1
|
Kalupahana NS, Moustaid-Moussa N. Beyond blood pressure, fluid and electrolyte homeostasis - Role of the renin angiotensin aldosterone system in the interplay between metabolic diseases and breast cancer. Acta Physiol (Oxf) 2024; 240:e14164. [PMID: 38770946 DOI: 10.1111/apha.14164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
The classical renin angiotensin aldosterone system (RAAS), as well as the recently described counter-regulatory or non-canonical RAAS have been well characterized for their role in cardiovascular homeostasis. Moreover, extensive research has been conducted over the past decades on both paracrine and the endocrine roles of local RAAS in various metabolic regulations and in chronic diseases. Clinical evidence from patients on RAAS blockers as well as pre-clinical studies using rodent models of genetic manipulations of RAAS genes documented that this system may play important roles in the interplay between metabolic diseases and cancer, namely breast cancer. Some of these studies suggest potential therapeutic applications and repurposing of RAAS inhibitors for these diseases. In this review, we discuss the mechanisms by which RAAS is involved in the pathogenesis of metabolic diseases such as obesity and type-2 diabetes as well as the role of this system in the initiation, expansion and/or progression of breast cancer, especially in the context of metabolic diseases.
Collapse
Affiliation(s)
- Nishan Sudheera Kalupahana
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
2
|
Hassani B, Attar Z, Firouzabadi N. The renin-angiotensin-aldosterone system (RAAS) signaling pathways and cancer: foes versus allies. Cancer Cell Int 2023; 23:254. [PMID: 37891636 PMCID: PMC10604988 DOI: 10.1186/s12935-023-03080-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS), is an old system with new fundamental roles in cancer biology which influences cell growth, migration, death, and metastasis. RAAS signaling enhances cell proliferation in malignancy directly and indirectly by affecting tumor cells and modulating angiogenesis. Cancer development may be influenced by the balance between the ACE/Ang II/AT1R and the ACE2/Ang 1-7/Mas receptor pathways. The interactions between Ang II/AT1R and Ang I/AT2R as well as Ang1-7/Mas and alamandine/MrgD receptors in the RAAS pathway can significantly impact the development of cancer. Ang I/AT2R, Ang1-7/Mas, and alamandine/MrgD interactions can have anticancer effects while Ang II/AT1R interactions can be involved in the development of cancer. Evidence suggests that inhibitors of the RAAS, which are conventionally used to treat cardiovascular diseases, may be beneficial in cancer therapies.Herein, we aim to provide a thorough description of the elements of RAAS and their molecular play in cancer. Alongside this, the role of RAAS components in sex-dependent cancers as well as GI cancers will be discussed with the hope of enlightening new venues for adjuvant cancer treatment.
Collapse
Affiliation(s)
- Bahareh Hassani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Attar
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Golab F, Vahabzadeh G, SadeghRoudbari L, Shirazi A, Shabani R, Tanbakooei S, Kooshesh L. The Protective Potential Role of ACE2 against COVID-19. Adv Virol 2023; 2023:8451931. [PMID: 37275947 PMCID: PMC10238138 DOI: 10.1155/2023/8451931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 05/16/2023] [Indexed: 06/07/2023] Open
Abstract
Due to the coronavirus disease 2019 (COVID-19), researchers all over the world have tried to find an appropriate therapeutic approach for the disease. The angiotensin-converting enzyme 2 (ACE2) has been shown as a necessary receptor to cell fusion, which is involved in infection due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is commonly crucial for all organs and systems. When ACE2 is downregulated via the SARS-CoV-2 spike protein, it results in the angiotensin II (Ang II)/angiotensin type 1 receptor axis overactivation. Ang II has harmful effects, which can be evidenced by dysfunctions in many organs experienced by COVID-19 patients. ACE2 is the SARS-CoV-2 receptor and has an extensive distribution; thus, some COVID-19 cases experience several symptoms and complications. We suggest strategy for the potential protective effect of ACE2 to the viral infection. The current review will provide data to develop new approaches for preventing and controlling the COVID-19 outbreak.
Collapse
Affiliation(s)
- Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gelareh Vahabzadeh
- Razi Drug Research Center, Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila SadeghRoudbari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arefeh Shirazi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Robabeh Shabani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Tanbakooei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Lida Kooshesh
- Department of Cellular and Molecular Biology, Islamic Azad University, Tehran North Branch, Tehran, Iran
| |
Collapse
|
4
|
Nelligan NM, Bender MR, Feltus FA. Simulating the restoration of normal gene expression from different thyroid cancer stages using deep learning. BMC Cancer 2022; 22:612. [PMID: 35659616 PMCID: PMC9166476 DOI: 10.1186/s12885-022-09704-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022] Open
Abstract
Background Thyroid cancer (THCA) is the most common endocrine malignancy and incidence is increasing. There is an urgent need to better understand the molecular differences between THCA tumors at different pathologic stages so appropriate diagnostic, prognostic, and treatment strategies can be applied. Transcriptome State Perturbation Generator (TSPG) is a tool created to identify the changes in gene expression necessary to transform the transcriptional state of a source sample to mimic that of a target. Methods We used TSPG to perturb the bulk RNA expression data from various THCA tumor samples at progressive stages towards the transcriptional pattern of normal thyroid tissue. The perturbations produced were analyzed to determine if there are consistently up- or down-regulated genes or functions in certain stages of tumors. Results Some genes of particular interest were investigated further in previous research. SLC6A15 was found to be down-regulated in all stage 1–3 samples. This gene has previously been identified as a tumor suppressor. The up-regulation of PLA2G12B in all samples was notable because the protein encoded by this gene belongs to the PLA2 superfamily, which is involved in metabolism, a major function of the thyroid gland. REN was up-regulated in all stage 3 and 4 samples. The enzyme renin encoded by this gene, has a role in the renin-angiotensin system; this system regulates angiogenesis and may have a role in cancer development and progression. This is supported by the consistent up-regulation of REN only in later stage tumor samples. Functional enrichment analysis showed that olfactory receptor activities and similar terms were enriched for the up-regulated genes which supports previous research concluding that abundance and stimulation of olfactory receptors is linked to cancer. Conclusions TSPG can be a useful tool in exploring large gene expression datasets and extracting the meaningful differences between distinct classes of data. We identified genes that were characteristically perturbed in certain sample types, including only late-stage THCA tumors. Additionally, we provided evidence for potential transcriptional signatures of each stage of thyroid cancer. These are potentially relevant targets for future investigation into THCA tumorigenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09704-z.
Collapse
|
5
|
Singhal S, Maheshwari P, Krishnamurthy PT, Patil VM. Drug Repurposing Strategies for Non-Cancer to Cancer Therapeutics. Anticancer Agents Med Chem 2022; 22:2726-2756. [PMID: 35301945 DOI: 10.2174/1871520622666220317140557] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/15/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
Global efforts invested for the prevention and treatment of cancer need to be repositioned to develop safe, effective, and economic anticancer therapeutics by adopting rational approaches of drug discovery. Drug repurposing is one of the established approaches to reposition old, clinically approved off patent noncancer drugs with known targets into newer indications. The literature review suggests key role of drug repurposing in the development of drugs intended for cancer as well as noncancer therapeutics. A wide category of noncancer drugs namely, drugs acting on CNS, anthelmintics, cardiovascular drugs, antimalarial drugs, anti-inflammatory drugs have come out with interesting outcomes during preclinical and clinical phases. In the present article a comprehensive overview of the current scenario of drug repurposing for the treatment of cancer has been focused. The details of some successful studies along with examples have been included followed by associated challenges.
Collapse
Affiliation(s)
- Shipra Singhal
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Priyal Maheshwari
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | | | - Vaishali M Patil
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| |
Collapse
|
6
|
An Insight into GPCR and G-Proteins as Cancer Drivers. Cells 2021; 10:cells10123288. [PMID: 34943797 PMCID: PMC8699078 DOI: 10.3390/cells10123288] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of cell surface signaling receptors known to play a crucial role in various physiological functions, including tumor growth and metastasis. Various molecules such as hormones, lipids, peptides, and neurotransmitters activate GPCRs that enable the coupling of these receptors to highly specialized transducer proteins, called G-proteins, and initiate multiple signaling pathways. Integration of these intricate networks of signaling cascades leads to numerous biochemical responses involved in diverse pathophysiological activities, including cancer development. While several studies indicate the role of GPCRs in controlling various aspects of cancer progression such as tumor growth, invasion, migration, survival, and metastasis through its aberrant overexpression, mutations, or increased release of agonists, the explicit mechanisms of the involvement of GPCRs in cancer progression is still puzzling. This review provides an insight into the various responses mediated by GPCRs in the development of cancers, the molecular mechanisms involved and the novel pharmacological approaches currently preferred for the treatment of cancer. Thus, these findings extend the knowledge of GPCRs in cancer cells and help in the identification of therapeutics for cancer patients.
Collapse
|
7
|
Xie Y, Wang M, Xu P, Deng Y, Zheng Y, Yang S, Wu Y, Zhai Z, Zhang D, Li N, Wang N, Cheng J, Dai Z. Association Between Antihypertensive Medication Use and Breast Cancer: A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:609901. [PMID: 34054514 PMCID: PMC8155668 DOI: 10.3389/fphar.2021.609901] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/29/2021] [Indexed: 01/11/2023] Open
Abstract
Background: The prevalence rate of hypertension and breast cancer increases with advancing age. Renin-angiotensin system inhibitors (RASIs), β-blockers (BBs), calcium channel blockers (CCBs), and diuretics are widely used to treat patients with hypertension. Although, the association between the use of antihypertensive medication and breast cancer has been highly debated, recent evidence supporting this association remains controversial. Objective: To evaluate the association between the use of antihypertensive medication and the risk of breast cancer and its prognosis. Methods: This study was conducted using data from the PubMed, Embase, and Cochrane Library databases retrieved for the period from January 2000 to April 2021. Articles and their references were checked and summary effects were calculated using random- and fixed-effects models. Heterogeneity test and sensitivity analysis were also performed. Results: This meta-analysis included 57 articles, which were all related to breast cancer risk or prognosis. Assessment of breast cancer risk using the pooled data showed that the use of BBs or CCBs or diuretics was associated with increased cancer risk [BB: relative risk (RR) = 1.20, 95% confidence interval (CI) = 1.09-1.32; CCBs: RR = 1.06, 95% CI 1.03-1.08; diuretics: RR = 1.06, 95% CI 1.01-1.11]. Long-term use of diuretic increased the risk of breast cancer (RR = 1.10, 95% CI 1.01-1.20), whereas long-term RASIs treatment reduced the risk (RR = 0.78, 95% CI 0.68-0.91). In addition, we found that diuretic users may be related to elevated breast cancer-specific mortality [hazard ratio (HR) = 1.18, 95% CI 1.04-1.33], whereas using other antihypertensive medications was not associated with this prognosis in patients with breast cancer. Conclusion: Using CCBs, BBs, and diuretics increased the risk of breast cancer. In addition, diuretics may elevate the risk of breast cancer-specific mortality. The long-term use of RASIs was associated with a significantly lower breast cancer risk, compared with non-users. Thus, this analysis provides evidence to support the benefits of the routine use of RASIs in patients with hypertension, which has important public health implications.
