1
|
Carmi YK, Agbarya A, Khamaisi H, Farah R, Shechtman Y, Korobochka R, Gopas J, Mahajna J. Ovarian cancer ascites confers platinum chemoresistance to ovarian cancer cells. Transl Oncol 2024; 44:101939. [PMID: 38489872 PMCID: PMC10955424 DOI: 10.1016/j.tranon.2024.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024] Open
Abstract
Ovarian cancer (OC), the second most common form of gynecologic malignancy, has a poor prognosis and is often discovered in the late stages. Platinum-based chemotherapy is the first line of therapy. Nevertheless, treatment OC has proven challenging due to toxicity and the development of acquired resistance to therapy. Tumor microenvironment (TME) has been associated with platinum chemoresistance. Malignant ascites has been used as OC tumor microenvironment and its ability to induce platinum chemoresistance has been investigated. Our results suggest that exposure to OC ascites induces platinum chemoresistance in 11 of 13 cases (85 %) on OC cells. In contrast, 75 % of cirrhotic ascites (3 of 4) failed to confer platinum chemoresistance to OC cells. Cytokine array analysis revealed that IL -6 and to a lesser extent HGF were enriched in OC ascites, whereas IL -22 was enriched in cirrhotic ascites. Pharmaceutical inhibitors targeting the IL -6/ JAK pathway were mildly effective in overcoming platinum chemoresistance induced by malignant ascites. In contrast, crizotinib, an HGF/c- MET inhibitor, and 2-hydroxyestradiol (2HE2) were effective in restoring platinum chemosensitivity to OC. Our results demonstrate the importance of OC ascites in supporting platinum chemoresistance and the potential of combination therapy to restore chemosensitivity of OC cells.
Collapse
Affiliation(s)
- Yifat Koren Carmi
- Department of Nutrition and Natural Products, Migal - Galilee Research Institute, Kiryat Shmona, Israel; Shraga Segal Department of Microbiology, Immunology and Genetics, and Department of Oncology, Soroka University Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Abed Agbarya
- Oncology Department, Bnai Zion MC, Haifa, Israel
| | - Hazem Khamaisi
- Department of Nutrition and Natural Products, Migal - Galilee Research Institute, Kiryat Shmona, Israel
| | - Raymond Farah
- Department of Internal Medicine, Ziv Medical Center, Safed, Israel
| | | | | | - Jacob Gopas
- Shraga Segal Department of Microbiology, Immunology and Genetics, and Department of Oncology, Soroka University Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal - Galilee Research Institute, Kiryat Shmona, Israel; Department of Biotechnology, Tel-Hai College, Kiryat Shmona, Israel.
| |
Collapse
|
2
|
Zhao C, Tong L, Liu B, Qi F, Zhang Z, Guo Y, Liu Y, Wang Y, Zhang L, Lu B, Li B, Zhang T. Plasma hepatocyte growth factor as a noninvasive biomarker in small cell lung cancer. BMC Cancer 2023; 23:973. [PMID: 37828456 PMCID: PMC10568809 DOI: 10.1186/s12885-023-10995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/22/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Hepatocyte growth factor (HGF) is a peptide-containing multifunctional cytokine, which is overexpressed and/or activated in multiple malignancies and is reported to be associated with tumor development and inferior survival. At present, the role of HGF in small cell lung cancer (SCLC) has not been fully explored yet. MATERIALS AND METHODS The expression of HGF and its value in predicting survival in SCLC were explored from GEO database and in pan-cancer analysis. Furthermore, we detected the expression of HGF using tumor tissue and paired plasma samples from a validation cohort of 71 SCLC patients at our institute. Correlation between tumor and plasma HGF expression and the prognostic values were analyzed. RESULTS GEO database analysis revealed that tumor tissue had lower HGF expression than paired normal tissue in SCLC. At our institute, immunohistochemical staining showed negative expression of HGF in tumor tissue of SCLC at our institute (47/47, 100%). The average baseline plasma HGF was 1.28 (range,0.42-4.35) ng/ml. However, plasma HGF was higher in SCLC patients with patients with N3, M1, liver metastasis (LM) and bone metastasis (BM) disease compared with those N0 - 2 (1.25 vs. 1.75 ng/mL, P = 0.000), M0 (1.26 vs. 1.63 ng/mL, P = 0.003), non-LM (1.32 vs. 2.06 ng/mL, P = 0.009), and non-BM (1.35 vs. 1.77 ng/mL, P = 0.047), respectively. Multivariate analysis revealed plasma HGF was an independent predictor for LM and prognostic factor of OS. CONCLUSION Our results revealed that plasma HGF rather than tumor HGF exhibited a potential role in predicting metastasis and survival in SCLC. Plasma HGF might be used as a non-invasive detecting and monitoring tool for SCLC.
Collapse
Affiliation(s)
- Cong Zhao
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Li Tong
- Department of Oncology, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Bin Liu
- Cancer research center, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
| | - Fei Qi
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Zhiyun Zhang
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Cancer research center, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
| | - Yi Guo
- Emergency Department, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Yanxia Liu
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Cancer research center, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
| | - Ying Wang
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Lina Zhang
- Cancer research center, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
| | - Baohua Lu
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Baolan Li
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Tongmei Zhang
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
3
|
Identifying the Role of Oxidative Stress-Related Genes as Prognostic Biomarkers and Predicting the Response of Immunotherapy and Chemotherapy in Ovarian Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6575534. [PMID: 36561981 PMCID: PMC9764017 DOI: 10.1155/2022/6575534] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022]
Abstract
Background Ovarian cancer (OC) is one of the most frequently seen and fatal gynecological malignancies, and oxidative stress (OS) plays a critical role in the development and chemoresistance of OC. Materials and Methods OS-related genes (OSRGs) were obtained from the Molecular Signatures Database. Besides, gene expression profiles and clinical information from The Cancer Genome Atlas (TCGA) were selected to identify the prognostic OSRGs. Moreover, univariate Cox regression, LASSO, and multivariate Cox regression analyses were conducted sequentially to establish a prognostic signature, which was later validated in three independent Gene Expression Omnibus (GEO) datasets. Next, gene set enrichment analysis (GSEA) and tumor mutation burden (TMB) analysis were performed. Afterwards, immune checkpoint genes (ICGs) and the tumor immune dysfunction and exclusion (TIDE) algorithm, together with IMvigor210 and GSE78220 cohorts, were applied to comprehensively explore the role of OSRG signature in immunotherapy. Further, the CellMiner and Genomics of Drug Sensitivity in Cancer (GDSC) databases were also applied in investigating the significance of OSRG signature in chemotherapy. Results Altogether, 34 prognostic OSRGs were identified, among which 14 were chosen to establish the most valuable prognostic signature. The Kaplan-Meier (KM) analysis suggested that patients with lower OS-related risk score had better prognosis. The area under the curve (AUC) values were 0.71, 0.76, and 0.85 in 3, 5, and 7 years separately, and the stability of this prognostic signature was confirmed in three GEO datasets. As revealed by GSEA and TMB analysis results, OC patients in low-risk group might have better immunotherapeutic response, which was consistent with ICG expression and TIDE analyses. Moreover, both IMvigor210 and GSE78220 cohorts demonstrated that patients with lower OS-related risk score were more likely to benefit from anti-PD-1/L1 immunotherapy. In addition, the association between prognostic signature and drug sensitivity was explored. Conclusion According to our results in this work, OSRG signature can act as a powerful prognostic predictor for OC, which contributes to generating more individualized therapeutic strategies for OC patients.
Collapse
|
4
|
Kamble PR, Breed AA, Pawar A, Kasle G, Pathak BR. Prognostic utility of the ovarian cancer secretome: a systematic investigation. Arch Gynecol Obstet 2022; 306:639-662. [PMID: 35083554 DOI: 10.1007/s00404-021-06361-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 12/06/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Ovarian cancer is usually detected at an advanced stage with frequent recurrence. The recurrence-free survival and overall survival is influenced by the age at diagnosis, tumor stage and histological subtype. Nonetheless, quantifiable prognostic biomarkers are needed for early identification of the high-risk patients and for personalized medicine. Several studies link tumor-specific dysregulated expression of certain proteins with ovarian cancer prognosis. However, careful investigation of presence of these prognostically relevant proteins in ovarian cancer secretome is lacking. OBJECTIVE To critically analyze the recent published data on prognostically relevant proteins for ovarian cancer and to carefully search how many of them are reported in the published ovarian cancer secretome datasets. DESIGN A search for relevant studies in the past 2 years was conducted in PubMed and a comprehensive list of proteins associated with the ovarian cancer prognosis was prepared. These were cross-referred to the published ovarian cancer secretome profiles. The proteins identified in the secretome were further shortlisted based on a scoring strategy employing stringent criteria. RESULTS A panel of seven promising secretory biomarkers associated with ovarian cancer prognosis is proposed. CONCLUSION Scanning the ovarian cancer secretome datasets provides the opportunity to identify if tumor-specific biomarkers could be tested as secretory biomarkers. Detecting their levels in the body fluid would be more advantageous than evaluating the expression in the tissue, since it could be monitored multiple times over the course of the disease to have a better judgment of the prognosis and response to therapy.
