family, and in particular the FoxO proteins, should allow selective regulation of cellular development or cellular demise for the generation of successful future clinical strategies and patient well-being.
Collapse
|
28
|
Maiese K, Chong ZZ, Shang YC, Hou J. Clever cancer strategies with FoxO transcription factors. Cell Cycle 2008; 7:3829-39. [PMID: 19066462 DOI: 10.4161/cc.7.24.7231] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Given that cancer and related disorders affect a wide spectrum of the world's population, and in most cases are progressive in nature, it is essential that future care must overcome the present limitations of existing therapies in the absence of toxic side effects. Mammalian forkhead transcription factors of the O class (FoxOs) may fill this niche since these proteins are increasingly considered to represent unique cellular targets directed against human cancer in light of their pro-apoptotic effects and ability to lead to cell cycle arrest. Yet, FoxOs also can significantly affect normal cell survival and longevity, requiring new treatments for neoplastic growth to modulate novel pathways that integrate cell proliferation, metabolism, inflammation and survival. In this respect, members of the FoxO family are extremely compelling to consider since these transcription factors have emerged as versatile proteins that can control angiogenesis, stem cell proliferation, cell adhesion and autoimmune disease. Further elucidation of FoxO protein function during neoplastic growth should continue to lay the foundation for the successful translation of these transcription factors into novel and robust clinical therapies for cancer.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
29
|
Berry E, Hardt JL, Clardy J, Lurain JR, Kim JJ. Induction of apoptosis in endometrial cancer cells by psammaplysene A involves FOXO1. Gynecol Oncol 2008; 112:331-6. [PMID: 19041124 DOI: 10.1016/j.ygyno.2008.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 10/22/2008] [Accepted: 10/25/2008] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Endometrial cancer is the most common type of gynecologic cancer in the United States. In this study, we propose that a marine sponge compound, psammaplysene A (PsA) induces apoptosis in endometrial cancer cells through forced nuclear expression of FOXO1. METHODS Ishikawa and ECC1 cells were treated with varying doses of PsA. FOXO1 protein localization was observed using immunofluorescent staining of cells. The effects of PsA on cell viability and proliferation were assessed using a cell viability assay and a BrdU incorporation assay respectively. Cell cycle analysis was performed using flow cytometry. To assess the role of FOXO1 in PsA-induced apoptosis, FOXO1 was silenced in ECC1 cells using siRNA technique, and overexpressed in Ishikawa cells using an adenovirus containing FOXO1 cDNAs. Western blots were used to measure levels of FOXO1 and cleaved PARP proteins. RESULTS Treatment of both ECC1 and Ishikawa cells with PsA caused an increase in nuclear FOXO1 protein, a dramatic decrease in cell viability of approximately 5-fold (p<0.05) and minimal effect on proliferation. Furthermore, treatment of cells with PsA doubled the percentage of cells in the G2/M phase (p<0.05). PsA induced apoptosis in endometrial cancer cells. When FOXO1 was silenced in ECC1 cells and treated with PsA, the incidence of apoptosis decreased. In addition, overexpression of FOXO1 with PsA treatment increased apoptosis. CONCLUSIONS Increasing nuclear FOXO1 function is important for the induction of apoptosis of endometrial cancer cells by PsA.
Collapse
Affiliation(s)
- Emily Berry
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
30
|
Ward EC, Hoekstra AV, Blok LJ, Hanifi-Moghaddam P, Lurain JR, Singh DK, Buttin BM, Schink JC, Kim JJ. The regulation and function of the forkhead transcription factor, Forkhead box O1, is dependent on the progesterone receptor in endometrial carcinoma. Endocrinology 2008; 149:1942-50. [PMID: 18096667 PMCID: PMC2276720 DOI: 10.1210/en.2007-0756] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In many type I endometrial cancers, the PTEN gene is inactivated, which ultimately leads to constitutively active Akt and the inhibition of Forkhead box O1 (FOXO1), a member of the FOXO subfamily of Forkhead/winged helix family of transcription factors. The expression, regulation, and function of FOXO1 in endometrial cancer were investigated in this study. Immunohistochemical analysis of 49 endometrial tumor tissues revealed a decrease of FOXO1 expression in 95.9% of the cases compared with the expression in normal endometrium. In four different endometrial cancer cell lines (ECC1, Hec1B, Ishikawa, and RL95), FOXO1 mRNA was expressed at similar levels; however, protein levels were low or undetectable in Ecc1, Ishikawa, and RL95 cells. Using small interfering RNA technology, we demonstrated that the low levels of FOXO1 protein were due to the involvement of Skp2, an oncogenic subunit of the Skp1/Cul1/F-box protein ubiquitin complex, given that silencing Skp2 increased FOXO1 protein expression in Ishikawa cells. Inhibition of Akt in Ishikawa cells also increased nuclear FOXO1 protein levels. Additionally, progestins increased FOXO1 protein levels, specifically through progesterone receptor B (PRB) as determined by using stably transfected PRA-specific and PRB-specific Ishikawa cell lines. Finally, overexpression of triple mutant (Tm) FOXO1 in the PR-specific Ishikawa cell lines caused cell cycle arrest and significantly decreased proliferation in the presence and absence of the progestin, R5020. Furthermore, TmFOXO1 overexpression induced apoptosis in PRB-specific cells in the presence and absence of ligand. Taken together, these data provide insight into the phosphoinositide-3-kinase/Akt/FOXO pathway for the determination of progestin responsiveness and the development of alternate therapies for endometrial cancer.
Collapse
Affiliation(s)
- Erin C Ward
- Department of Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|