Collapse
Affiliation(s)
- Yuxiu Xie
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Men Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peng Xu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yujiao Deng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Zheng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Si Yang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Wu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhen Zhai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dai Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Na Li
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nan Wang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Cheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Zhao K, Wang M, Wu A. ATP6AP2 is Overexpressed in Breast Cancer and Promotes Breast Cancer Progression. Cancer Manag Res 2020; 12:10449-10459. [PMID: 33122944 PMCID: PMC7588754 DOI: 10.2147/cmar.s270024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
Background Adenosine triphosphatase H+ transporting accessory protein 2 (ATP6AP2), also known as (pro)renin receptor, is implicated in tumorigenesis and the progression of several types of cancer. This study investigated the role of ATP6AP2 in breast cancer. Methods UALCAN and ONCOMINE datasets were utilized to compare transcript levels of ATP6AP2 in breast cancer and normal tissues. GOBO datasets were applied to examine ATP6AP2 expression in different breast cancer cell lines. We used the cBioPortal website to explore the gene alterations and copy number alterations of ATP6AP2 in breast cancer. Cell Counting Kit-8 and transwell assays were conducted to evaluate ATP6AP2 function in MCF-7 breast cancer cells. Finally, we used the cBioPortal website to establish the interaction network of ATP6AP2 in breast cancer and performed functional enrichment analysis based on Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways. Results ATP6AP2 was overexpressed in breast cancer tissues and breast cancer cell lines in the UALCAN, ONCOMINE, and GOBO datasets. The major type of ATP6AP2 alteration was mRNA upregulation. Moreover, ATP6AP2 was most highly expressed in luminal type breast cancer. Finally, ATP6AP2 knockdown reduced MCF-7 cell proliferation, invasion and migration. Functional enrichment analysis suggested that ATP6AP2 regulates several cancer-related pathways, especially the Wnt/β-catenin signaling pathway. Conclusion Applying multi-dimensional analytical methods, we demonstrate that ATP6AP2 is upregulated in breast cancer and may promote its development and progression.
Collapse
Affiliation(s)
- Kankan Zhao
- Department of General Surgery, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - Mengchuan Wang
- Department of General Surgery, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - Aiguo Wu
- Department of General Surgery, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510282, People's Republic of China
| |
Collapse
|
9
|
Aggarwal V, Miranda O, Johnston PA, Sant S. Three dimensional engineered models to study hypoxia biology in breast cancer. Cancer Lett 2020; 490:124-142. [PMID: 32569616 PMCID: PMC7442747 DOI: 10.1016/j.canlet.2020.05.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
Breast cancer is the second leading cause of mortality among women worldwide. Despite the available therapeutic regimes, variable treatment response is reported among different breast cancer subtypes. Recently, the effects of the tumor microenvironment on tumor progression as well as treatment responses have been widely recognized. Hypoxia and hypoxia inducible factors in the tumor microenvironment have long been known as major players in tumor progression and survival. However, the majority of our understanding of hypoxia biology has been derived from two dimensional (2D) models. Although many hypoxia-targeted therapies have elicited promising results in vitro and in vivo, these results have not been successfully translated into clinical trials. These limitations of 2D models underscore the need to develop and integrate three dimensional (3D) models that recapitulate the complex tumor-stroma interactions in vivo. This review summarizes role of hypoxia in various hallmarks of cancer progression. We then compare traditional 2D experimental systems with novel 3D tissue-engineered models giving accounts of different bioengineering platforms available to develop 3D models and how these 3D models are being exploited to understand the role of hypoxia in breast cancer progression.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Oshin Miranda
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
10
|
Renin angiotensin system inhibition attenuates adipocyte-breast cancer cell interactions. Exp Cell Res 2020; 394:112114. [DOI: 10.1016/j.yexcr.2020.112114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/24/2020] [Accepted: 05/24/2020] [Indexed: 12/21/2022]
|
11
|
Kirtonia A, Gala K, Fernandes SG, Pandya G, Pandey AK, Sethi G, Khattar E, Garg M. Repurposing of drugs: An attractive pharmacological strategy for cancer therapeutics. Semin Cancer Biol 2020; 68:258-278. [PMID: 32380233 DOI: 10.1016/j.semcancer.2020.04.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Human malignancies are one of the major health-related issues though out the world and anticipated to rise in the future. The development of novel drugs/agents requires a huge amount of cost and time that represents a major challenge for drug discovery. In the last three decades, the number of FDA approved drugs has dropped down and this led to increasing interest in drug reposition or repurposing. The present review focuses on recent concepts and therapeutic opportunities for the utilization of antidiabetics, antibiotics, antifungal, anti-inflammatory, antipsychotic, PDE inhibitors and estrogen receptor antagonist, Antabuse, antiparasitic and cardiovascular agents/drugs as an alternative approach against human malignancies. The repurposing of approved non-cancerous drugs is an effective strategy to develop new therapeutic options for the treatment of cancer patients at an affordable cost in clinics. In the current scenario, most of the countries throughout the globe are unable to meet the medical needs of cancer patients because of the high cost of the available cancerous drugs. Some of these drugs displayed potential anti-cancer activity in preclinic and clinical studies by regulating several key molecular mechanisms and oncogenic pathways in human malignancies. The emerging pieces of evidence indicate that repurposing of drugs is crucial to the faster and cheaper discovery of anti-cancerous drugs.
Collapse
Affiliation(s)
- Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India; Equal contribution
| | - Kavita Gala
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India; Equal contribution
| | - Stina George Fernandes
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India; Equal contribution
| | - Gouri Pandya
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India; Equal contribution
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Haryana, 122413, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
12
|
Fabris F, Palmer D, Salama KM, de Magalhães JP, Freitas AA. Using deep learning to associate human genes with age-related diseases. Bioinformatics 2020; 36:2202-2208. [PMID: 31845988 PMCID: PMC7141856 DOI: 10.1093/bioinformatics/btz887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/06/2019] [Accepted: 12/13/2019] [Indexed: 11/15/2022] Open
Abstract
Motivation One way to identify genes possibly associated with ageing is to build a classification model (from the machine learning field) capable of classifying genes as associated with multiple age-related diseases. To build this model, we use a pre-compiled list of human genes associated with age-related diseases and apply a novel Deep Neural Network (DNN) method to find associations between gene descriptors (e.g. Gene Ontology terms, protein–protein interaction data and biological pathway information) and age-related diseases. Results The novelty of our new DNN method is its modular architecture, which has the capability of combining several sources of biological data to predict which ageing-related diseases a gene is associated with (if any). Our DNN method achieves better predictive performance than standard DNN approaches, a Gradient Boosted Tree classifier (a strong baseline method) and a Logistic Regression classifier. Given the DNN model produced by our method, we use two approaches to identify human genes that are not known to be associated with age-related diseases according to our dataset. First, we investigate genes that are close to other disease-associated genes in a complex multi-dimensional feature space learned by the DNN algorithm. Second, using the class label probabilities output by our DNN approach, we identify genes with a high probability of being associated with age-related diseases according to the model. We provide evidence of these putative associations retrieved from the DNN model with literature support. Availability and implementation The source code and datasets can be found at: https://github.com/fabiofabris/Bioinfo2019. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Fabio Fabris
- School of Computing, University of Kent, Canterbury, Kent CT2 7NF, UK
| | - Daniel Palmer
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Khalid M Salama
- School of Computing, University of Kent, Canterbury, Kent CT2 7NF, UK
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Alex A Freitas
- School of Computing, University of Kent, Canterbury, Kent CT2 7NF, UK
| |
Collapse
|
13
|
Abstract
As basic research into GPCR signaling and its association with disease has come into fruition, greater clarity has emerged with regards to how these receptors may be amenable to therapeutic intervention. As a diverse group of receptor proteins, which regulate a variety of intracellular signaling pathways, research in this area has been slow to yield tangible therapeutic agents for the treatment of a number of diseases including cancer. However, recently such research has gained momentum based on a series of studies that have sought to define GPCR proteins dynamics through the elucidation of their crystal structures. In this chapter, we define the approaches that have been adopted in developing better therapeutics directed against the specific parts of the receptor proteins, such as the extracellular and the intracellular domains, including the ligands and auxiliary proteins that bind them. Finally, we also briefly outline how GPCR-derived signaling transduction pathways hold great potential as additional targets.
Collapse
Affiliation(s)
- Surinder M Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.
| |
Collapse
|
14
|
Keshavarzi F, Teimoori B, Farzaneh F, Mokhtari M, Najafi D, Salimi S. Association of ACE I/D and AGTR1 A1166C Gene Polymorphisms and Risk of Uterine Leiomyoma: A Case-Control Study. Asian Pac J Cancer Prev 2019; 20:2595-2599. [PMID: 31554351 PMCID: PMC6976847 DOI: 10.31557/apjcp.2019.20.9.2595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Indexed: 12/16/2022] Open
Abstract
Objective: Uterine leiomyoma (UL) can be considered as the most common benign gynecological tumors of the smooth muscle cells in the myometrium. They are likely to be associated with infertility and recurrent abortion as well as obstructed labor and post-partum hemorrhage. Moreover, altered vascular-related genes can be linked to developing leiomyoma. Polymorphisms of the angiotensin-converting enzyme (ACE) gene are associated with some vascular diseases. The present study was carried out to investigate the association of ACE I/D and AGTR1A1166C gene polymorphisms and the risk of uterine leiomyoma in a sample of Iranian population. Methods: The study was carried out on a total of 413 women divided into 202 patients with diagnosed uterine leiomyomas and a control group of 211. Genotyping was performed using the PCR or PCR-RFLP methods. Results: The ID and DD genotypes of ACE I/D polymorphism were associated with 2 and 2.9 fold higher risk of UL compared to II genotype (OR, 2 [95% CI, 1.3 to 3.2]; P = 0.004 and OR, 2.9 [95% CI, 1.6 to 5]; P = 0.0002). The frequencies of ACE D alleles were 53.7% in women with UL and 40.3% in controls, which were observed to be statistically different (P < 0.0001). The alleles and genotypes of AGTR1 A1166C polymorphism were not different between UL and control women (P=0.9). Conclusion: The ACE ID and DD genotypes were associated with a higher risk of UL. No relationship was found between AGTR1A1166C polymorphism and UL.