Collapse
Affiliation(s)
- Pradnya R Kamble
- Cellular and Structural Biology Division, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Ananya A Breed
- Cellular and Structural Biology Division, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Apoorva Pawar
- Cellular and Structural Biology Division, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Grishma Kasle
- Cellular and Structural Biology Division, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400012, India
- Division of Biological Sciences, IISER, Kolkata, India
| | - Bhakti R Pathak
- Cellular and Structural Biology Division, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
5
|
Ritch SJ, Telleria CM. The Transcoelomic Ecosystem and Epithelial Ovarian Cancer Dissemination. Front Endocrinol (Lausanne) 2022; 13:886533. [PMID: 35574025 PMCID: PMC9096207 DOI: 10.3389/fendo.2022.886533] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is considered the deadliest gynecological disease and is normally diagnosed at late stages, at which point metastasis has already occurred. Throughout disease progression, EOC will encounter various ecosystems and the communication between cancer cells and these microenvironments will promote the survival and dissemination of EOC. The primary tumor is thought to develop within the ovaries or the fallopian tubes, both of which provide a microenvironment with high risk of causing DNA damage and enhanced proliferation. EOC disseminates by direct extension from the primary tumors, as single cells or multicellular aggregates. Under the influence of cellular and non-cellular factors, EOC spheroids use the natural flow of peritoneal fluid to reach distant organs within the peritoneal cavity. These cells can then implant and seed distant organs or tissues, which develop rapidly into secondary tumor nodules. The peritoneal tissue and the omentum are two common sites of EOC metastasis, providing a microenvironment that supports EOC invasion and survival. Current treatment for EOC involves debulking surgery followed by platinum-taxane combination chemotherapy; however, most patients will relapse with a chemoresistant disease with tumors developed within the peritoneum. Therefore, understanding the role of the unique microenvironments that promote EOC transcoelomic dissemination is important in improving patient outcomes from this disease. In this review article, we address the process of ovarian cancer cellular fate at the site of its origin in the secretory cells of the fallopian tube or in the ovarian surface epithelial cells, their detachment process, how the cells survive in the peritoneal fluid avoiding cell death triggers, and how cancer- associated cells help them in the process. Finally, we report the mechanisms used by the ovarian cancer cells to adhere and migrate through the mesothelial monolayer lining the peritoneum. We also discuss the involvement of the transcoelomic ecosystem on the development of chemoresistance of EOC.
Collapse
Affiliation(s)
- Sabrina J. Ritch
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Carlos M. Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- *Correspondence: Carlos M. Telleria, ; orcid.org/0000-0003-1070-3538
| |
Collapse
|
6
|
Ovulation sources coagulation protease cascade and hepatocyte growth factor to support physiological growth and malignant transformation. Neoplasia 2021; 23:1123-1136. [PMID: 34688971 PMCID: PMC8550993 DOI: 10.1016/j.neo.2021.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/25/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022] Open
Abstract
Ovulatory follicular fluid exerts a long-lasting transformation activity covering throughout the ovulation cycle. The ovulation injury-coagulation proteases-hepatocyte growth factor (HGF) cascade is responsible for the sustained activity. Ovulation sources HGF into the peritoneal cavity, then into the blood circulation. This coagulation-HGF cascade promotes the transformation of fallopian tube epithelial cells and ovarian cancer cells. Physiologically, it promotes the growth of the corpus luteum and injured epithelium after ovulation.
The fallopian tube fimbrial epithelium, which is exposed to the follicular fluid (FF) contents of ovulation, is regarded as the main origin of ovarian high-grade serous carcinoma. Previously, we found that growth factors in FF, such as IGF2, are responsible for the malignant transformation of fallopian tube epithelium. However, ovulation is a monthly transient event, whereas carcinogenesis requires continuous, long-term exposure. Here, we found the transformation activity of FF sustained for more than 30 days after drainage into the peritoneal fluid (PF). Hepatocyte growth factor (HGF), activated through the ovulation injury-tissue factor–thrombin–HGF activator (HGFA)–HGF cleavage cascade confers a sustained transformation activity to fallopian tube epithelium, high-grade serous carcinoma. Physiologically, the high reserve of the coagulation-HGF cascade sources a sustained level of HGF in PF, then to the blood circulation. This HGF axis promotes the growth of the corpus luteum and repair of tissue injury after ovulation.
Collapse
|
7
|
Klotz DM, Link T, Wimberger P, Kuhlmann JD. Prognostic relevance of longitudinal HGF levels in serum of patients with ovarian cancer. Mol Oncol 2021; 15:3626-3638. [PMID: 33738970 PMCID: PMC8637578 DOI: 10.1002/1878-0261.12949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/03/2021] [Accepted: 03/16/2021] [Indexed: 11/10/2022] Open
Abstract
The pleiotropic protein hepatocyte growth factor (HGF) is the only known ligand of the tyrosine kinase mesenchymal–epithelial transition (cMET) receptor. The HGF/cMET pathway mediates invasion and migration of ovarian cancer cells, and upregulation of HGF/cMET pathway components has been associated with poor prognosis. This study investigated the clinical relevance of circulating HGF in serum of patients with ovarian cancer. Serum HGF (sHGF) was determined by enzyme‐linked immunosorbent assay in a total of 471 serum samples from 82 healthy controls and 113 patients with ovarian cancer (88.5% with ≥ FIGO III). Patient samples were collected at primary diagnosis and at four follow‐up time points throughout treatment and at disease recurrence. Patients with ovarian cancer showed elevated median sHGF levels at primary diagnosis, and sHGF levels transiently increased after surgery and normalized in the course of chemotherapy, even dropping below initial baseline. Higher levels of sHGF were an independent predictor for shorter overall survival (OS) (a) at primary diagnosis (HR = 0.41, 95% CI: 0.22–0.78, P = 0.006), (b) at longitudinal follow‐up time points (after surgery and before/during/after chemotherapy), (c) along the patients’ individual dynamics (HR = 0.21, 95% CI: 0.07–0.63, P = 0.005), and (d) among a subgroup analysis of patients with BRCA1/2 wild‐type ovarian cancer. This is the first study proposing sHGF as an independent prognostic biomarker for ovarian cancer at primary diagnosis and in the course of platinum‐based chemotherapy, irrespective of the postoperative residual disease after surgical debulking. sHGF could be implemented into clinical diagnostics as a CA125 auxiliary tumor marker for individualized prognosis stratification and sHGF‐guided therapy monitoring.
Collapse
Affiliation(s)
- Daniel Martin Klotz
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,Dresden and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Theresa Link
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,Dresden and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,Dresden and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,Dresden and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
8
|
Zarei B, Javidan Z, Fatemi E, Rahimi Jamnani F, Khatami S, Khalaj V. Targeting c-Met on gastric cancer cells through a fully human fab antibody isolated from a large naive phage antibody library. Daru 2020; 28:221-235. [PMID: 32193747 PMCID: PMC7238820 DOI: 10.1007/s40199-020-00334-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/14/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The aberrant Hepatocyte growth factor (HGF)/ mesenchymal-epithelial transition factor (c-Met) signaling pathway in various malignancies and its correlation with tumor invasion and poor prognosis has validated c-Met as a compelling therapeutic target. Up to now, several monoclonal antibodies and small molecule inhibitors targeting c-Met have been introduced with different outcomes, none are yet clinically approved. Toward the generation of novel fully human anti-c-Met molecules, we generated a large naïve Fab antibody library using phage display technology, which subsequently screened for novel Fabs against c-Met. METHODS A phage library, with a functional size of 5.5 × 1010 individual antibody clones, was prepared using standard protocols and screened for c-Met-specific Fabs by successive rounds of panning. A panel of Fabs targeting c-Met were isolated, from which four clones were selected and further characterized by DNA sequencing. The c-Met binding ability of our selected Fabs was evaluated by c-Met ELISA assay and flow cytometry techniques. RESULTS Among the confirmed anti-c-Met Fabs, clone C16, showed the highest affinity (Kaff: 0.3 × 109 M-1), and 63% binding to MKN45 cells (a human gastric adenocarcinoma cell-line) as compared to c-Met negative T47D cell-line (9.03%). CONCLUSION Together, our study presents a single-pot antibody library, as a valuable source for finding a range of antigen-specific Fab antibodies, and also, a fully human, high affinity and specific anti c-Met Fab antibody, C16, which has the potential of developing as a therapeutic or chemotherapeutic delivery agent for killing c-Met-positive tumor cells.
Collapse
Affiliation(s)
- Bahareh Zarei
- Medical Biotechnology Department, Biotechnology
Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Javidan
- Medical Biotechnology Department, Biotechnology
Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Elnaz Fatemi
- Medical Biotechnology Department, Biotechnology
Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Rahimi Jamnani
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research,
Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Khatami
- Biochemistry Department, Pasteur Institute of Iran, Tehran, Iran
| | - Vahid Khalaj
- Medical Biotechnology Department, Biotechnology
Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Sa JK, Kim SH, Lee JK, Cho HJ, Shin YJ, Shin H, Koo H, Kim D, Lee M, Kang W, Hong SH, Kim JY, Park YW, Song SW, Lee SJ, Joo KM, Nam DH. Identification of genomic and molecular traits that present therapeutic vulnerability to HGF-targeted therapy in glioblastoma. Neuro Oncol 2020; 21:222-233. [PMID: 29939324 DOI: 10.1093/neuonc/noy105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cancer is a complex disease with profound genomic alterations and extensive heterogeneity. Recent studies on large-scale genomics have shed light on the impact of core oncogenic pathways, which are frequently dysregulated in a wide spectrum of cancer types. Aberrant activation of the hepatocyte growth factor (HGF) signaling axis has been associated with promoting various oncogenic programs during tumor initiation, progression, and treatment resistance. As a result, HGF-targeted therapy has emerged as an attractive therapeutic approach. However, recent clinical trials involving HGF-targeted therapies have demonstrated rather disappointing results. Thus, an alternative, in-depth assessment of new patient stratification is necessary to shift the current clinical course. METHODS To address such challenges, we have evaluated the therapeutic efficacy of YYB-101, an HGF-neutralizing antibody, in a series of primary glioblastoma stem cells (GSCs) both in vitro and in vivo. Furthermore, we performed genome and transcriptome analysis to determine genetic and molecular traits that exhibit therapeutic susceptibility to HGF-mediated therapy. RESULTS We have identified several differentially expressed genes, including MET, KDR, and SOX3, which are associated with tumor invasiveness, malignancy, and unfavorable prognosis in glioblastoma patients. We also demonstrated the HGF-MET signaling axis as a key molecular determinant in GSC invasion, and we discovered that a significant association in HGF expression existed between mesenchymal phenotype and immune cell recruitment. CONCLUSIONS Upregulation of MET and mesenchymal cellular state are essential in generating HGF-mediated therapeutic responses. Our results provide an important framework for evaluating HGF-targeted therapy in future clinical settings.