Collapse
Affiliation(s)
- Farshid Keshavarzi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran. ,Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Batool Teimoori
- Department of Obstetrics and Gynecology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Farahnaz Farzaneh
- Department of Obstetrics and Gynecology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mojgan Mokhtari
- Department of Obstetrics and Gynecology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Darya Najafi
- Medical College, Iran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Salimi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
15
|
Telmisartan attenuates N-nitrosodiethylamine-induced hepatocellular carcinoma in mice by modulating the NF-κB-TAK1-ERK1/2 axis in the context of PPARγ agonistic activity. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1591-1604. [PMID: 31367864 DOI: 10.1007/s00210-019-01706-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is characterized by bad prognosis and is the second most common reason for cancer-linked mortality. Treatment with sorafenib (SRF) alone increases patient survival by only a few months. A causal link has been determined between angiotensin II (Ang-II) and HCC. However, the mechanisms underlying the tumorigenic effects of Ang-II remain to be elucidated. N-Nitrosodiethylamine was utilized to examine the effects of telmisartan (TEL) (15 mg/kg), SRF (30 mg/kg), and a combination of these two agents on HCC mice. Downregulation of NF-кBP65 mRNA expression and inhibition of the phosphorylation-induced activation of both ERK1/2 and NF-кB P65 were implicated in the anti-tumor effects of TEL and SRF. Consequent regression of malignant changes and improvements in liver function associated with reduced levels of AFP, TNF-α, and TGF-β1 were also confirmed. Anti-proliferative, anti-metastatic, and anti-angiogenic effects of treatment were indicated by reduced hepatic cyclin D1 mRNA expression, reduced MMP-2 levels, and reduced VEGF levels, respectively. TEL, but not SRF, demonstrated agonistic activity for PPARγ receptors, as evidenced by increased PPARγ DNA binding activity, upregulation of CD36, and HO-1 mRNA expression followed by increased liver antioxidant capacity. Both TEL and SRF inhibited TAK1 phosphorylation-induced activation, indicating that TAK1 might act as a central mediator in the interaction between ERK1/2 and NF-кB. TEL, by modulating the ERK1/2, TAK1, and NF-кB signaling axis in the context of PPARγ agonistic activity, exerted anti-tumor effects and increased tumor sensitivity to SRF. Therefore, TEL is an encouraging agent for further clinical trials regarding the management of HCC.
Collapse
|
16
|
Herr D, Sauer C, Holzheu I, Sauter R, Janni W, Wöckel A, Wulff C. Role of Renin-Angiotensin-System in Human Breast Cancer Cells: Is There a Difference in Regulation of Angiogenesis between Hormone-Receptor Positive and Negative Breast Cancer Cells? Geburtshilfe Frauenheilkd 2019; 79:626-634. [PMID: 31217631 PMCID: PMC6570612 DOI: 10.1055/a-0887-7313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022] Open
Abstract
Objective This study examined the role of the RAS in human breast cancer cells to question if there are differences between HR-positive and HR-negative cells with regard to regulation of VEGF. Methods Expression of different RAS components in hormone receptor (HR)-positive and HR-negative breast cancer cells was investigated using RT-PCR. Different stimulation protocols with different RAS inhibitors were used to investigate the effect on VEGF expression. Angiotensin II-dependent expression of VEGF was quantified by real time PCR. In addition, the effect of intrinsic RAS was studied performing siRNA knockdown of angiotensinogen (AGT). Statistical analysis were calculated using IBM SPSS Statistics Version 21. Results Expression of AT 1 R, AT 2 R, AGT and ACE was shown in HR-positive and HR-negative breast cancer cell lines. Extrinsic stimulation with angiotensin II increased VEGF significantly. After treatment with captopril or AT 1 R-inhibitor candesartan, VEGF-expression decreased significantly in HR-positive and HR-negative cell lines. However, inhibition of AT 2 R using PD 123,319 did not show any significant changes of VEGF. After prevention of intrinsic angiotensin II, extrinsic angiotensin II as well as the combination with inhibitors of the receptors caused a significant reduction of VEGF. Surprisingly, the overall effect of the RAS after knockdown of AGT revealed a significant increase of VEGF in HR-positive cells at any time while a significant decrease was observed in HR-negative cells after 144 hours incubation. Conclusion The RAS-dependent regulation of VEGF between HR-positive and HR-negative breast cancer cells seems do be different. These findings provide evidence for a possible future therapeutic strategy.
Collapse
Affiliation(s)
- Daniel Herr
- Department of Obstetrics and Gynaecology, Würzburg University Medical Centre, Würzburg, Germany
| | - Christof Sauer
- Department of Obstetrics and Gynaecology, Ulm University Medical Centre, Ulm, Germany
| | - Iris Holzheu
- Department of Obstetrics and Gynaecology, Ulm University Medical Centre, Ulm, Germany
| | - Regina Sauter
- Department of Obstetrics and Gynaecology, Ulm University Medical Centre, Ulm, Germany
| | - Wolfgang Janni
- Department of Obstetrics and Gynaecology, Ulm University Medical Centre, Ulm, Germany
| | - Achim Wöckel
- Department of Obstetrics and Gynaecology, Würzburg University Medical Centre, Würzburg, Germany
| | - Christine Wulff
- Department of Obstetrics and Gynaecology, Würzburg University Medical Centre, Würzburg, Germany
| |
Collapse
|
17
|
Hu X, Chen J. Association of angiotensin ІІ type 1 receptor gene A1166C polymorphism with cancer risk: An updated meta-analysis. J Renin Angiotensin Aldosterone Syst 2019; 20:1470320319827207. [PMID: 30798689 PMCID: PMC6362515 DOI: 10.1177/1470320319827207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Objective: The association between angiotensin II type 1 receptor
(AGTR1) gene A1166C polymorphism and
cancer risk has been investigated in many studies. However, the results have
been inconclusive. A meta-analysis was performed to obtain a more precise
estimation of the relationship. Methods: The PubMed and China National Knowledge Infrastructure databases were
searched for published literature. Odds ratios (ORs) with 95% confidence
intervals (CIs) were used to assess the strengths of association. Results: Ten studies, including 1553 patients and 1904 controls, were included in the
meta-analysis. Overall, there were no significant associations between the
AGTR1 gene A1166C polymorphism and
cancer risk in the general population (CC vs AA: OR = 1.09, 95% CI =
0.50–2.37; AC vs AA: OR = 1.54, 95% CI = 0.81–2.91; dominant model: OR =
1.46, 95% CI = 0.77–2.79; recessive model: OR = 1.12, 95% CI = 0.84–1.49).
In a subgroup analysis by nationality and cancer type, the results also
showed no association between this polymorphism and cancer risk. Conclusions: This meta-analysis demonstrated that the AGTR1 gene
A1166C polymorphism does not appear to be related to
the risk of cancer.
Collapse
Affiliation(s)
- Xue Hu
- Department of Occupation Medicine, Hangzhou Hospital for the Prevention and Treatment of Occupational Diseases, China
| | - Jing Chen
- Department of Occupation Medicine, Hangzhou Hospital for the Prevention and Treatment of Occupational Diseases, China
| |
Collapse
|
18
|
Salles Trevisan MT, Ricarte I, Dos Santos SJM, Almeida WP, Ulrich CM, Owen RW. Inhibition of angiotensin I converting enzyme by anacardic acids isolated from Cashew nut (Anacardium occidentale Linn.) shell liquid. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1460756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Maria Teresa Salles Trevisan
- Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Irvila Ricarte
- Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Wanda Pereira Almeida
- Institute of Chemistry and Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Cornelia M. Ulrich
- Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Cancer Population Science, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Robert W. Owen
- Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
19
|
Ishikane S, Takahashi-Yanaga F. The role of angiotensin II in cancer metastasis: Potential of renin-angiotensin system blockade as a treatment for cancer metastasis. Biochem Pharmacol 2018. [PMID: 29534876 DOI: 10.1016/j.bcp.2018.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hypertension, which often exists as a comorbid condition in cancer patients, is considered as a factor affecting cancer progression. The renin-angiotensin system (RAS) plays an important role in the regulation of blood pressure, and angiotensin II (Ang II) is a well-known pressor peptide in RAS. There is also accumulated evidence indicating that Ang II plays a critical role in the metastasis of various cancers by modulating adhesion, migration invasion, proliferation, and angiogenesis. Consistent with this, large epidemiological studies have reported the potential beneficial effects of angiotensin-converting enzyme (ACE) inhibitors and Ang II type 1 receptor blockers (ARBs) against cancer metastasis; however, some of the results remain controversial. Although the precise Ang II-related mechanisms involved in cancer metastasis are not completely clear yet, a number of basic and meta-analytic studies have shown that ACE inhibitors and ARBs reduce the metastatic potential of tumors. In this review, we summarize the relationships among hypertension, RAS, and metastasis as demonstrated in basic and clinical studies. Finally, we discuss the possibility of using RAS inhibitors as anti-metastatic drugs.
Collapse
Affiliation(s)
- Shin Ishikane
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Japan.
| | - Fumi Takahashi-Yanaga
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Japan
| |
Collapse
|
20
|
Coulson R, Liew SH, Connelly AA, Yee NS, Deb S, Kumar B, Vargas AC, O'Toole SA, Parslow AC, Poh A, Putoczki T, Morrow RJ, Alorro M, Lazarus KA, Yeap EFW, Walton KL, Harrison CA, Hannan NJ, George AJ, Clyne CD, Ernst M, Allen AM, Chand AL. The angiotensin receptor blocker, Losartan, inhibits mammary tumor development and progression to invasive carcinoma. Oncotarget 2017; 8:18640-18656. [PMID: 28416734 PMCID: PMC5386636 DOI: 10.18632/oncotarget.15553] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/07/2017] [Indexed: 01/06/2023] Open
Abstract
Drugs that target the Renin-Angiotensin System (RAS) have recently come into focus for their potential utility as cancer treatments. The use of Angiotensin Receptor Blockers (ARBs) and Angiotensin-Converting Enzyme (ACE) Inhibitors (ACEIs) to manage hypertension in cancer patients is correlated with improved survival outcomes for renal, prostate, breast and small cell lung cancer. Previous studies demonstrate that the Angiotensin Receptor Type I (AT1R) is linked to breast cancer pathogenesis, with unbiased analysis of gene-expression studies identifying significant up-regulation of AGTR1, the gene encoding AT1R in ER+ve/HER2−ve tumors correlating with poor prognosis. However, there is no evidence, so far, of the functional contribution of AT1R to breast tumorigenesis. We explored the potential therapeutic benefit of ARB in a carcinogen-induced mouse model of breast cancer and clarified the mechanisms associated with its success. Mammary tumors were induced with 7,12-dimethylbenz[α]antracene (DMBA) and medroxyprogesterone acetate (MPA) in female wild type mice and the effects of the ARB, Losartan treatment assessed in a preventative setting (n = 15 per group). Tumor histopathology was characterised by immunohistochemistry, real-time qPCR to detect gene expression signatures, and tumor cytokine levels measured with quantitative bioplex assays. AT1R was detected with radiolabelled ligand binding assays in fresh frozen tumor samples. We showed that therapeutic inhibition of AT1R, with Losartan, resulted in a significant reduction in tumor burden; and no mammary tumor incidence in 20% of animals. We observed a significant reduction in tumor progression from DCIS to invasive cancer with Losartan treatment. This was associated with reduced tumor cell proliferation and a significant reduction in IL-6, pSTAT3 and TNFα levels. Analysis of tumor immune cell infiltrates, however, demonstrated no significant differences in the recruitment of lymphocytes or tumour-associated macrophages in Losartan or vehicle-treated mammary tumors. Analysis of AT1R expression with radiolabelled ligand binding assays in human breast cancer biopsies showed high AT1R levels in 30% of invasive ductal carcinomas analysed. Furthermore, analysis of the TCGA database identified that high AT1R expression to be associated with luminal breast cancer subtype. Our in vivo data and analysis of human invasive ductal carcinoma samples identify the AT1R is a potential therapeutic target in breast cancer, with the availability of a range of well-tolerated inhibitors currently used in clinics. We describe a novel signalling pathway critical in breast tumorigenesis, that may provide new therapeutic avenues to complement current treatments.