Collapse
Affiliation(s)
- Jason K Sa
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Sung Heon Kim
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin-Ku Lee
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Hee Jin Cho
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Yong Jae Shin
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyemi Shin
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Harim Koo
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Donggeon Kim
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Mijeong Lee
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Wonyoung Kang
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Sung Hee Hong
- Hanmi Pharmaceutical Co. Ltd., Songpa-Gu, Seoul, Republic of Korea.,National OncoVenture, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jung Yong Kim
- National OncoVenture, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Young-Whan Park
- National OncoVenture, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Seong-Won Song
- Yooyoung Pharmaceutical Co. Ltd., Guro-gu, Seoul, Republic of Korea
| | - Song-Jae Lee
- Yooyoung Pharmaceutical Co. Ltd., Guro-gu, Seoul, Republic of Korea
| | - Kyeung Min Joo
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea.,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Maenhoudt N, Defraye C, Boretto M, Jan Z, Heremans R, Boeckx B, Hermans F, Arijs I, Cox B, Van Nieuwenhuysen E, Vergote I, Van Rompuy AS, Lambrechts D, Timmerman D, Vankelecom H. Developing Organoids from Ovarian Cancer as Experimental and Preclinical Models. Stem Cell Reports 2020; 14:717-729. [PMID: 32243841 PMCID: PMC7160357 DOI: 10.1016/j.stemcr.2020.03.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer (OC) represents the most dismal gynecological cancer. Pathobiology is poorly understood, mainly due to lack of appropriate study models. Organoids, defined as self-developing three-dimensional in vitro reconstructions of tissues, provide powerful tools to model human diseases. Here, we established organoid cultures from patient-derived OC, in particular from the most prevalent high-grade serous OC (HGSOC). Testing multiple culture medium components identified neuregulin-1 (NRG1) as key factor in maximizing OC organoid development and growth, although overall derivation efficiency remained moderate (36% for HGSOC patients, 44% for all patients together). Established organoid lines showed patient tumor-dependent morphology and disease characteristics, and recapitulated the parent tumor's marker expression and mutational landscape. Moreover, the organoids displayed tumor-specific sensitivity to clinical HGSOC chemotherapeutic drugs. Patient-derived OC organoids provide powerful tools for the study of the cancer's pathobiology (such as importance of the NRG1/ERBB pathway) as well as advanced preclinical tools for (personalized) drug screening and discovery. Organoids are established from ovarian cancer (OC) Neuregulin-1 (NRG1) is identified as key component for OC organoid growth OC organoids capture disease hallmarks and recapitulate patient tumor characteristics OC organoids are amenable to drug screening and mechanistic (NRG1/ERBB) research
Collapse
Affiliation(s)
- Nina Maenhoudt
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Charlotte Defraye
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Matteo Boretto
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Ziga Jan
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium; Cluster Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; Cancer Centre Carinthia, 9020 Klagenfurt, Austria
| | - Ruben Heremans
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium; Cluster Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; Gynecology and Obstetrics, University Hospitals Leuven (UZ Leuven), 3000 Leuven, Belgium
| | - Bram Boeckx
- Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Florian Hermans
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium; Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Ingrid Arijs
- Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Benoit Cox
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Els Van Nieuwenhuysen
- Cluster Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; Gynecology and Obstetrics, University Hospitals Leuven (UZ Leuven), 3000 Leuven, Belgium
| | - Ignace Vergote
- Cluster Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; Gynecology and Obstetrics, University Hospitals Leuven (UZ Leuven), 3000 Leuven, Belgium
| | - Anne-Sophie Van Rompuy
- Translational Cell & Tissue Research, Department of Imaging & Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Diether Lambrechts
- Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Dirk Timmerman
- Cluster Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; Gynecology and Obstetrics, University Hospitals Leuven (UZ Leuven), 3000 Leuven, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium.
| |
Collapse
|
11
|
Finkernagel F, Reinartz S, Schuldner M, Malz A, Jansen JM, Wagner U, Worzfeld T, Graumann J, von Strandmann EP, Müller R. Dual-platform affinity proteomics identifies links between the recurrence of ovarian carcinoma and proteins released into the tumor microenvironment. Am J Cancer Res 2019; 9:6601-6617. [PMID: 31588238 PMCID: PMC6771240 DOI: 10.7150/thno.37549] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/27/2019] [Indexed: 01/10/2023] Open
Abstract
The peritoneal fluid (ascites), replete with abundant tumor-promoting factors and extracellular vesicles (EVs) reflecting the tumor secretome, plays an essential role in ovarian high-grade serous carcinoma (HGSC) metastasis and immune suppression. A comprehensive picture of mediators impacting HGSC progression is, however, not available. Methods: Proteins in ascites from HGSC patients were quantified by the aptamer-based SOMAscan affinity proteomic platform. SOMAscan data were analyzed by bioinformatic methods to reveal clinically relevant links and functional connections, and were validated using the antibody-based proximity extension assay (PEA) Olink platform. Mass spectrometry was used to identify proteins in extracellular microvesicles released by HGSC cells. Results: Consistent with the clinical features of HGSC, 779 proteins in ascites identified by SOMAscan clustered into groups associated either with metastasis and a short relapse-free survival (RFS), or with immune regulation and a favorable RFS. In total, 346 proteins were linked to OC recurrence in either direction. Reanalysis of 214 of these proteins by PEA revealed an excellent median Spearman inter-platform correlation of ρ=0.82 for the 46 positively RFS-associated proteins in both datasets. Intriguingly, many proteins strongly associated with clinical outcome were constituents of extracellular vesicles. These include proteins either linked to a poor RFS, such as HSPA1A, BCAM and DKK1, or associated with a favorable outcome, such as the protein kinase LCK. Finally, based on these data we defined two protein signatures that clearly classify short-term and long-term relapse-free survivors. Conclusion: The ascites secretome points to metastasis-promoting events and an anti-tumor response as the major determinants of the clinical outcome of HGSC. Relevant proteins include both bone fide secreted and vesicle-encapsulated polypeptides, many of which have previously not been linked to HGSC recurrence. Besides a deeper understanding of the HGSC microenvironment our data provide novel potential tools for HGSC patient stratification. Furthermore, the first large-scale inter-platform validation of SOMAscan and PEA will be invaluable for other studies using these affinity proteomics platforms.
Collapse
|
12
|
An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat Med 2019; 25:838-849. [PMID: 31011202 DOI: 10.1038/s41591-019-0422-6] [Citation(s) in RCA: 478] [Impact Index Per Article: 95.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/12/2019] [Indexed: 12/20/2022]
Abstract
Ovarian cancer (OC) is a heterogeneous disease usually diagnosed at a late stage. Experimental in vitro models that faithfully capture the hallmarks and tumor heterogeneity of OC are limited and hard to establish. We present a protocol that enables efficient derivation and long-term expansion of OC organoids. Utilizing this protocol, we have established 56 organoid lines from 32 patients, representing all main subtypes of OC. OC organoids recapitulate histological and genomic features of the pertinent lesion from which they were derived, illustrating intra- and interpatient heterogeneity, and can be genetically modified. We show that OC organoids can be used for drug-screening assays and capture different tumor subtype responses to the gold standard platinum-based chemotherapy, including acquisition of chemoresistance in recurrent disease. Finally, OC organoids can be xenografted, enabling in vivo drug-sensitivity assays. Taken together, this demonstrates their potential application for research and personalized medicine.
Collapse
|
13
|
Tsuji T, Sakamori Y, Ozasa H, Yagi Y, Ajimizu H, Yasuda Y, Funazo T, Nomizo T, Yoshida H, Nagai H, Maeno K, Oguri T, Hirai T, Kim YH. Clinical impact of high serum hepatocyte growth factor in advanced non-small cell lung cancer. Oncotarget 2017; 8:71805-71816. [PMID: 29069748 PMCID: PMC5641091 DOI: 10.18632/oncotarget.17895] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/29/2017] [Indexed: 12/17/2022] Open
Abstract
Activation of c-MET through hepatocyte growth factor (HGF) increases tumorigenesis, induces resistance, and is associated with poor prognosis in various solid tumors. However, the clinical value of serum HGF (sHGF) in patients with advanced non-small cell lung cancer (NSCLC), especially those receiving cytotoxic chemotherapy, remains unknown. Here, we show that sHGF may be useful to predict tumor response and progression-free survival (PFS) in patients with advanced NSCLC. A total of 81 patients with NSCLC were investigated. sHGF levels were evaluated using ELISA at 4 time-points: at pre-treatment, at response-evaluation (1-2 months after treatment initiation), at the best tumor response, and at disease progression. As a control biomarker, CEA was also evaluated in lung adenocarcinoma. Positive-sHGF at response-evaluation predicted poor PFS compared with Negative-sHGF in both first-line (median, 153.5 vs. 288.0; P < 0.05) and second-line treatment (87.0 vs. 219.5; P = 0.01). In 55 patients that received cytotoxic chemotherapy, multiple Cox proportional hazards models showed significant independent associations between poor PFS and Positive-sHGF at response-evaluation (hazard ratio, 4.24; 95% CI, 2.05 to 9.46; P < 0.01). Lung adenocarcinoma subgroup analysis showed that in patients receiving second cytotoxic chemotherapy, there were no significant differences in PFS between patients with low-CEA compared with those with high-CEA, but Positive-sHGF at pre-treatment or at response-evaluation predicted poor PFS (35.0 vs. 132.0; P < 0.01, 50.0 vs. 215.0; P < 0.01, respectively). These findings give a rationale for future research investigating the merit of sHGF as a potential clinical biomarker to evaluate HGF/c-MET activity, which would be useful to indicate administration of c-MET inhibitors.