Collapse
Affiliation(s)
- Rhiannon Coulson
- Cancer Drug Discovery, Hudson's Institute of Medical Research, Clayton, VIC, Australia.,Translational Breast Cancer Research, Garvan Institute, Darlinghurst, Sydney, NSW, Australia
| | - Seng H Liew
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | | | - Nicholas S Yee
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Siddhartha Deb
- Anatomical Pathology, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Beena Kumar
- Anatomical Pathology, Monash Health, Clayton, VIC, Australia
| | - Ana C Vargas
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, NSW, Australia
| | - Sandra A O'Toole
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, NSW, Australia.,Translational Breast Cancer Research, Garvan Institute, Darlinghurst, Sydney, NSW, Australia.,Sydney Medical School, Sydney University, NSW, Australia
| | - Adam C Parslow
- Tumor Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Ashleigh Poh
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, VIC, Australia
| | - Tracy Putoczki
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, VIC, Australia
| | - Riley J Morrow
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Mariah Alorro
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Kyren A Lazarus
- Cancer Drug Discovery, Hudson's Institute of Medical Research, Clayton, VIC, Australia.,Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Evie F W Yeap
- Cancer Drug Discovery, Hudson's Institute of Medical Research, Clayton, VIC, Australia
| | - Kelly L Walton
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Craig A Harrison
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Natalie J Hannan
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital, Heidelberg, VIC, Australia
| | - Amee J George
- The ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Colin D Clyne
- Cancer Drug Discovery, Hudson's Institute of Medical Research, Clayton, VIC, Australia
| | - Matthias Ernst
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Andrew M Allen
- Department of Physiology, University of Melbourne, VIC, Australia
| | - Ashwini L Chand
- Cancer Drug Discovery, Hudson's Institute of Medical Research, Clayton, VIC, Australia.,Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| |
Collapse
|
21
|
Khan A, Benthin C, Zeno B, Albertson TE, Boyd J, Christie JD, Hall R, Poirier G, Ronco JJ, Tidswell M, Hardes K, Powley WM, Wright TJ, Siederer SK, Fairman DA, Lipson DA, Bayliffe AI, Lazaar AL. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:234. [PMID: 28877748 PMCID: PMC5588692 DOI: 10.1186/s13054-017-1823-x] [Citation(s) in RCA: 457] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/22/2017] [Indexed: 12/15/2022]
Abstract
Background Renin-angiotensin system (RAS) signaling and angiotensin-converting enzyme 2 (ACE2) have been implicated in the pathogenesis of acute respiratory distress syndrome (ARDS). We postulated that repleting ACE2 using GSK2586881, a recombinant form of human angiotensin-converting enzyme 2 (rhACE2), could attenuate acute lung injury. Methods We conducted a two-part phase II trial comprising an open-label intrapatient dose escalation and a randomized, double-blind, placebo-controlled phase in ten intensive care units in North America. Patients were between the ages of 18 and 80 years, had an American-European Consensus Criteria consensus diagnosis of ARDS, and had been mechanically ventilated for less than 72 h. In part A, open-label GSK2586881 was administered at doses from 0.1 mg/kg to 0.8 mg/kg to assess safety, pharmacokinetics, and pharmacodynamics. Following review of data from part A, a randomized, double-blind, placebo-controlled investigation of twice-daily doses of GSK2586881 (0.4 mg/kg) for 3 days was conducted (part B). Biomarkers, physiological assessments, and clinical endpoints were collected over the dosing period and during follow-up. Results Dose escalation in part A was well-tolerated without clinically significant hemodynamic changes. Part B was terminated after 39 of the planned 60 patients following a planned futility analysis. Angiotensin II levels decreased rapidly following infusion of GSK2586881, whereas angiotensin-(1–7) and angiotensin-(1–5) levels increased and remained elevated for 48 h. Surfactant protein D concentrations were increased, whereas there was a trend for a decrease in interleukin-6 concentrations in rhACE2-treated subjects compared with placebo. No significant differences were noted in ratio of partial pressure of arterial oxygen to fraction of inspired oxygen, oxygenation index, or Sequential Organ Failure Assessment score. Conclusions GSK2586881 was well-tolerated in patients with ARDS, and the rapid modulation of RAS peptides suggests target engagement, although the study was not powered to detect changes in acute physiology or clinical outcomes. Trial registration ClinicalTrials.gov, NCT01597635. Registered on 26 January 2012. Electronic supplementary material The online version of this article (doi:10.1186/s13054-017-1823-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akram Khan
- Div. of Pulmonary & Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Cody Benthin
- Div. of Pulmonary & Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Brian Zeno
- Riverside Methodist Hospital, Columbus, OH, USA
| | | | - John Boyd
- St. Paul's Hospital, Vancouver, BC, Canada
| | - Jason D Christie
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Richard Hall
- Nova Scotia Health Authority and Dalhousie University, Halifax, NS, Canada
| | - Germain Poirier
- Charles LeMoyne Hospital, Sherbrooke University, Greenfield Park, QC, Canada
| | - Juan J Ronco
- Critical Care Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Mark Tidswell
- Division of Pulmonary and Critical Care, Department of Medicine, Baystate Medical Center, Springfield, MA, USA
| | | | | | | | | | | | - David A Lipson
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,GlaxoSmithKline R&D, King of Prussia, PA, USA
| | | | - Aili L Lazaar
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA. .,GlaxoSmithKline R&D, King of Prussia, PA, USA.
| |
Collapse
|
22
|
Zhang Q, Li J, Xie H, Xue H, Wang Y. A network-based pathway-expanding approach for pathway analysis. BMC Bioinformatics 2016; 17:536. [PMID: 28155638 PMCID: PMC5259956 DOI: 10.1186/s12859-016-1333-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Pathway analysis combining multiple types of high-throughput data, such as genomics and proteomics, has become the first choice to gain insights into the pathogenesis of complex diseases. Currently, several pathway analysis methods have been developed to study complex diseases. However, these methods did not take into account the interaction between internal and external genes of the pathway and between pathways. Hence, these approaches still face some challenges. Here, we propose a network-based pathway-expanding approach that takes the topological structures of biological networks into account. Results First, two weighted gene-gene interaction networks (tumor and normal) are constructed integrating protein-protein interaction(PPI) information, gene expression data and pathway databases. Then, they are used to identify significant pathways through testing the difference of topological structures of expanded pathways in the two weighted networks. The proposed method is employed to analyze two breast cancer data. As a result, the top 15 pathways identified using the proposed method are supported by biological knowledge from the published literatures and other methods. In addition, the proposed method is also compared with other methods, such as GSEA and SPIA, and estimated using the classification performance of the top 15 expanded pathways. Conclusions A novel network-based pathway-expanding approach is proposed to avoid the limitations of existing pathway analysis approaches. Experimental results indicate that the proposed method can accurately and reliably identify significant pathways which are related to the corresponding disease. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1333-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiaosheng Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, West Da-Zhi Street, Harbin, China.,College of Science, Heilongjiang Bayi Agricultural University, Xinfeng Road, Daqing, China
| | - Jie Li
- School of Computer Science and Technology, Harbin Institute of Technology, West Da-Zhi Street, Harbin, China.
| | - Haozhe Xie
- School of Computer Science and Technology, Harbin Institute of Technology, West Da-Zhi Street, Harbin, China
| | - Hanqing Xue
- School of Computer Science and Technology, Harbin Institute of Technology, West Da-Zhi Street, Harbin, China
| | - Yadong Wang
- School of Computer Science and Technology, Harbin Institute of Technology, West Da-Zhi Street, Harbin, China
| |
Collapse
|
23
|
Bradshaw AR, Wickremesekera AC, Brasch HD, Chibnall AM, Davis PF, Tan ST, Itinteang T. Glioblastoma Multiforme Cancer Stem Cells Express Components of the Renin-Angiotensin System. Front Surg 2016; 3:51. [PMID: 27730123 PMCID: PMC5037176 DOI: 10.3389/fsurg.2016.00051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/05/2016] [Indexed: 01/06/2023] Open
Abstract
AIM To investigate the expression of the renin-angiotensin system (RAS) in cancer stem cells (CSCs), we have previously characterized in glioblastoma multiforme (GBM). METHODS 3,3-Diaminobenzidine (DAB) immunohistochemical (IHC) staining for the stem cell marker, SOX2, and components of the RAS: angiotensin converting enzyme (ACE), (pro)renin receptor (PRR), angiotensin II receptor 1 (ATIIR1), and angiotensin II receptor 2 (ATIIR2) on 4 μm-thick formalin-fixed paraffin-embedded sections of previously characterized GBM samples in six patients was undertaken. Immunofluorescent (IF) IHC staining was performed to demonstrate expression of GFAP, SOX2, PRR, ACE, ATIIR1, and ATIIR2. The protein expression and the transcriptional activities of the genes encoding for ACE, PRR, ATIIR1, and ATIIR2 were studied using Western blotting (WB) and NanoString gene expression analysis, respectively. RESULTS DAB and IF IHC staining demonstrated the expression SOX2 on the GFAP+ GBM CSCs. Cytoplasmic expression of PRR by the GFAP+ CSCs and the endothelium of the microvessels was observed. ACE was expressed on the endothelium of the microvessels only, while nuclear and cytoplasmic expression of ATIIR1 and ATIIR2 was observed on the endothelium of the microvessels and the CSCs. ATIIR1 was expressed on the GFAP+ CSCs cells, and ATIIR2 was expressed by the SOX2+ CSCs. The expression of ACE, PRR, and ATIIR1, but not ATIIR2, was confirmed by WB. NanoString gene analysis demonstrated transcriptional activation of ACE, PRR, and ATIIR1, but not ATIIR2. CONCLUSION This study demonstrated the expression of PRR, ATIIR1, and ATIIR2 by the SOX2 CSC population, and ACE on the endothelium of the microvessels, within GBM. ACE, PRR, and ATIIR1 were expressed at the protein and mRNA levels, with ATIIR2 detectable only by IHC staining. This novel finding suggests that the CSCs may be a novel therapeutic target for GBM by modulation of the RAS.
Collapse
Affiliation(s)
| | - Agadha Crisantha Wickremesekera
- Gillies McIndoe Research Institute, Wellington, New Zealand; Department of Neurosurgery, Wellington Regional Hospital, Wellington, New Zealand
| | - Helen D Brasch
- Gillies McIndoe Research Institute , Wellington , New Zealand
| | | | - Paul F Davis
- Gillies McIndoe Research Institute , Wellington , New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand; Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand
| | - Tinte Itinteang
- Gillies McIndoe Research Institute , Wellington , New Zealand
| |
Collapse
|
24
|
Ishida J, Konishi M, Ebner N, Springer J. Repurposing of approved cardiovascular drugs. J Transl Med 2016; 14:269. [PMID: 27646033 PMCID: PMC5029061 DOI: 10.1186/s12967-016-1031-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/07/2016] [Indexed: 12/19/2022] Open
Abstract
Research and development of new drugs requires both long time and high costs, whereas safety and tolerability profiles make the success rate of approval very low. Drug repurposing, applying known drugs and compounds to new indications, has been noted recently as a cost-effective and time-unconsuming way in developing new drugs, because they have already been proven safe in humans. In this review, we discuss drug repurposing of approved cardiovascular drugs, such as aspirin, beta-blockers, angiotensin converting enzyme inhibitors, angiotensin II receptor blockers, cardiac glycosides and statins. Regarding anti-tumor activities of these agents, a number of experimental studies have demonstrated promising pleiotropic properties, whereas all clinical trials have not shown expected results. In pathological conditions other than cancer, repurposing of cardiovascular drugs is also expanding. Numerous experimental studies have reported possibilities of drug repurposing in this field and some of them have been tried for new indications ('bench to bedside'), while unexpected results of clinical studies have given hints for drug repurposing and some unknown mechanisms of action have been demonstrated by experimental studies ('bedside to bench'). The future perspective of experimental and clinical studies using cardiovascular drugs are also discussed.
Collapse
Affiliation(s)
- Junichi Ishida
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Centre Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Masaaki Konishi
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Centre Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Nicole Ebner
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Centre Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Jochen Springer
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Centre Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
25
|
Liu Y, An S, Ward R, Yang Y, Guo XX, Li W, Xu TR. G protein-coupled receptors as promising cancer targets. Cancer Lett 2016; 376:226-39. [PMID: 27000991 DOI: 10.1016/j.canlet.2016.03.031] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/14/2016] [Accepted: 03/14/2016] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) regulate an array of fundamental biological processes, such as growth, metabolism and homeostasis. Specifically, GPCRs are involved in cancer initiation and progression. However, compared with the involvement of the epidermal growth factor receptor in cancer, that of GPCRs have been largely ignored. Recent findings have implicated many GPCRs in tumorigenesis, tumor progression, invasion and metastasis. Moreover, GPCRs contribute to the establishment and maintenance of a microenvironment which is permissive for tumor formation and growth, including effects upon surrounding blood vessels, signaling molecules and the extracellular matrix. Thus, GPCRs are considered to be among the most useful drug targets against many solid cancers. Development of selective ligands targeting GPCRs may provide novel and effective treatment strategies against cancer and some anticancer compounds are now in clinical trials. Here, we focus on tumor related GPCRs, such as G protein-coupled receptor 30, the lysophosphatidic acid receptor, angiotensin receptors 1 and 2, the sphingosine 1-phosphate receptors and gastrin releasing peptide receptor. We also summarize their tissue distributions, activation and roles in tumorigenesis and discuss the potential use of GPCR agonists and antagonists in cancer therapy.
Collapse
Affiliation(s)
- Ying Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Richard Ward
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Yang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xiao-Xi Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Wei Li
- Kidney Cancer Research, Diagnosis and Translational Technology Center of Yunnan Province, Department of Urology, The People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China.
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
26
|
Oh E, Kim JY, Cho Y, An H, Lee N, Jo H, Ban C, Seo JH. Overexpression of angiotensin II type 1 receptor in breast cancer cells induces epithelial-mesenchymal transition and promotes tumor growth and angiogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1071-81. [PMID: 26975580 DOI: 10.1016/j.bbamcr.2016.03.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/15/2016] [Accepted: 03/10/2016] [Indexed: 01/10/2023]
Abstract
The angiotensin II type I receptor (AGTR1) has been implicated in diverse aspects of human disease, from the regulation of blood pressure and cardiovascular homeostasis to cancer progression. We sought to investigate the role of AGTR1 in cell proliferation, epithelial-mesenchymal transition (EMT), migration, invasion, angiogenesis and tumor growth in the breast cancer cell line MCF7. Stable overexpression of AGTR1 was associated with accelerated cell proliferation, concomitant with increased expression of survival factors including poly(ADP-ribose) polymerase (PARP) and X-linked inhibitor of apoptosis (XIAP), as well as extracellular signal-regulated kinase (ERK) activation. AGTR1-overexpressing MCF7 cells were more aggressive than their parent line, with significantly increased activity in migration and invasion assays. These observations were associated with changes in EMT markers, including reduced E-cadherin expression and increased p-Smad3, Smad4 and Snail levels. Treatment with the AGTR1 antagonist losartan attenuated these effects. AGTR1 overexpression also accelerated tumor growth and increased Ki-67 expression in a xenograft model. This was associated with increased tumor angiogenesis, as evidenced by a significant increase in microvessels in the intratumoral and peritumoral areas, and enhanced tumor invasion, with the latter response associated with increased EMT marker expression and matrix metallopeptidase 9 (MMP-9) upregulation. In vivo administration of losartan significantly reduced both tumor growth and angiogenesis. Our findings suggest that AGTR1 plays a significant role in tumor aggressiveness, and its inhibition may have therapeutic implications.
Collapse
MESH Headings
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Blotting, Western
- Breast Neoplasms/blood supply
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Epithelial-Mesenchymal Transition/genetics
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Losartan/pharmacology
- MCF-7 Cells
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Mice, Inbred BALB C
- Mice, Nude
- Microscopy, Confocal
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/prevention & control
- Poly(ADP-ribose) Polymerases/genetics
- Poly(ADP-ribose) Polymerases/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Smad4 Protein/genetics
- Smad4 Protein/metabolism
- Transplantation, Heterologous
- Tumor Burden/drug effects
- Tumor Burden/genetics
Collapse
Affiliation(s)
- Eunhye Oh
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 136-705, Republic of Korea; Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul 152-703, Republic of Korea
| | - Ji Young Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 136-705, Republic of Korea; Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul 152-703, Republic of Korea
| | - Youngkwan Cho
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 136-705, Republic of Korea; Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul 152-703, Republic of Korea
| | - Hyunsook An
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 136-705, Republic of Korea; Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul 152-703, Republic of Korea
| | - Nahyun Lee
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 136-705, Republic of Korea; Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul 152-703, Republic of Korea
| | - Hunho Jo
- Department of Chemistry, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Changill Ban
- Department of Chemistry, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Jae Hong Seo
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 136-705, Republic of Korea; Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul 152-703, Republic of Korea.
| |
Collapse
|
27
|
Ouyang Q, Duan Z, Jiao G, Lei J. A Biomimic Reconstituted High-Density-Lipoprotein-Based Drug and p53 Gene Co-delivery System for Effective Antiangiogenesis Therapy of Bladder Cancer. NANOSCALE RESEARCH LETTERS 2015; 10:965. [PMID: 26156217 PMCID: PMC4536251 DOI: 10.1186/s11671-015-0965-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
A biomimic reconstituted high-density-lipoprotein-based drug and p53 gene co-delivery system (rHDL/CD-PEI/p53 complexes) was fabricated as a targeted co-delivery nanovector of drug and gene for potential bladder cancer therapy. Here, CD-PEI was utilized to effectively condense the p53 plasmid, to incorporate the plasmid into rHDL, and to act as an antitumor drug to suppress tumor angiogenesis. The rHDL/CD-PEI/p53 complexes exhibited desirable and homogenous particle size, neutral surface charge, and low cytotoxicity in vitro. The results of confocal laser scanning microscopy and flow cytometry confirmed that SR-BI-targeted function induced specific cytoplasmic delivery and high gene transfection efficiency in MBT-2 murine bladder cells. In addition, rHDL/CD-PEI/p53 complexes co-delivering CD and p53 gene achieved synergistic angiogenesis suppression by more effectively downregulating the expression of vascular endothelial growth factor (VEGF) messenger RNA (mRNA) and protein via different pathways in vitro. In vivo investigation on C3H/He mice bearing MBT-2 tumor xenografts revealed that rHDL/CD-PEI/p53 complexes possessed strong antitumor activity. These findings suggested that rHDL/CD-PEI/p53 complexes could be an ideal tumor-targeting system for simultaneous transfer of drug and gene, which might be a new promising strategy for effective bladder cancer therapy.
Collapse
Affiliation(s)
- Qiaohong Ouyang
- Department of Nuclear Medicine, The First Affiliated Hospital, Chinese PLA General Hospital, Beijing, China
| | - Zhongxiang Duan
- Department of Nuclear Medicine, The First Affiliated Hospital, Chinese PLA General Hospital, Beijing, China
| | - Guangli Jiao
- Department of Nuclear Medicine, The First Affiliated Hospital, Chinese PLA General Hospital, Beijing, China
| | - Jixiao Lei
- Department of Nuclear Medicine, The First Affiliated Hospital, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
28
|
Tseng CH. Prolonged use of human insulin increases breast cancer risk in Taiwanese women with type 2 diabetes. BMC Cancer 2015; 15:846. [PMID: 26537234 PMCID: PMC4632264 DOI: 10.1186/s12885-015-1876-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 10/30/2015] [Indexed: 02/06/2023] Open
Abstract
Background Human insulin is commonly used to treat hyperglycemia in patients with diabetes, but its potential link with female breast cancer is under debate. This study investigated whether human insulin use might be associated with breast cancer risk in Taiwanese women with type 2 diabetes. Methods The reimbursement databases of all Taiwanese diabetic patients from 1996 to 2009 were retrieved from the National Health Insurance. An entry date was set at 1 January 2004 and a total of 482,033 women with type 2 diabetes were followed up for breast cancer incidence until the end of 2009. Incidences for ever-users, never-users and subgroups of human insulin exposure (using tertile cutoffs of time since starting insulin, cumulative dose and cumulative duration of insulin) were calculated and the adjusted hazard ratios were estimated by Cox regression. The potential risk modification by concomitant treatment with metformin, statin and angiotensin converting enzyme inhibitor/angiotensin receptor blocker (ACEI/ARB) was also evaluated. Results There were 59,798 ever-users and 422,235 never-users of human insulin, with respective numbers of incident breast cancer of 559 (0.93 %) and 4,711 (1.12 %), and respective incidence of 207.9 and 215.1 per 100,000 person-years. The overall adjusted hazard ratio (95 % confidence interval) did not show a significant association with insulin [1.033 (0.936-1.139)]. However, patients in the third tertiles of dose–response parameters might show a significantly higher risk of breast cancer while compared to never-users: 1.185 (1.026-1.368), 1.260 (1.096-1.450) and 1.257 (1.094-1.446) for ≥67 months for time since starting insulin, ≥39,000 units for cumulative dose of insulin, and ≥21.8 months for cumulative duration of insulin, respectively. Additional analyses suggested that the breast cancer risk associated with human insulin use might be beneficially modified by concomitant use of metformin, statin and ACEI/ARB. Conclusions This study discloses a significantly higher risk of breast cancer associated with prolonged use of human insulin. The increased risk of breast cancer associated with human insulin use may be modified by medications such as metformin, statin and ACEI/ARB.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, No. 7 Chung-Shan South Road, Taipei, 100, Taiwan. .,Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
29
|
Boccardo F, Rubagotti A, Nuzzo PV, Argellati F, Savarino G, Romano P, Damonte G, Rocco M, Profumo A. Matrix-assisted laser desorption/ionisation (MALDI) TOF analysis identifies serum angiotensin II concentrations as a strong predictor of all-cause and breast cancer (BCa)-specific mortality following breast surgery. Int J Cancer 2015; 137:2394-402. [PMID: 25994113 DOI: 10.1002/ijc.29609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/13/2015] [Accepted: 05/05/2015] [Indexed: 12/15/2022]
Abstract
MALDI-TOF MS was used to recognise serum peptidome profiles predictive of mortality in women affected by early BCa. Mortality was analysed based on signal profiling, and appropriate statistics were used. The results indicate that four signals were increased in deceased patients compared with living patients. Three of the four signals were individually associated with all-cause mortality, but only one having mass/charge ratio (m/z) 1,046.49 was associated with BCa-specific mortality and was the only peak to maintain an independent prognostic role after multivariate analysis. Two groups exhibiting different mortality probabilities were identified after clustering patients based on the expression of the four peptides, but m/z 1,046.49 was exclusively expressed in the cluster exhibiting the worst mortality outcome, thus confirming the crucial value of this peptide. The specific role of this peak was confirmed by competing risk analysis. MS findings were validated by ELISA analysis after demonstrating that m/z 1,046.49 structurally corresponded to Angiotensin II (ATII). In fact, mortality results obtained after arbitrarily dividing patients according to an ATII serum value of 255 pg/ml (which corresponds to the 66(th) percentile value) were approximately comparable to those previously demonstrated when the same patients were analysed according to the expression of signal m/z 1,046.49. Similarly, ATII levels were specifically correlated with BCa-related deaths after competing risk analysis. In conclusion, ATII levels were increased in women who exhibited worse mortality outcomes, reinforcing the evidence that this peptide potentially significantly affects the natural history of early BCa. Our findings also confirm that MALDI-TOF MS is an efficient screening tool to identify novel tumour markers and that MS findings can be rapidly validated through less complex techniques, such as ELISA.