Collapse
Affiliation(s)
- Takahiro Tsuji
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuichi Sakamori
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroaki Ozasa
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshitaka Yagi
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hitomi Ajimizu
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuto Yasuda
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoko Funazo
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Nomizo
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hironori Yoshida
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroki Nagai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ken Maeno
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsuya Oguri
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Young Hak Kim
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
14
|
Moran-Jones K. The Therapeutic Potential of Targeting the HGF/cMET Axis in Ovarian Cancer. Mol Diagn Ther 2017; 20:199-212. [PMID: 27139908 DOI: 10.1007/s40291-016-0201-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Survival rates for ovarian cancer have remained relatively stable for the past 2 decades despite advances in surgical techniques and cytotoxic chemotherapeutics, indicating a requirement for better therapies. One pathway currently proposed for targeting is the HGF/cMET pathway. Upregulated in a number of tumour types, cMET is a tyrosine kinase receptor expressed on epithelial cells. In ovarian cancer, it has been identified as highly expressed in the four major subtypes, with expression estimates ranging from 11 to 68 % of cases. HGF, the only known ligand for cMET, is found at high levels in both serum and ascites in women with ovarian cancer, and is proposed to induce both migration and metastasis. However, clinically validated biomarkers are not yet available for either HGF or cMET, preventing a clear understanding of the true rate of overexpression, or its correlation with prognosis. Despite this, a number of agents against HGF and cMET are currently being investigated in clinical trials for multiple tumour types, including ovarian. However, a lack of patient selection, biomarker usage, and post hoc analysis correlating response with expression has resulted in the majority of these trials showing little beneficial effect from these agents, indicating that additional research is required to determine their usefulness in patients with ovarian cancer.
Collapse
Affiliation(s)
- Kim Moran-Jones
- Wolfson Wohl Cancer Research Centre, University of Glasgow, Switchback Rd, Glasgow, G61 1QH, UK. .,The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 370 Victoria St, Sydney, NSW, 2010, Australia.
| |
Collapse
|
15
|
Matsumoto K, Umitsu M, De Silva DM, Roy A, Bottaro DP. Hepatocyte growth factor/MET in cancer progression and biomarker discovery. Cancer Sci 2017; 108:296-307. [PMID: 28064454 PMCID: PMC5378267 DOI: 10.1111/cas.13156] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/26/2016] [Accepted: 01/03/2017] [Indexed: 02/06/2023] Open
Abstract
Signaling driven by hepatocyte growth factor (HGF) and MET receptor facilitates conspicuous biological responses such as epithelial cell migration, 3‐D morphogenesis, and survival. The dynamic migration and promotion of cell survival induced by MET activation are bases for invasion–metastasis and resistance, respectively, against targeted drugs in cancers. Recent studies indicated that MET in tumor‐derived exosomes facilitates metastatic niche formation and metastasis in malignant melanoma. In lung cancer, gene amplification‐induced MET activation and ligand‐dependent MET activation in an autocrine/paracrine manner are causes for resistance to epidermal growth factor receptor tyrosine kinase inhibitors and anaplastic lymphoma kinase inhibitors. Hepatocyte growth factor secreted in the tumor microenvironment contributes to the innate and acquired resistance to RAF inhibitors. Changes in serum/plasma HGF, soluble MET (sMET), and phospho‐MET have been confirmed to be associated with disease progression, metastasis, therapy response, and survival. Higher serum/plasma HGF levels are associated with therapy resistance and/or metastasis, while lower HGF levels are associated with progression‐free survival and overall survival after treatment with targeted drugs in lung cancer, gastric cancer, colon cancer, and malignant melanoma. Urinary sMET levels in patients with bladder cancer are higher than those in patients without bladder cancer and associated with disease progression. Some of the multi‐kinase inhibitors that target MET have received regulatory approval, whereas none of the selective HGF‐MET inhibitors have shown efficacy in phase III clinical trials. Validation of the HGF‐MET pathway as a critical driver in cancer development/progression and utilization of appropriate biomarkers are key to development and approval of HGF‐MET inhibitors for clinical use.
Collapse
Affiliation(s)
- Kunio Matsumoto
- Division of Tumor Dynamics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masataka Umitsu
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Dinuka M De Silva
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Arpita Roy
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Donald P Bottaro
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Kim H, Hong SH, Kim JY, Kim IC, Park YW, Lee SJ, Song SW, Kim JJ, Park G, Kim TM, Kim YH, Park JB, Chung J, Kim IH. Preclinical development of a humanized neutralizing antibody targeting HGF. Exp Mol Med 2017; 49:e309. [PMID: 28336956 PMCID: PMC5382562 DOI: 10.1038/emm.2017.21] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/23/2016] [Indexed: 12/17/2022] Open
Abstract
Hepatocyte growth factor (HGF) and its receptor, cMET, play critical roles in cell proliferation, angiogenesis and invasion in a wide variety of cancers. We therefore examined the anti-tumor activity of the humanized monoclonal anti-HGF antibody, YYB-101, in nude mice bearing human glioblastoma xenografts as a single agent or in combination with temozolomide. HGF neutralization, The extracellular signal-related kinases 1 and 2 (ERK1/2) phosphorylation, and HGF-induced scattering were assessed in HGF-expressing cell lines treated with YYB-101. To support clinical development, we also evaluated the preclinical pharmacokinetics and toxicokinetics in cynomolgus monkeys, and human and cynomolgus monkey tissue was stained with YYB-101 to test tissue cross-reactivity. We found that YYB-101 inhibited cMET activation in vitro and suppressed tumor growth in the orthotopic mouse model of human glioblastoma. Combination treatment with YYB-101 and temozolomide decreased tumor growth and increased overall survival compared with the effects of either agent alone. Five cancer-related genes (TMEM119, FST, RSPO3, ROS1 and NBL1) were overexpressed in YYB-101-treated mice that showed tumor regrowth. In the tissue cross-reactivity assay, critical cross-reactivity was not observed. The terminal elimination half-life was 21.7 days. Taken together, the in vitro and in vivo data demonstrated the anti-tumor efficacy of YYB-101, which appeared to be mediated by blocking the HGF/cMET interaction. The preclinical pharmacokinetics, toxicokinetics and tissue cross-reactivity data support the clinical development of YYB-101 for advanced cancer.
Collapse
Affiliation(s)
- Hyori Kim
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
| | - Sung Hee Hong
- National OncoVenture, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jung Yong Kim
- National OncoVenture, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - In-Chull Kim
- National OncoVenture, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Young-Whan Park
- National OncoVenture, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Song-Jae Lee
- Yooyoung Central Research Institute, Yooyoung Pharmaceutical Co. Ltd., Guro-gu, Seoul, Republic of Korea
| | - Seong-Won Song
- Yooyoung Central Research Institute, Yooyoung Pharmaceutical Co. Ltd., Guro-gu, Seoul, Republic of Korea
| | - Jung Ju Kim
- Yooyoung Central Research Institute, Yooyoung Pharmaceutical Co. Ltd., Guro-gu, Seoul, Republic of Korea
| | - Gunwoo Park
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Jongno-gu, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
| | - Yun-Hee Kim
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea.,Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jong Bae Park
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Junho Chung
- Cancer Research Institute, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
| | - In-Hoo Kim
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
17
|
Diagnostic Value of Serum Angiogenesis Markers in Ovarian Cancer Using Multiplex Immunoassay. Int J Mol Sci 2017; 18:ijms18010123. [PMID: 28075407 PMCID: PMC5297757 DOI: 10.3390/ijms18010123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/14/2016] [Accepted: 12/20/2016] [Indexed: 12/14/2022] Open
Abstract
As cancer development involves pathological vessel formation, 16 angiogenesis markers were evaluated as potential ovarian cancer (OC) biomarkers. Blood samples collected from 172 patients were divided based on histopathological result: OC (n = 38), borderline ovarian tumours (n = 6), non-malignant ovarian tumours (n = 62), healthy controls (n = 50) and 16 patients were excluded. Sixteen angiogenesis markers were measured using BioPlex Pro Human Cancer Biomarker Panel 1 immunoassay. Additionally, concentrations of cancer antigen 125 (CA125) and human epididymis protein 4 (HE4) were measured in patients with adnexal masses using electrochemiluminescence immunoassay. In the comparison between OC vs. non-OC, osteopontin achieved the highest area under the curve (AUC) of 0.79 (sensitivity 69%, specificity 78%). Multimarker models based on four to six markers (basic fibroblast growth factor-FGF-basic, follistatin, hepatocyte growth factor-HGF, osteopontin, platelet-derived growth factor AB/BB-PDGF-AB/BB, leptin) demonstrated higher discriminatory ability (AUC 0.80-0.81) than a single marker (AUC 0.79). When comparing OC with benign ovarian tumours, six markers had statistically different expression (osteopontin, leptin, follistatin, PDGF-AB/BB, HGF, FGF-basic). Osteopontin was the best single angiogenesis marker (AUC 0.825, sensitivity 72%, specificity 82%). A three-marker panel consisting of osteopontin, CA125 and HE4 better discriminated the groups (AUC 0.958) than HE4 or CA125 alone (AUC 0.941 and 0.932, respectively). Osteopontin should be further investigated as a potential biomarker in OC screening and differential diagnosis of ovarian tumours. Adding osteopontin to a panel of already used biomarkers (CA125 and HE4) significantly improves differential diagnosis between malignant and benign ovarian tumours.