Collapse
Affiliation(s)
- Francesco Boccardo
- Academic Unit of Medical Oncology, IRCCS AOU San Martino-IST (San Martino University Hospital and National Cancer Research Institute), Genoa, Italy.,Department of Internal Medicine, School of Medicine, University of Genoa, Genoa, Italy
| | - Alessandra Rubagotti
- Academic Unit of Medical Oncology, IRCCS AOU San Martino-IST (San Martino University Hospital and National Cancer Research Institute), Genoa, Italy.,Department of Internal Medicine, School of Medicine, University of Genoa, Genoa, Italy
| | - Pier Vitale Nuzzo
- Academic Unit of Medical Oncology, IRCCS AOU San Martino-IST (San Martino University Hospital and National Cancer Research Institute), Genoa, Italy.,Department of Internal Medicine, School of Medicine, University of Genoa, Genoa, Italy
| | - Francesca Argellati
- Academic Unit of Medical Oncology, IRCCS AOU San Martino-IST (San Martino University Hospital and National Cancer Research Institute), Genoa, Italy
| | - Grazia Savarino
- Academic Unit of Medical Oncology, IRCCS AOU San Martino-IST (San Martino University Hospital and National Cancer Research Institute), Genoa, Italy.,Department of Internal Medicine, School of Medicine, University of Genoa, Genoa, Italy
| | - Paolo Romano
- Biopolymers and Proteomics Unit, IRCCS AOU San Martino-IST (San Martino University Hospital and National Cancer Research Institute), Genoa, Italy
| | - Gianluca Damonte
- Department of Experimental Medicine and Center of Excellence for Biomedical Research (CEBR), School of Medicine, University of Genoa, Genoa, Italy
| | - Mattia Rocco
- Biopolymers and Proteomics Unit, IRCCS AOU San Martino-IST (San Martino University Hospital and National Cancer Research Institute), Genoa, Italy
| | - Aldo Profumo
- Biopolymers and Proteomics Unit, IRCCS AOU San Martino-IST (San Martino University Hospital and National Cancer Research Institute), Genoa, Italy
| |
Collapse
|
30
|
Miyajima A, Kosaka T, Kikuchi E, Oya M. Renin-angiotensin system blockade: Its contribution and controversy. Int J Urol 2015; 22:721-30. [PMID: 26032599 DOI: 10.1111/iju.12827] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/27/2015] [Indexed: 01/05/2023]
Abstract
Angiotensin II is a key biological peptide in the renin-angiotensin system that regulates blood pressure and renal hemodynamics, and extensive experimental studies have shown that angiotensin II promotes diverse fibrotic changes and induces neovascularization in several inflammatory diseases. It is known that angiotensin II can be controlled using renin-angiotensin system blockade when angiotensin II is the main factor inducing a particular disease, and renin-angiotensin system blockade has assumed a central role in the treatment of inflammatory nephritis, cardiovascular disorders and retinopathy. In contrast, renin-angiotensin system blockade was found to have not only these effects but also other functions, such as inhibition of cancer growth, angiogenesis and metastasis. Numerous studies have sought to elucidate the mechanisms and support these antitumor effects. However, a recent meta-analysis showed that renin-angiotensin system blockade use might in fact increase the incidence of cancer, so renin-angiotensin system blockade use has become somewhat controversial. Although the renin-angiotensin system has most certainly made great contributions to experimental models and clinical practice, some issues still need to be resolved. The present review discusses the contribution and controversy surrounding the renin-angiotensin system up to the present time.
Collapse
Affiliation(s)
- Akira Miyajima
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Eiji Kikuchi
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
31
|
Abstract
Recently controversial data emerged regarding the cancer inducing activity of angiotensin-receptor blockers. There may be several reasons which may explain the controversial data published in the scientific literature including wrong trial design or misinterpretation of data. Considering the large number of patients receiving treatment for hypertension, it is essential to have a clear view of the cancer-related safety of these drugs. This paper tries to give an overview on this issue based on data available in the literature. According to our present knowledge, angiotensin-receptor blockers exert more likely anticancer activity rather than carcinogenesis inducing effect. In fact, some oncologic trials point to this direction, because angiotensin-receptor blockers are suggested as co-treatment to chemotherapy in cases of pancreatic, oesophageal and gastric cancers.
Collapse
Affiliation(s)
- András Telekes
- Bajcsy-Zsilinszky Kórház Onkológiai Osztály Budapest Maglódi út 89-91. 1106
| | - István Kiss
- Semmelweis Egyetem, Általános Orvostudományi Kar II. Belgyógyászati Klinika, Geriátriai Tanszéki Csoport Budapest Szent Imre Egyetemi Oktatókórház Nephrologia-Hypertonia Profil és Aktív Geriátriai Részleg Budapest B. Braun Avitum Zrt. Dialízis Hálózat 1. Sz. Dialízisközpont Budapest
| |
Collapse
|
32
|
Rodrigues-Ferreira S, Nahmias C. G-protein coupled receptors of the renin-angiotensin system: new targets against breast cancer? Front Pharmacol 2015; 6:24. [PMID: 25741281 PMCID: PMC4330676 DOI: 10.3389/fphar.2015.00024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/30/2015] [Indexed: 01/02/2023] Open
Abstract
G-protein coupled receptors (GPCRs) constitute the largest family of membrane receptors, with high potential for drug discovery. These receptors can be activated by a panel of different ligands including ions, hormones, small molecules, and vasoactive peptides. Among those, angiotensins [angiotensin II (AngII) and angiotensin 1–7] are the major biologically active products of the classical and alternative renin-angiotensin system (RAS). These peptides bind and activate three different subtypes of GPCRs, namely AT1, AT2, and Mas receptors, to regulate cardiovascular functions. Over the past decade, the contribution of several RAS components in tumorigenesis has emerged as a novel important concept, AngII being considered as harmful and Ang1–7 as protective against cancer. Development of selective ligands targeting each RAS receptor may provide novel and efficient targeted therapeutic strategies against cancer. In this review, we focus on breast cancer to summarize current knowledge on angiotensin receptors (AT1, AT2, and Mas), and discuss the potential use of angiotensin receptor agonists and antagonists in clinics.
Collapse
Affiliation(s)
| | - Clara Nahmias
- Inserm U981, Institut Gustave Roussy Villejuif, France
| |
Collapse
|
33
|
Arrieta O, Villarreal-Garza C, Vizcaíno G, Pineda B, Hernández-Pedro N, Guevara-Salazar P, Wegman-Ostrosky T, Villanueva-Rodríguez G, Gamboa-Domínguez A. Association between AT1 and AT2 angiotensin II receptor expression with cell proliferation and angiogenesis in operable breast cancer. Tumour Biol 2015; 36:5627-34. [PMID: 25682288 DOI: 10.1007/s13277-015-3235-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/06/2015] [Indexed: 12/14/2022] Open
Abstract
Angiotensin II (ANGII) has been associated with vascular proliferation in tumor and non-tumor models through its receptors AT1 and AT2. Our objective was to determine AT1 and AT2 receptor expression in operable breast cancer and its association with tumor grade, vascular density, and cellular proliferation. Seventy-seven surgically malignant breast tumors with no distant metastasis were included, and 7 benign lesions were used as controls. AT1 and AT2 receptor expression was determined by RT-PCR and immunohistochemistry (IHC) in 68 out of the 77 malignant lesions and in the 7 benign lesions. AT1 and AT2 receptor expression was detected in 35.3 and 25 % of cases, in both RT-PCR and IHC. Tumors that express AT1 showed an increase in T3 stage (92.3 vs. 7.7 % p < 0.001), mitotic index (4 ± 1 vs 2 ± 1, p = 0.05), vascular density (15 ± 3 vs 8 ± 5, p = 0.05), and cellular proliferation (85 ± 18 vs 55 ± 10, p = 0.01) versus AT1-negative lesions. Non-differences between clinical-pathologic variables and AT2 expression were found. AT1 receptor expression was associated to enhance angiogenesis and cellular proliferation rate, but no relationship with AT2 was found. ANGII and its peptides might play a role in the development and pathophysiology of breast cancer, and this could be valuable in the in the development of targeted therapies.
Collapse
Affiliation(s)
- Oscar Arrieta
- Medical Oncology Department, Instituto Nacional de Cancerología, San Fernando # 22, Sección XVI, Tlalpan, 14080, México, D.F., Mexico,
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Muñoz A, Garrido-Gil P, Dominguez-Meijide A, Labandeira-Garcia JL. Angiotensin type 1 receptor blockage reduces l-dopa-induced dyskinesia in the 6-OHDA model of Parkinson's disease. Involvement of vascular endothelial growth factor and interleukin-1β. Exp Neurol 2014; 261:720-32. [DOI: 10.1016/j.expneurol.2014.08.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/01/2014] [Accepted: 08/16/2014] [Indexed: 12/17/2022]
|
35
|
Bao X, Wang W, Wang C, Wang Y, Zhou J, Ding Y, Wang X, Jin Y. A chitosan-graft-PEI-candesartan conjugate for targeted co-delivery of drug and gene in anti-angiogenesis cancer therapy. Biomaterials 2014; 35:8450-66. [PMID: 24997481 DOI: 10.1016/j.biomaterials.2014.06.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 06/11/2014] [Indexed: 01/10/2023]
Abstract
A multifunctional copolymer-anticancer conjugate chitosan-graft-polyethyleneimine-candesartan (CPC) containing low molecular weight chitosan (CS) backbone and polyethyleneimine (PEI) arms with candesartan (CD) conjugated via an amide bond was fabricated as a targeted co-delivery nanovector of drug and gene for potential cancer therapy. Here, CD was utilized to specifically bind to overexpressed angiotensin II type 1 receptor (AT1R) of tumor cells, strengthen endosomal buffering capacity of CPC and suppress tumor angiogenesis. The self-assembled CPC/pDNA complexes exhibited desirable and homogenous particle size, moderate positive charges, superior stability, and efficient release of drug and gene in vitro. Flow cytometry and confocal laser scanning microscopy analyses confirmed that CD-targeted function and CD-enhanced buffering capacity induced high transfection, specific cellular uptake and efficient intracellular delivery of CPC/pDNA complexes in AT1R-overexpressed PANC-1 cells. In addition, CPC/wt-p53 complexes co-delivering CD and wild type p53 (wt-p53) gene achieved synergistic angiogenesis suppression by more effectively downregulating the expression of vascular endothelial growth factor (VEGF) mRNA and protein via different pathways in vitro, as compared to mono-delivery and mixed-delivery systems. In vivo investigation on nude mice bearing PANC-1 tumor xenografts revealed that CPC/wt-p53 complexes possessed high tumor-targeting capacity and strong anti-tumor activity. Additional analysis of microvessel density (MVD) demonstrated that CPC/wt-p53 complexes significantly inhibited tumor-associated angiogenesis. These findings suggested that CPC could be an ideal tumor-targeting nanovector for simultaneous transfer of drug and gene, and a multifunctional CPC/wt-p53 co-delivery system with tumor-specific targetability, enhanced endosomal buffering capacity and synergistic anti-angiogenesis efficacy might be a new promising strategy for effective tumor therapy.
Collapse
Affiliation(s)
- Xiuli Bao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Cheng Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yu Wang
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China.
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Xiaoyi Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yuting Jin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|
36
|
Triterpenes from the Protium heptaphyllum resin – chemical composition and cytotoxicity. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2014. [DOI: 10.1016/j.bjp.2014.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Sunitinib combined with angiotensin-2 type-1 receptor antagonists induces more necrosis: a murine xenograft model of renal cell carcinoma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:901371. [PMID: 24967411 PMCID: PMC4054801 DOI: 10.1155/2014/901371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/25/2014] [Indexed: 12/28/2022]
Abstract
Background. Angiotensin-2 type-1 receptor antagonists not are only antihypertensive drugs but also can inhibit VEGF production. We hypothesised that adding telmisartan to sunitinib could potentiate the antiangiogenic effects. Material and Methods. 786-O cell lines were injected in nude mice. After tumor development, mice were divided into 4 groups: the first was the control group (DMSO), the second group was treated with sunitinib alone, the third group was treated with telmisartan alone, and the fourth group was treated with the combination. Drugs were orally administered every day for four weeks. Animals were sacrificed after treatment. Blood and tumor tissues were collected for analysis by immunohistochemistry, Western Blot, and ELISA methods. Results. All animals developed a ccRCC and ten in each group were treated. Using a kinetic model, tumors tended to grow slower in the combination group compared to others (P = 0.06). Compared to sunitinib alone, the addition of telmisartan significantly increased tissue necrosis (P = 0.038). Central microvascular density decreased (P = 0.0038) as well as circulating VEGF (P = 0.003). There was no significant variation in proliferation or apoptosis markers. Conclusion. The combination of sunitinib and telmisartan revealed an enhancement of the blockage of the VEGF pathway on renal tumor resulting in a decrease in neoangiogenesis and an increase in necrosis.
Collapse
|
38
|
Haschke M, Schuster M, Poglitsch M, Loibner H, Salzberg M, Bruggisser M, Penninger J, Krähenbühl S. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet 2014; 52:783-92. [PMID: 23681967 DOI: 10.1007/s40262-013-0072-7] [Citation(s) in RCA: 288] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II (Ang1-8) to angiotensin 1-7 (Ang1-7), a functional antagonist of Ang1-8, with vasodilatory, antiproliferative, antiangiogenic, and anti-inflammatory properties. In conditions with an unbalanced renin-angiotensin-aldosterone system with elevated Ang1-8, administration of ACE2 has shown promising effects in a variety of animal models. Enhancing ACE2 activity by exogenous administration of ACE2 might also be beneficial in human diseases with pathologically elevated Ang1-8. As a first step we performed a first-in-man study to determine pharmacokinetics, pharmacodynamics, safety, and tolerability of recombinant ACE2 in healthy volunteers. METHODS Recombinant human ACE2 (rhACE2) was administered intravenously to healthy human subjects in a randomized, double-blind, placebo-controlled, single-dose, dose-escalation study followed by an open-label multiple-dose study. ACE2 concentrations were determined by quantifying ACE2 activity and ACE2 content in plasma samples. Concentrations of the angiotensin system effector peptides Ang1-8, Ang1-7, and Ang1-5 were determined using a liquid chromatography-tandem mass spectrometry method. RESULTS Single rhACE2 doses of 100-1,200 μg/kg caused a dose-dependent increase of systemic exposure with biphasic elimination and a dose-independent terminal half-life of 10 h. In all single-dose cohorts, Ang1-8 decreased within 30 min postinfusion, angiotensin 1-7 (Ang1-7) either increased (100 and 200 μg/kg doses), decreased, or remained unchanged (400-1,200 μg/kg doses), whereas angiotensin 1-5 (Ang1-5) transiently increased for all doses investigated. With the exception of the lowest rhACE2 dose, the decrease in Ang1-8 levels lasted for at least 24 h. Repeated dosing (400 μg/kg for 3 or 6 days) caused only minimal accumulation of ACE2, and Ang1-8 levels were suppressed over the whole application period. CONCLUSIONS Administration of rhACE2 was well tolerated by healthy human subjects. Exposure was dose dependent with a dose-independent terminal elimination half-life in the range of 10 h. Despite marked changes in angiotensin system peptide concentrations, cardiovascular effects were absent, suggesting the presence of effective compensatory mechanisms in healthy volunteers.
Collapse
Affiliation(s)
- Manuel Haschke
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel, 4031, Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Verhoest G, Dolley-Hitze T, Jouan F, Bensalah K, Arlot-Bonnemains Y, Dugay F, Belaud-Rotureau MA, Rioux-Leclercq N, Vigneau C. Système rénine-angiotensine et cancers urologiques. Prog Urol 2014; 24:73-9. [DOI: 10.1016/j.purol.2013.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 01/10/2023]
|
40
|
de Rinaldis E, Gazinska P, Mera A, Modrusan Z, Fedorowicz GM, Burford B, Gillett C, Marra P, Grigoriadis A, Dornan D, Holmberg L, Pinder S, Tutt A. Integrated genomic analysis of triple-negative breast cancers reveals novel microRNAs associated with clinical and molecular phenotypes and sheds light on the pathways they control. BMC Genomics 2013; 14:643. [PMID: 24059244 PMCID: PMC4008358 DOI: 10.1186/1471-2164-14-643] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 08/09/2013] [Indexed: 11/20/2022] Open
Abstract
Background This study focuses on the analysis of miRNAs expression data in a cohort of 181 well characterised breast cancer samples composed primarily of triple-negative (ER/PR/HER2-negative) tumours with associated genome-wide DNA and mRNA data, extensive patient follow-up and pathological information. Results We identified 7 miRNAs associated with prognosis in the triple-negative tumours and an additional 7 when the analysis was extended to the set of all ER-negative cases. miRNAs linked to an unfavourable prognosis were associated with a broad spectrum of motility mechanisms involved in the invasion of stromal tissues, such as cell-adhesion, growth factor-mediated signalling pathways, interaction with the extracellular matrix and cytoskeleton remodelling. When we compared different intrinsic molecular subtypes we found 46 miRNAs that were specifically expressed in one or more intrinsic subtypes. Integrated genomic analyses indicated these miRNAs to be influenced by DNA genomic aberrations and to have an overall influence on the expression levels of their predicted targets. Among others, our analyses highlighted the role of miR-17-92 and miR-106b-25, two polycistronic miRNA clusters with known oncogenic functions. We showed that their basal-like subtype specific up-regulation is influenced by increased DNA copy number and contributes to the transcriptional phenotype as well as the activation of oncogenic pathways in basal-like tumours. Conclusions This study analyses previously unreported miRNA, mRNA and DNA data and integrates these with pathological and clinical information, from a well-annotated cohort of breast cancers enriched for triple-negative subtypes. It provides a conceptual framework, as well as integrative methods and system-level results and contributes to elucidate the role of miRNAs as biomarkers and modulators of oncogenic processes in these types of tumours.
Collapse
Affiliation(s)
- Emanuele de Rinaldis
- Breakthrough Breast Cancer Research Unit, Division of Cancer Studies, School of Medicine, King's College London, Guy's Hospital, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chae YK, Brown EN, Lei X, Melhem-Bertrandt A, Giordano SH, Litton JK, Hortobagyi GN, Gonzalez-Angulo AM, Chavez-Macgregor M. Use of ACE Inhibitors and Angiotensin Receptor Blockers and Primary Breast Cancer Outcomes. J Cancer 2013; 4:549-56. [PMID: 23983819 PMCID: PMC3753529 DOI: 10.7150/jca.6888] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/26/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND ACE inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) may have anti-tumor properties. We investigated whether the use of ACEI/ARBs affects the clinical outcomes of primary breast cancer patients receiving taxane and anthracycline-based neoadjuvant chemotherapy. METHODS We included 1449 patients with diagnosis of invasive primary breast cancer diagnosed at the MD Anderson Cancer Center between 1995 and 2007 who underwent neoadjuvant chemotherapy. Of them, 160 (11%) patients were identified by review of their medical record, as ACEI/ARBs users. We compared pathologic complete response (pCR) rates, relapse-free survival (RFS), disease-specific survival (DSS) and overall survival (OS) between ACEI/ARB users and non-users. Descriptive statistics and Cox proportional hazards model were used in the analyses. RESULTS There was no difference in the pCR rates between ACEI/ARB users and non-users (16% vs 18.1%, p-=0.50). After adjustment for important demographic and clinical characteristics, no significant differences between ACEI/ARB users and nonusers were observed in RFS (HR=0.81; 95% CI=0.54-1.21), DSS (HR=0.83; 95% CI=0.52-1.31), or OS (HR=0.91; 95% CI =0.61-1.37). In a subgroup analysis, the 5-year RFS was 82% in ARB only users versus 71% in ACEI/ARB non-users (P=0.03). In the multivariable analysis, ARB use was also associated with a decreased risk of recurrence (HR=0.35; 95% CI=0.14-0.86). No statistically significant differences in DSS or OS were seen. CONCLUSION No differences in pCR and survival outcomes were seen between ACEI/ARB users and non-users among breast cancer patients receiving neoadjuvant chemotherapy. ARB use may be associated with improved RFS. Further research is needed to validate this finding.
Collapse
|
42
|
Okwan-Duodu D, Landry J, Shen XZ, Diaz R. Angiotensin-converting enzyme and the tumor microenvironment: mechanisms beyond angiogenesis. Am J Physiol Regul Integr Comp Physiol 2013; 305:R205-15. [DOI: 10.1152/ajpregu.00544.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The renin angiotensin system (RAS) is a network of enzymes and peptides that coalesce primarily on the angiotensin II type 1 receptor (AT1R) to induce cell proliferation, angiogenesis, fibrosis, and blood pressure control. Angiotensin-converting enzyme (ACE), the key peptidase of the RAS, is promiscuous in that it cleaves other substrates such as substance P and bradykinin. Accumulating evidence implicates ACE in the pathophysiology of carcinogenesis. While the role of ACE and its peptide network in modulating angiogenesis via the AT1R is well documented, its involvement in shaping other aspects of the tumor microenvironment remains largely unknown. Here, we review the role of ACE in modulating the immune compartment of the tumor microenvironment, which encompasses the immunosuppressive, cancer-promoting myeloid-derived suppressor cells, alternatively activated tumor-associated macrophages, and T regulatory cells. We also discuss the potential roles of peptides that accumulate in the setting of chronic ACE inhibitor use, such as bradykinin, substance P, and N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), and how they may undercut the gains of anti-angiogenesis from ACE inhibition. These emerging mechanisms may harmonize the often-conflicting results on the role of ACE inhibitors and ACE polymorphisms in various cancers and call for further investigations into the potential benefit of ACE inhibitors in some neoplasms.