Collapse
|
18
|
Torchiaro E, Lorenzato A, Olivero M, Valdembri D, Gagliardi PA, Gai M, Erriquez J, Serini G, Di Renzo MF. Peritoneal and hematogenous metastases of ovarian cancer cells are both controlled by the p90RSK through a self-reinforcing cell autonomous mechanism. Oncotarget 2016; 7:712-28. [PMID: 26625210 PMCID: PMC4808028 DOI: 10.18632/oncotarget.6412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/15/2015] [Indexed: 12/13/2022] Open
Abstract
The molecular mechanisms orchestrating peritoneal and hematogenous metastases of ovarian cancer cells are assumed to be distinct. We studied the p90RSK family of serine/threonine kinases that lie downstream the RAS-ERK/MAPK pathway and modulate a variety of cellular processes including cell proliferation, survival, motility and invasiveness. We found the RSK1 and RSK2 isoforms expressed in a number of human ovarian cancer cell lines, where they played redundant roles in sustaining in vitro motility and invasiveness. In vivo, silencing of both RSK1 and RSK2 almost abrogated short-term and long-term metastatic engraftment of ovarian cancer cells in the peritoneum. In addition, RSK1/RSK2 silenced cells failed to colonize the lungs after intravenous injection and to form hematogenous metastasis from subcutaneous xenografts. RSK1/RSK2 suppression resulted in lessened ovarian cancer cell spreading on endogenous fibronectin (FN). Mechanistically, RSK1/RSK2 knockdown diminished FN transcription, α5β1 integrin activation and TGF-β1 translation. Reduced endogenous FN deposition and TGF-β1 secretion depended on the lack of activating phosphorylation of the transcription/translation factor YB-1 by p90RSK. Altogether data show how p90RSK activates a self-reinforcing cell autonomous pro-adhesive circuit necessary for metastatic seeding of ovarian cancer cells. Thus, p90RSK inhibitors might hinder both the hematogenous and the peritoneal metastatic spread of human ovarian cancer.
Collapse
Affiliation(s)
- Erica Torchiaro
- Department of Oncology, University of Torino School of Medicine, Turin, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| | - Annalisa Lorenzato
- Department of Oncology, University of Torino School of Medicine, Turin, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| | - Martina Olivero
- Department of Oncology, University of Torino School of Medicine, Turin, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| | - Donatella Valdembri
- Department of Oncology, University of Torino School of Medicine, Turin, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| | - Paolo Armando Gagliardi
- Department of Oncology, University of Torino School of Medicine, Turin, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| | - Marta Gai
- Department of Molecular Biotechnologies and Health Sciences, University of Turin at the Molecular Biotechnology Center, Torino, Italy
| | - Jessica Erriquez
- Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| | - Guido Serini
- Department of Oncology, University of Torino School of Medicine, Turin, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| | - Maria Flavia Di Renzo
- Department of Oncology, University of Torino School of Medicine, Turin, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| |
Collapse
|
19
|
Ferraresi A, Phadngam S, Morani F, Galetto A, Alabiso O, Chiorino G, Isidoro C. Resveratrol inhibits IL-6-induced ovarian cancer cell migration through epigenetic up-regulation of autophagy. Mol Carcinog 2016; 56:1164-1181. [PMID: 27787915 DOI: 10.1002/mc.22582] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/19/2016] [Accepted: 10/24/2016] [Indexed: 12/16/2022]
Abstract
Interleukin-6 (IL-6), a pro-inflammatory cytokine released by cancer-associated fibroblasts, has been linked to the invasive and metastatic behavior of ovarian cancer cells. Resveratrol is a naturally occurring polyphenol with the potential to inhibit cancer cell migration. Here we show that Resveratrol and IL-6 affect in an opposite manner the expression of RNA messengers and of microRNAs involved in cell locomotion and extracellular matrix remodeling associated with the invasive properties of ovarian cancer cells. Among the several potential candidates responsible for the anti-invasive effect promoted by Resveratrol, here we focused our attention on ARH-I (DIRAS3), that encodes a Ras homolog GTPase of 26-kDa. This protein is known to inhibit cell motility, and it has been shown to regulate autophagy by interacting with BECLIN 1. IL-6 down-regulated the expression of ARH-I and inhibited the formation of LC3-positive autophagic vacuoles, while promoting cell migration. On opposite, Resveratrol could counteract the IL-6 induction of cell migration in ovarian cancer cells through induction of autophagy in the cells at the migration front, which was paralleled by up-regulation of ARH-I and down-regulation of STAT3 expression. Spautin 1-mediated disruption of BECLIN 1-dependent autophagy abrogated the effects of Resveratrol, while promoting cell migration. The present data indicate that Resveratrol elicits its anti-tumor effect through epigenetic mechanisms and support its inclusion in the chemotherapy regimen for highly aggressive ovarian cancers. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alessandra Ferraresi
- Laboratory of Molecular Pathology and Nanobioimaging, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Suratchanee Phadngam
- Laboratory of Molecular Pathology and Nanobioimaging, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Federica Morani
- Laboratory of Molecular Pathology and Nanobioimaging, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Alessandra Galetto
- Unit of Oncology, Department of Translational Medicine, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Oscar Alabiso
- Unit of Oncology, Department of Translational Medicine, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and Nanobioimaging, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| |
Collapse
|
20
|
Otabe O, Kikuchi K, Tsuchiya K, Katsumi Y, Yagyu S, Miyachi M, Iehara T, Hosoi H. MET/ERK2 pathway regulates the motility of human alveolar rhabdomyosarcoma cells. Oncol Rep 2016; 37:98-104. [PMID: 27840956 DOI: 10.3892/or.2016.5213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/15/2016] [Indexed: 11/05/2022] Open
Abstract
In alveolar rhabdomyosarcoma (ARMS) that is a highly malignant pediatric soft tissue tumor, MET, a receptor of hepatocyte growth factor (HGF), was reported to be downstream of the PAX3-FOXO1 fusion gene specific to ARMS, and a key mediator of metastatic behavior in RMS. So far, no studies have investigated the downstream signaling pathways of MET in ARMS, even though HGF and MET have been suggested to be deeply involved in the invasiveness of ARMS. In this study, we demonstrated the functions of MET signaling in ARMS in vitro by using three human ARMS cell lines and three human embryonal rhabdomyosarcoma (ERMS) cell lines. MET mRNA levels and MET protein expression in ARMS cell lines was higher than those in ERMS cell lines as detected by real-time quantitative PCR and western blotting, respectively. Based on cell growth and cell cycle analyses it was found that HGF stimulation did not enhance the proliferation of ERMS or ARMS cell lines. HGF-stimulated cell motility of ARMS cell lines was inhibited by U0126 (ERK1/2 inhibitor) but was only partially inhibited by PD98059 (ERK1 inhibitor) or rapamycin (mTOR inhibitor) as observed in wound-healing and migration assays. Western blotting revealed that ERK1/2 was dephosphorylated by U0126 to a higher extent than by PD98059 in the ARMS cells. HGF-stimulated cell motility of Rh30 cell line was inhibited not by ERK1 siRNA, but by ERK2 siRNA. Our data thus suggest that HGF/MET signaling promotes motility of ARMS cells mainly through ERK2 signaling. A specific inhibitor of ERK2 phosphorylation could therefore be a specific anticancer agent against invasiveness and metastasis in ARMS.
Collapse
Affiliation(s)
- Osamu Otabe
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Ken Kikuchi
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kunihiko Tsuchiya
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yoshiki Katsumi
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shigeki Yagyu
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Mitsuru Miyachi
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
21
|
Kwon Y, Godwin AK. Regulation of HGF and c-MET Interaction in Normal Ovary and Ovarian Cancer. Reprod Sci 2016; 24:494-501. [PMID: 27170665 DOI: 10.1177/1933719116648212] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Binding of hepatocyte growth factor (HGF) to the c-MET receptor has mitogenic, motogenic, and morphogenic effects on cells. The versatile biological effects of HGF and c-MET interactions make them important contributors to the development of malignant tumors. We and others have demonstrated a therapeutic value in targeting the interaction of c-MET and HGF in epithelial ovarian cancer (EOC). However, both HGF and c-MET are expressed in the normal ovary as well. Therefore, it is important to understand the differences in mechanisms that control HGF signaling activation and its functional role in the normal ovary and EOC. In the normal ovary, HGF signaling may be under hormonal regulation. During ovulation, HGF-converting proteases are secreted and the subsequent activation of HGF signaling enhances the proliferation of ovarian surface epithelium in order to replenish the area damaged due to expulsion of the ovum. In contrast, EOC cells that exhibit epithelial characteristics constitutively express both c-MET and HGF-converting proteases such as urokinase-type plasminogen activator. In EOC, mechanisms to control the activation of HGF signaling are absent since HGF is provided locally from the tissue microenvironment as well as remotely throughout the body. Potential incessant HGF signaling in EOC may lead to an increase in proliferation, invasion through the stroma, and migration to other tissues of cancer cells. Therefore, targeting the interaction of c-MET and HGF would be beneficial in treating EOC.
Collapse
Affiliation(s)
- Youngjoo Kwon
- 1 Department of Food Science and Engineering, Ewha Womans University, Seoul, Korea
| | - Andrew K Godwin
- 2 Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,3 University of Kansas Cancer Center, Kansas City, KS, USA
| |
Collapse
|
22
|
Bourgeois DL, Kabarowski KA, Porubsky VL, Kreeger PK. High-grade serous ovarian cancer cell lines exhibit heterogeneous responses to growth factor stimulation. Cancer Cell Int 2015; 15:112. [PMID: 26648788 PMCID: PMC4672525 DOI: 10.1186/s12935-015-0263-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/26/2015] [Indexed: 02/04/2023] Open
Abstract
Background The factors driving the onset and progression of ovarian cancer are not well understood. Recent reports have identified cell lines that are representative of the genomic pattern of high-grade serous ovarian cancer (HGSOC), in which greater than 90 % of tumors have a mutation in TP53. However, many of these representative cell lines have not been widely used so it is unclear if these cell lines capture the variability that is characteristic of the disease. Methods We investigated six TP53-mutant HGSOC cell lines (Caov3, Caov4, OV90, OVCA432, OVCAR3, and OVCAR4) for migration, MMP2 expression, proliferation, and VEGF secretion, behaviors that play critical roles in tumor progression. In addition to comparing baseline variation between the cell lines, we determined how these behaviors changed in response to four growth factors implicated in ovarian cancer progression: HB-EGF, NRG1β, IGF1, and HGF. Results Baseline levels of each behavior varied across the cell lines and this variation was comparable to that seen in tumors. All four growth factors impacted cell proliferation or VEGF secretion, and HB-EGF, NRG1β, and HGF impacted wound closure or MMP2 expression in at least two cell lines. Growth factor-induced responses demonstrated substantial heterogeneity, with cell lines sensitive to all four growth factors, a subset of the growth factors, or none of the growth factors, depending on the response of interest. Principal component analysis demonstrated that the data clustered together based on cell line rather than growth factor identity, suggesting that response is dependent on intrinsic qualities of the tumor cell rather than the growth factor. Conclusions Significant variation was seen among the cell lines, consistent with the heterogeneity of HGSOC. Electronic supplementary material The online version of this article (doi:10.1186/s12935-015-0263-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Danielle L Bourgeois
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705 USA
| | - Karl A Kabarowski
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705 USA
| | - Veronica L Porubsky
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705 USA
| | - Pamela K Kreeger
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705 USA
| |
Collapse
|
23
|
Koh YW, Hur H, Lee D. Increased MACC1 expression indicates a poor prognosis independent of MET expression in gastric adenocarcinoma. Pathol Res Pract 2015; 212:93-100. [PMID: 26719224 DOI: 10.1016/j.prp.2015.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/03/2015] [Accepted: 11/27/2015] [Indexed: 01/24/2023]
Abstract
Metastasis-associated in colon cancer-1 (MACC1), a newly identified oncogene, promotes tumor proliferation and invasion via the MET pathway. The purpose of this study is to determine the clinical significance of MACC1 and MET expression in the long-term survival and recurrence in a large cohort of gastric carcinoma patients following curative resection. We evaluated the prognostic value of MACC1 and MET expression using immunohistochemistry in 331 gastric adenocarcinoma patients. MACC1-positive patients had lower overall survival (OS) or event-free survival (EFS) rates than MACC1-negative patients (P=0.039 and P=0.044, respectively), while MET positivity itself was not associated with either OS or EFS. Multivariate analysis identified the expression level of MACC1 protein as an independent negative prognostic factor for OS or EFS (P=0.021 and P=0.016, respectively). This study suggests that MACC1 is an independent prognostic factor in gastric adenocarcinoma and that the prognostic impact of MACC1 may be associated with MACC1 partners other than MET.
Collapse
Affiliation(s)
- Young Wha Koh
- Department of Pathology, Ajou University School of Medicine, Suwon, South Korea
| | - Hoon Hur
- Department of Surgery, Ajou University School of Medicine, Suwon, South Korea
| | - Dakeun Lee
- Department of Pathology, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
24
|
Moran-Jones K, Brown LM, Samimi G. INC280, an orally available small molecule inhibitor of c-MET, reduces migration and adhesion in ovarian cancer cell models. Sci Rep 2015; 5:11749. [PMID: 26138303 PMCID: PMC5155610 DOI: 10.1038/srep11749] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/04/2015] [Indexed: 12/16/2022] Open
Abstract
5-year survival rates for ovarian cancer are approximately 40%, and for women diagnosed at late stage (the majority), just 27%. This indicates a dire need for new treatments to improve survival rates. Recent molecular characterization has greatly improved our understanding of the disease and allowed the identification of potential new targets. One such pathway of interest is the HGF/c-MET axis. Activation of the HGF/c-MET axis has been demonstrated in certain ovarian tumours, and been found to be associated with decreased overall survival, suggesting its potential as a therapeutic target. The objective of this study was to determine the efficacy of a novel, highly potent, orally-bioavailable c-MET inhibitor, INC280, in blocking cell phenotypes important in ovarian cancer metastasis. Using in vitro and ex vivo models, we demonstrate that INC280 inhibits HGF-induced c-MET, and reduces downstream signalling. HGF-stimulated chemotactic and random migration are decreased by INC280 treatment, to levels seen in non-stimulated cells. Additionally, HGF-induced adhesion of cancer cells to peritoneal tissue is significantly decreased by INC280 treatment. Overall, these data indicate that INC280 inhibits many cell behaviours that promote ovarian cancer metastasis, and merits further investigation as a therapeutic candidate in the treatment of patients with ovarian cancer.
Collapse
Affiliation(s)
- Kim Moran-Jones
- 1] Kinghorn Cancer Centre and Garvan Institute of Medical Research, Darlinghurst, NSW, Australia [2] St. Vincent's Clinical School, Faculty of Medicine, UNSW Australia, NSW, Australia
| | - Laura M Brown
- Kinghorn Cancer Centre and Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Goli Samimi
- 1] Kinghorn Cancer Centre and Garvan Institute of Medical Research, Darlinghurst, NSW, Australia [2] St. Vincent's Clinical School, Faculty of Medicine, UNSW Australia, NSW, Australia
| |
Collapse
|
25
|
Ow GS, Kuznetsov VA. Multiple signatures of a disease in potential biomarker space: Getting the signatures consensus and identification of novel biomarkers. BMC Genomics 2015; 16 Suppl 7:S2. [PMID: 26100469 PMCID: PMC4474413 DOI: 10.1186/1471-2164-16-s7-s2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background The lack of consensus among reported gene signature subsets (GSSs) in multi-gene biomarker discovery studies is often a concern for researchers and clinicians. Subsequently, it discourages larger scale prospective studies, prevents the translation of such knowledge into a practical clinical setting and ultimately hinders the progress of the field of biomarker-based disease classification, prognosis and prediction. Methods We define all "gene identificators" (gIDs) as constituents of the entire potential disease biomarker space. For each gID in a GSS of interest ("tested GSS"/tGSS), our method counts the empirical frequency of gID co-occurrences/overlaps in other reference GSSs (rGSSs) and compares it with the expected frequency generated via implementation of a randomized sampling procedure. Comparison of the empirical frequency distribution (EFD) with the expected background frequency distribution (BFD) allows dichotomization of statistically novel (SN) and common (SC) gIDs within the tGSS. Results We identify SN or SC biomarkers for tGSSs obtained from previous studies of high-grade serous ovarian cancer (HG-SOC) and breast cancer (BC). For each tGSS, the EFD of gID co-occurrences/overlaps with other rGSSs is characterized by scale and context-dependent Pareto-like frequency distribution function. Our results indicate that while independently there is little overlap between our tGSS with individual rGSSs, comparison of the EFD with BFD suggests that beyond a confidence threshold, tested gIDs become more common in rGSSs than expected. This validates the use of our tGSS as individual or combined prognostic factors. Our method identifies SN and SC genes of a 36-gene prognostic signature that stratify HG-SOC patients into subgroups with low, intermediate or high-risk of the disease outcome. Using 70 BC rGSSs, the method also predicted SN and SC BC prognostic genes from the tested obesity and IGF1 pathway GSSs. Conclusions Our method provides a strategy that identify/predict within a tGSS of interest, gID subsets that are either SN or SC when compared to other rGSSs. Practically, our results suggest that there is a stronger association of the IGF1 signature genes with the 70 BC rGSSs, than for the obesity-associated signature. Furthermore, both SC and SN genes, in both signatures could be considered as perspective prognostic biomarkers of BCs that stratify the patients onto low or high risks of cancer development.
Collapse
|
26
|
MET is a predictive factor for late recurrence but not for overall survival of early stage hepatocellular carcinoma. Tumour Biol 2015; 36:4993-5000. [PMID: 25874493 DOI: 10.1007/s13277-015-3150-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/26/2015] [Indexed: 01/09/2023] Open
Abstract
The MET and RON receptors are tyrosine kinases that form a non-covalent complex on the cell surface that functions in several steps of tumor progression. The purpose of this study was to determine the clinical significance of MET and RON expression on long-term survival and recurrence after curative resection in a large cohort of hepatocellular carcinoma (HCC) patients. We performed immunohistochemical analyses on microarrays of the tumors using antibodies against MET and RON. We evaluated the prognostic value of biomarker expression using Cox regression and the Kaplan-Meier method in 490 HCC patients. MET-positive patients had higher overall recurrence rates than MET-negative patients (P = 0.041); however, MET positivity was not associated with overall survival (OS) (P = .249). RON was not associated with overall recurrence rates and OS. MET was independently associated with late but not early phase recurrence. Particularly, the prognostic significance of MET is limited in early stage disease. MET+/RON+ patients had higher overall recurrence rates than those with the other expression patterns (P = 0.071), although the result did not reach statistical significance. Immunohistological activation of MET expression has no prognostic significance for OS in patients with HCC. However, MET positivity was correlated with late recurrence after HCC resection in early stage disease.