Collapse
Affiliation(s)
- Derick Okwan-Duodu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Jerome Landry
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Xiao Z. Shen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Roberto Diaz
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia; and
| |
Collapse
|
43
|
Beta blockers and angiotensin-converting enzyme inhibitors' purported benefit on breast cancer survival may be explained by aspirin use. Breast Cancer Res Treat 2013; 139:507-13. [PMID: 23649190 DOI: 10.1007/s10549-013-2553-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 04/26/2013] [Indexed: 12/21/2022]
Abstract
Preclinical and epidemiologic evidence supports a possible role for beta-adrenergic blocking drugs (beta-blockers), and angiotensin-converting enzyme inhibitors (ACEIs) in promoting survival after breast cancer. However, these drugs are often used concurrently with aspirin, and there is a growing body of evidence indicating a survival benefit for aspirin. Therefore, we analyzed the use of beta-blockers and ACEIs after a breast cancer diagnosis and their association with breast cancer mortality, both individually, combined with each other, and in combination with aspirin use in the Nurses' Health Study, using updated measures of medication use and Cox proportional hazards models. There were 4,661 women with stages I-III breast cancer included; 292 breast cancer deaths occurred during median follow-up time of 10.5 years. Modeled individually, the multivariable relative risk and 95 % confidence intervals (RR, 95 % CI) for breast cancer death were (0.76, 0.54-1.05) for beta blockers, (0.89, 0.60-1.32) for ACEIs, and (0.46, 0.35-0.60) for aspirin. Modeled simultaneously, the multivariable (RR, 95 % CI) for breast cancer death were (0.83, 0.60-1.16) for beta blockers, (1.00, 0.68-1.46) for ACEIs, and (0.46, 0.35-0.61) for aspirin. We did not see a significant association with beta blockers and survival, but there was a suggestion. Our study was limited in that we could not assess type of beta blocker and the number of events among users was still quite low. We found no evidence of a protective effect for ACEIs. The strong protective association with aspirin use confounds the associations with these other drugs and underscores the importance of considering aspirin use in analyses of breast cancer survival.
Collapse
|
44
|
Abstract
For a few years, new targeted therapies have been used for metastatic cancers, targeting VEGF and its receptors and improving patients' survival for metastatic carcinoma (kidney, GIST, breast, colorectal). The objective of these treatments is to block either circulating VEGF (bevacizumab; VEGF-Trap), or tyrosine kinase receptors (especially the VEGF receptor) (sorafenib, sunitinib, brivanib, imatinib, etc.). Indeed, VEGF stimulates endothelial cell proliferation and then tumour growth and metastasis. However, all these antiangiogenic drugs share similar side effects, most frequently gastrointestinal disturbance, skin toxicity and hypertension. Hypertension seems to be especially frequent in case of good response. Renal side effects have probably been underestimated in the first place and their exact frequency is not known, needing some specific trials and registries. Proteinuria, thrombotic microangiopathies and acute renal failures have been reported: renal biopsies might be necessary for precise evaluation of renal damages. Physiopathology seems very close to preeclampsia. Good collaboration between oncologists, nephrologists and cardiologists is therefore crucial in order to continue these targeted therapies safely for the patients.
Collapse
Affiliation(s)
- Cécile Vigneau
- Service de Néphrologie, Centre Hospitalier Universitaire Pontchaillou, 2, rue Henri-Le-Guilloux, 35033 Rennes cedex 9, France.
| | | |
Collapse
|
45
|
Dolley-Hitze T, Verhoest G, Jouan F, Le Pogamp P, Arlot-Bonnemains Y, Oger E, Belaud-Rotureau MA, Rioux-Leclercq N, Vigneau C. [Angiotensin-2 type 1 receptors (AT1R) and cancers]. Nephrol Ther 2013; 9:85-91. [PMID: 23332110 DOI: 10.1016/j.nephro.2012.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/13/2012] [Accepted: 09/17/2012] [Indexed: 12/16/2022]
Abstract
Recently, several meta-analysis suggested an increased risk of cancers linked to the use of antagonists of angiotensin-2 receptors or inhibitors of angiotensinogen converting enzyme. The results of epidemiological studies are conflicting. Meta-analysis as well as retrospective studies are not reliable and biased, since they have never been designed to explore any pro- or antitumoral effect. We lack of prospective studies that could take off the doubt on these drugs. Nevertheless, all experimental researches pointed out potent antitumoral properties. Indeed, direct antiproliferative and neo-angiogenic inhibition have been described on tumor cell cultures as well as on animal models. Moreover, we are convinced that the use of antagonists of angiotensin-2 receptors and inhibitors of angiotensinogen converting enzyme may be then of clinical use in the near future in association with classical antitumor drugs. In this review, we proposed to explore these data by a thorough analysis of recent literature associating epidemiological and experimental studies.
Collapse
Affiliation(s)
- Thibault Dolley-Hitze
- Service de néphrologie, CHU Pontchaillou, 2, rue Henri-Le-Guilloux, 35033 Rennes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Angiogenic Activity of Sera from Interstitial Lung Disease Patients in Relation to Angiotensin-Converting Enzyme Activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 756:213-21. [DOI: 10.1007/978-94-007-4549-0_27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Holmes MD, Chen WY. Hiding in plain view: the potential for commonly used drugs to reduce breast cancer mortality. Breast Cancer Res 2012; 14:216. [PMID: 23227958 PMCID: PMC4053125 DOI: 10.1186/bcr3336] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Many medications have been developed for one purpose but then are found to have other clinical activities. There is tremendous interest in whether non-cancer medications may potentially have effects on breast cancer survival. In this review article, we have presented and evaluated the evidence for several commonly used over-the-counter and prescription medications - including aspirin (and other non-steroidal anti-inflammatory drugs), beta-blockers, angiotensin-converting enzyme inhibitors, statins, digoxin, and metformin - that have been evaluated among breast cancer survivors in prospective studies. Substantial scientific evidence supports the hypothesis that some of these common and relatively safe drugs may reduce breast cancer mortality among those with the disease by an amount that rivals the mortality reduction gained by currently used therapies. In particular, the evidence is strongest for aspirin (approximately 50% reduction), statins (approximately 25% reduction), and metformin (approximately 50% reduction). As these drugs are generic and inexpensive, there is little incentive for the pharmaceutical industry to fund the randomized trials that would show their effectiveness definitively. We advocate that confirmation of these findings in randomized trials be considered a high research priority, as the potential impact on human lives saved could be immense.
Collapse
|
48
|
Tchaikovski V, Lip GYH. Angiotensin receptor blockers and tumorigenesis: something to be (or not to be) concerned about? Curr Hypertens Rep 2012; 14:183-92. [PMID: 22467342 DOI: 10.1007/s11906-012-0263-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The possibility of carcinogenic side effects of antihypertensive therapies due to their chronic administration has been raised multiple times in the past. Recently, the issue has again drawn attention, this time in relation to angiotensin receptor blockers (ARBs). This, among others, caused both American and European drug regulation authorities to review the underlying evidence concerning the relationship between this class of medications and potential adverse carcinogenic outcome. A plethora of both basic science and preclinical evidence has been generated, and three meta-analyses and one nationwide cohort have focused on this specific question. The current review aims to summarize the contemporary multidisciplinary evidence on whether ARBs may be associated with an increased risk of tumorigenesis.
Collapse
Affiliation(s)
- Vadim Tchaikovski
- Haemostasis, Thrombosis and Vascular Biology Unit, University of Birmingham Centre for Cardiovascular Sciences, City Hospital Birmingham, Birmingham, B18 7QH, England, UK
| | | |
Collapse
|
49
|
Ossovskaya V, Wang Y, Budoff A, Xu Q, Lituev A, Potapova O, Vansant G, Monforte J, Daraselia N. Exploring molecular pathways of triple-negative breast cancer. Genes Cancer 2012; 2:870-9. [PMID: 22593799 DOI: 10.1177/1947601911432496] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with a high rate of proliferation and metastasis, as well as poor prognosis for advanced-stage disease. Although TNBC was previously classified together with basal-like and BRCA1/2-related breast cancers, genomic profiling now shows that there is incomplete overlap, with important distinctions associated with each subtype. The biology of TNBC is still poorly understood; therefore, to define the relative contributions of major cellular pathways in TNBC, we have studied its molecular signature based on analysis of gene expression. Comparisons were then made with normal breast tissue. Our results suggest the existence of molecular networks in TNBC, characterized by explicit alterations in the cell cycle, DNA repair, nucleotide synthesis, metabolic pathways, NF-κB signaling, inflammatory response, and angiogenesis. Moreover, we also characterized TNBC as a cancer of mixed phenotypes, suggesting that TNBC extends beyond the basal-like molecular signature and may constitute an independent subtype of breast cancer. The data provide a new insight into the biology of TNBC.
Collapse
Affiliation(s)
- Valeria Ossovskaya
- BiPar Sciences, Inc. (subsidiary of Sanofi), South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Jethon A, Pula B, Piotrowska A, Wojnar A, Rys J, Dziegiel P, Podhorska-Okolow M. Angiotensin II type 1 receptor (AT-1R) expression correlates with VEGF-A and VEGF-D expression in invasive ductal breast cancer. Pathol Oncol Res 2012; 18:867-73. [PMID: 22581182 PMCID: PMC3448048 DOI: 10.1007/s12253-012-9516-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 03/05/2012] [Indexed: 01/25/2023]
Abstract
Recent studies point to the involvement of angiotensin II (Ang II) receptor type 1 (AT-1R) on processes of metastasing, stimulation of invasiveness and angiogenesis in tumours. In this study, the correlation between intensity of AT-1R expression and expression of lymph- and angiogenesis markers in invasive ductal breast cancers (IDC) was examined. Immunohistochemical studies (IHC) were performed on archival material of 102 IDC cases. Only 28 (27.5%) cases manifested low AT-1R expression while 74 (72.5%) cases demonstrated a moderate or pronounced AT-1R expression. Expression intensity of AT-1R was found to correlate with expressions of VEGF-A (r = 0.26; p = 0.008) and VEGF-D (r = 0.24; p = 0.015). Out of the examined markers of angiogenesis and lymphangiogenesis only the pronounced expression of VEGF-C was found to correlate with patient poor clinical outcome (p = 0.009). The positive correlation between AT-1R and VEGF-A and VEGF-D could point to stimulatory action of Ang II on their expression what might result in augmented lymph- and angiogenesis in IDC.
Collapse
Affiliation(s)
- Aleksandra Jethon
- Department of Histology and Embryology, Medical University, Chalubinskiego 6a, 50-368, Wroclaw, Poland
| | | | | | | | | | | | | |
Collapse
|