Collapse
|
27
|
Zhang Y, Wu JZ, Yang YQ, Ma R, Zhang JY, Feng JF. Expression of growth‑regulated oncogene‑1, hepatocyte growth factor, platelet‑derived growth factor‑AA and soluble E‑selectin and their association with high‑risk human papillomavirus infection in squamous cell carcinoma of the uterine cervix. Mol Med Rep 2014; 10:1013-24. [PMID: 24889672 DOI: 10.3892/mmr.2014.2293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 05/15/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to evaluate the clinical significance and prognostic value of growth‑regulated oncogene‑1 (GRO‑1), hepatocyte growth factor (HGF), platelet‑derived growth factor‑AA (PDGF‑AA), soluble E‑selectin (sE‑selectin) and high‑risk human papillomavirus (HPV; types 16, 18/45, 31 and 33/52/58/67) infection in cervical squamous cell carcinoma (CSCC). A total of 426 cases were enrolled in the present study, of which 292 cases were patients with CSCC, 43 were patients with cervical intraepithelial neoplasia (CIN) and 91 were healthy controls. Luminex xMAP technology was used to detect the serum levels of GRO‑1, HGF, PDGF‑AA and sE‑selectin in all cases and two‑channel fluorescence quantitative polymerase chain reaction was used to determine HPV DNA in cervical scrapings from CSCC and CIN patients. The results demonstrated that the serum levels of GRO‑1, HGF and sE‑selectin were significantly higher in patients with CSCC compared with patients with CIN and the healthy controls (P<0.0001). Compared with the CIN patients, the HPV positive rate in the CSCC patients significantly increased (P=0.013). The four factors were correlated with certain clinicopathological variables of CSCC patients to a certain degree (P<0.05) and the levels of HGF were closely associated with HPV infection (P=0.039). The receiver operating characteristic curves demonstrated that HGF obtained the highest diagnostic value compared with the other three factors. Multivariate Cox regression analysis demonstrated that the serum levels of HGF (P<0.0001), FIGO stage (P<0.0001) and pelvic lymph node metastasis (P=0.001) were independent prognostic factors in patients with CSCC, while high‑risk HPV infection did not show any significance in this analysis. These results demonstrated that HGF may be a useful prognostic biomarker rather than high‑risk HPV types in patients with CSCC.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Chemotherapy, The Affiliated Jiangsu Cancer Hospital, Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jian-Zhong Wu
- Research Center of Clinical Oncology, The Affiliated Jiangsu Cancer Hospital, Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Yong-Qin Yang
- Department of Radiotherapy, The Affiliated Jiangsu Cancer Hospital, Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Rong Ma
- Research Center of Clinical Oncology, The Affiliated Jiangsu Cancer Hospital, Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jun-Ying Zhang
- Department of Oncology, Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China
| | - Ji-Feng Feng
- Department of Chemotherapy, The Affiliated Jiangsu Cancer Hospital, Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
28
|
Du T, Ju G, Wu S, Cheng Z, Cheng J, Zou X, Zhang G, Miao S, Liu G, Zhu Y. Microvesicles derived from human Wharton's jelly mesenchymal stem cells promote human renal cancer cell growth and aggressiveness through induction of hepatocyte growth factor. PLoS One 2014; 9:e96836. [PMID: 24797571 PMCID: PMC4010513 DOI: 10.1371/journal.pone.0096836] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/11/2014] [Indexed: 12/14/2022] Open
Abstract
In our previous study, microvesicles (MVs) released from human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) retard the growth of bladder cancer cells. We would like to know if MVs have a similar effect on human renal cell carcinoma (RCC). By use of cell culture and the BALB/c nu/nu mice xeno-graft model, the influence of MVs upon the growth and aggressiveness of RCC (786-0) was assessed. Cell counting kit-8 (CCK-8) assay, incidence of tumor, tumor size, Ki-67 or TUNEL staining was used to evaluate tumor cell growth in vitro or in vivo. Flow cytometry assay (in vitro) or examination of cyclin D1 expression (in vivo) was carried out to determine the alteration of cell cycle. The aggressiveness was analyzed by Wound Healing Assay (in vitro) or MMP-2 and MMP-9 expression (in vivo). AKT/p-AKT, ERK1/2/p-ERK1/2 or HGF/c-MET expression was detected by real-time PCR or western blot. Our data demonstrated that MVs promote the growth and aggressiveness of RCC both in vitro and in vivo. In addition, MVs facilitated the progression of cell cycle from G0/1 to S. HGF expression in RCC was greatly induced by MVs, associated with activation of AKT and ERK1/2 signaling pathways. RNase pre-treatment abrogated all effects of MVs. In summary, induction of HGF synthesis via RNA transferred by MVs activating AKT and ERK1/2 signaling is one of crucial contributors to the pro-tumor effect.
Collapse
Affiliation(s)
- Tao Du
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, P.R. China
| | - Guanqun Ju
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- * E-mail: (GJ); (YZ)
| | - Shuai Wu
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- Department of Urology, Qingdao Municipal Hospital, Qingdao, P.R. China
| | - Zhongliang Cheng
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jun Cheng
- Department of Urology, Nantong Tongzhou People's Hospital, Jiangsu Province, P.R. China
| | - Xiangyu Zou
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Guangyuan Zhang
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Shuai Miao
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Guohua Liu
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yingjian Zhu
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- * E-mail: (GJ); (YZ)
| |
Collapse
|
29
|
MET expression is associated with disease-specific survival in breast cancer patients in the neoadjuvant setting. Pathol Res Pract 2014; 210:494-500. [PMID: 24814255 DOI: 10.1016/j.prp.2014.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/13/2014] [Accepted: 04/01/2014] [Indexed: 11/24/2022]
Abstract
MET and RON receptor tyrosine kinases play an important role in tumor progression. The aim of this study was to determine the predictive or prognostic impact of MET and RON in breast cancer patients treated with neoadjuvant chemotherapy (NAC). Immunohistochemical analyses were performed to retrospectively examine the predictive or prognostic impact of MET and RON expression in 129 breast cancer patients treated with NAC followed by definitive surgical resection. MET-positive tumors were detected in 89 patients (68.9%) and RON-positive tumors in 94 patients (72.9%). Survival analysis showed that MET expression was correlated with longer disease-specific survival (DSS; P=0.016), whereas RON expression was not associated with survival rates. MET expression was a significant factor for DSS in the non-pCR group in subgroup analysis (P=0.024) and a marginal significant independent prognostic factor for DSS in multivariate analysis. The MET-positive group had higher pCR than the MET-negative group but the difference was not statistically significant (P=0.266). MET expression is a prognostic factor for DSS in breast cancer patients receiving NAC and may provide additional prognostic information in patients not achieving a pCR.
Collapse
|
30
|
Koeppen H, Yu W, Zha J, Pandita A, Penuel E, Rangell L, Raja R, Mohan S, Patel R, Desai R, Fu L, Do A, Parab V, Xia X, Januario T, Louie SG, Filvaroff E, Shames DS, Wistuba I, Lipkind M, Huang J, Lazarov M, Ramakrishnan V, Amler L, Phan SC, Patel P, Peterson A, Yauch RL. Biomarker analyses from a placebo-controlled phase II study evaluating erlotinib±onartuzumab in advanced non-small cell lung cancer: MET expression levels are predictive of patient benefit. Clin Cancer Res 2014; 20:4488-98. [PMID: 24687921 DOI: 10.1158/1078-0432.ccr-13-1836] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE In a recent phase II study of onartuzumab (MetMAb), patients whose non-small cell lung cancer (NSCLC) tissue scored as positive for MET protein by immunohistochemistry (IHC) experienced a significant benefit with onartuzumab plus erlotinib (O+E) versus erlotinib. We describe development and validation of a standardized MET IHC assay and, retrospectively, evaluate multiple biomarkers as predictors of patient benefit. EXPERIMENTAL DESIGN Biomarkers related to MET and/or EGF receptor (EGFR) signaling were measured by IHC, FISH, quantitative reverse transcription PCR, mutation detection techniques, and ELISA. RESULTS A positive correlation between IHC, Western blotting, and MET mRNA expression was observed in NSCLC cell lines/tissues. An IHC scoring system of MET expression taking proportional and intensity-based thresholds into consideration was applied in an analysis of the phase II study and resulted in the best differentiation of outcomes. Further analyses revealed a nonsignificant overall survival (OS) improvement with O+E in patients with high MET copy number (mean≥5 copies/cell by FISH); however, benefit was maintained in "MET IHC-positive"/MET FISH-negative patients (HR, 0.37; P=0.01). MET, EGFR, amphiregulin, epiregulin, or HGF mRNA expression did not predict a significant benefit with onartuzumab; a nonsignificant OS improvement was observed in patients with high tumor MET mRNA levels (HR, 0.59; P=0.23). Patients with low baseline plasma hepatocyte growth factor (HGF) exhibited an HR for OS of 0.519 (P=0.09) in favor of onartuzumab treatment. CONCLUSIONS MET IHC remains the most robust predictor of OS and progression-free survival benefit from O+E relative to all examined exploratory markers.
Collapse
Affiliation(s)
| | - Wei Yu
- Genentech Inc., South San Francisco
| | - Jiping Zha
- Crown Bioscience Inc., Jiangsu Province, China
| | | | | | | | | | | | | | | | - Ling Fu
- Genentech Inc., South San Francisco
| | - An Do
- Genentech Inc., South San Francisco
| | | | | | | | | | | | | | - Ignacio Wistuba
- Department of Translational Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chiba S, Tsuchiya N, Horikawa Y, Narita S, Inoue T, Akihama S, Saito M, Numakura K, Tsuruta H, Huang M, Satoh S, Habuchi T. Functional mononucleotide repeat polymorphism in the promoter region of HGF is associated with risk and malignant aggressiveness of bladder cancer. Int J Oncol 2013; 44:678-84. [PMID: 24366484 DOI: 10.3892/ijo.2013.2221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/18/2013] [Indexed: 11/05/2022] Open
Abstract
Increased expression of hepatocyte growth factor (HGF) has been shown to be associated with aggressiveness in several types of cancer. Shorter variants of deoxyadenosine tract element (DATE) located in the HGF promoter region have been reported to enhance the expression of HGF. In this study, we investigated the role of HGF DATE variants in bladder cancer risk, HGF expression and clinicopathological features. The frequency of individuals with a short DATE (<28 repeats) in peripheral blood lymphocytes (PBLs) was significantly higher in bladder cancer patients compared to controls (p<0.001). Somatic mutations were observed in 37 of 70 bladder tumor (BT) tissues and the frequency of mutation to long DATE was significantly higher than that to short DATE (p=0.047). The presence of the short DATE in BT tissue was significantly associated with higher tumor grade (p=0.015). HGF mRNA levels were significantly higher in pT2 tumors than pTa or pT1 tumors (p=0.019), and in grade 3 tumors than grade 1 or 2 tumors (p=0.020). Furthermore, BT tissues with the short DATE showed significantly higher levels of HGF mRNA (p<0.001). In patients who underwent radical cystectomy, those with higher HGF expression had a significantly shorter overall survival than those with lower HGF expression (p=0.012). In conclusion, HGF may be associated with the prognosis of patients who undergo radical cystectomy, and the HGF DATE may affect the risk and aggressiveness of bladder cancer by altering HGF expression.
Collapse
Affiliation(s)
- Syuji Chiba
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Norihiko Tsuchiya
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Yohei Horikawa
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Shintaro Narita
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takamitsu Inoue
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Susumu Akihama
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Mitsuru Saito
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Kazuyuki Numakura
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroshi Tsuruta
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Mingguo Huang
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Shigeru Satoh
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Tomonori Habuchi
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
32
|
Mai E, Zheng Z, Chen Y, Peng J, Severin C, Filvaroff E, Romero M, Mallet W, Kaur S, Gelzleichter T, Nijem I, Merchant M, Young JC. Nonclinical evaluation of the serum pharmacodynamic biomarkers HGF and shed MET following dosing with the anti-MET monovalent monoclonal antibody onartuzumab. Mol Cancer Ther 2013; 13:540-52. [PMID: 24258345 DOI: 10.1158/1535-7163.mct-13-0494] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Onartuzumab, a humanized, monovalent monoclonal anti-MET antibody, antagonizes MET signaling by inhibiting binding of its ligand, hepatocyte growth factor (HGF). We investigated the effects of onartuzumab on cell-associated and circulating (shed) MET (sMET) and circulating HGF in vitro and nonclinically to determine their utility as pharmacodynamic biomarkers for onartuzumab. Effects of onartuzumab on cell-associated MET were assessed by flow cytometry and immunofluorescence. sMET and HGF were measured in cell supernatants and in serum or plasma from multiple species (mouse, cynomolgus monkey, and human) using plate-based immunoassays. Unlike bivalent anti-MET antibodies, onartuzumab stably associates with MET on the surface of cells without inducing MET internalization or shedding. Onartuzumab delayed the clearance of human xenograft tumor-produced sMET from the circulation of mice, and endogenous sMET in cynomolgus monkeys. In mice harboring MET-expressing xenograft tumors, in the absence of onartuzumab, levels of human sMET correlated with tumor size, and may be predictive of MET-expressing tumor burden. Because binding of sMET to onartuzumab in circulation resulted in increasing sMET serum concentrations due to reduced clearance, this likely renders sMET unsuitable as a pharmacodynamic biomarker for onartuzumab. There was no observed effect of onartuzumab on circulating HGF levels in xenograft tumor-bearing mice or endogenous HGF in cynomolgus monkeys. Although sMET and HGF may serve as predictive biomarkers for MET therapeutics, these data do not support their use as pharmacodynamic biomarkers for onartuzumab.
Collapse
Affiliation(s)
- Elaine Mai
- Corresponding Author: Judy C. Young, Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, MS98, South San Francisco, CA 94080.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pavan S, Musiani D, Torchiaro E, Migliardi G, Gai M, Di Cunto F, Erriquez J, Olivero M, Di Renzo MF. HSP27 is required for invasion and metastasis triggered by hepatocyte growth factor. Int J Cancer 2013; 134:1289-99. [DOI: 10.1002/ijc.28464] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 07/29/2013] [Accepted: 08/14/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Simona Pavan
- Department of Oncology; University of Torino, School of Medicine; Torino Italy
- Laboratory of Cancer Genetics; Institute for Cancer Research at; Candiolo Torino Italy
| | - Daniele Musiani
- Department of Oncology; University of Torino, School of Medicine; Torino Italy
- Laboratory of Cancer Genetics; Institute for Cancer Research at; Candiolo Torino Italy
| | - Erica Torchiaro
- Department of Oncology; University of Torino, School of Medicine; Torino Italy
- Laboratory of Cancer Genetics; Institute for Cancer Research at; Candiolo Torino Italy
| | - Giorgia Migliardi
- Department of Oncology; University of Torino, School of Medicine; Torino Italy
- Laboratory of Molecular Pharmacology; Institute for Cancer Research at; Candiolo Torino Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences Molecular Biotechnology Center; University of Torino; Torino Italy
| | - Ferdinando Di Cunto
- Department of Molecular Biotechnology and Health Sciences Molecular Biotechnology Center; University of Torino; Torino Italy
| | - Jessica Erriquez
- Laboratory of Cancer Genetics; Institute for Cancer Research at; Candiolo Torino Italy
| | - Martina Olivero
- Department of Oncology; University of Torino, School of Medicine; Torino Italy
- Laboratory of Cancer Genetics; Institute for Cancer Research at; Candiolo Torino Italy
| | - Maria Flavia Di Renzo
- Department of Oncology; University of Torino, School of Medicine; Torino Italy
- Laboratory of Cancer Genetics; Institute for Cancer Research at; Candiolo Torino Italy
| |
Collapse
|
34
|
MET and MST1R as prognostic factors for classical Hodgkin's lymphoma. Mod Pathol 2013; 26:1172-82. [PMID: 23558571 DOI: 10.1038/modpathol.2013.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 11/06/2012] [Accepted: 01/10/2013] [Indexed: 01/18/2023]
Abstract
MST1R (RON) and MET are receptor tyrosine kinase gene family members that form a noncovalent complex on the cell surface, a critical step in tumor progression. A recent study suggested a prognostic role of MET expression in Hodgkin/Reed-Sternberg (HRS) cells in classical Hodgkin's lymphoma (cHL). The purpose of this study was to examine the prognostic significance of MET and MST1R expression in cHL. The prognostic impact of MET and MST1R was examined in 100 patients with cHL (median age: 32 years) by immunohistochemistry and mRNA in situ hybridization. The median follow-up time was 95 months (interquartile range: 42-126 months). MET or MST1R protein expression was associated with high MET or MST1R mRNA expression, respectively. Thirty-eight patients (38%) expressed MET protein in HRS cell, which was associated with better overall survival (P=0.004). Twenty-six patients (26%) expressed MST1R protein, which was associated with better overall survival (P=0.022) and event-free survival (P=0.021). Multivariate analysis identified MET protein as an independent prognostic factor for overall survival and MST1R protein as an independent prognostic factor for event-free survival. Subgroup analysis according to Ann Arbor stage showed that expressions of MET and MST1R protein have prognostic impact in the advanced stage only. In particular, coexpression of MST1R and MET protein was associated with a better survival outcome than MET or MST1R expression alone or no expression. This study suggests that MET and MST1R are independent prognostic factors in classical cHL, and may allow the identification of a subgroup of cHL patients who require more intensive therapy.
Collapse
|
35
|
Koh YW, Hwang HS, Jung SJ, Park C, Yoon DH, Suh C, Huh J. Receptor tyrosine kinases MET and RON as prognostic factors in diffuse large B-cell lymphoma patients receiving R-CHOP. Cancer Sci 2013; 104:1245-51. [PMID: 23745832 DOI: 10.1111/cas.12215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/16/2013] [Accepted: 06/07/2013] [Indexed: 01/08/2023] Open
Abstract
Receptor tyrosine kinases MET and RON (MST1R) form non-covalent complexes on the cell surface, a critical step in tumor progression. A recent study suggested a prognostic role for MET expression in diffuse large B-cell lymphoma (DLBCL). The aim of this study was to examine the impact of MET and RON expression in uniformly treated DLBCL patients. The expression of MET and RON was retrospectively examined by immunohistochemistry in 120 DLBCL patients treated with rituximab combined with a CHOP regimen (cyclophosphamide, doxorubicin, vincristine, and prednisone). The median follow-up time was 42.5 months (range, 1-89 months). Thirty-two (26%) and 30 patients (25%) expressed MET or RON, respectively. Seventy-five patients (62.5%) were negative for both MET and RON (MET(-) RON(-) ). MET negativity was associated with worse overall survival (P = 0.029). In multivariate analysis, negativity for both MET and RON (MET(-) RON(-) ) was strongly associated with inferior overall survival (P = 0.008). Interestingly, the MET(-) RON(-) phenotype retained its prognostic impact after subgroup analysis according to the international prognostic index or by the cell of origin by immunohistochemical algorithm by Choi et al. This study suggests that the MET(-) RON(-) phenotype is an independent prognostic factor in DLBCL patients receiving R-CHOP, and may identify a subgroup of DLBCL patients who require more intensive therapy.
Collapse
Affiliation(s)
- Young Wha Koh
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Marchion DC, Bicaku E, Xiong Y, Bou Zgheib N, Al Sawah E, Stickles XB, Judson PL, Lopez AS, Cubitt CL, Gonzalez-Bosquet J, Wenham RM, Apte SM, Berglund A, Lancaster JM. A novel c-Met inhibitor, MK8033, synergizes with carboplatin plus paclitaxel to inhibit ovarian cancer cell growth. Oncol Rep 2013; 29:2011-8. [PMID: 23467907 PMCID: PMC4536335 DOI: 10.3892/or.2013.2329] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/29/2013] [Indexed: 12/26/2022] Open
Abstract
Elevated serum levels of hepatocyte growth factor (HGF) and high tumor expression of c-Met are both indicators of poor overall survival from ovarian cancer (OVCA). In the present study, we evaluated the role of the HGF signaling pathway in OVCA cell line chemoresistance and OVCA patient overall survival as well as the influence of HGF/c-Met signaling inhibition on the sensitivity of OVCA cells to combinational carboplatin plus paclitaxel therapy. The prevalence of the HGF receptor, c-Met, was determined by immunohistochemistry in primary OVCA samples (n=79) and OVCA cell lines (n=41). The influence of the c-Met-specific inhibitor MK8033 on OVCA cell sensitivity to combinations of carboplatin plus paclitaxel was examined in a subset of OVCA cells (n=8) by CellTiter-Blue cell viability assays. Correlation tests were used to identify genes associated with response to MK8033 and carboplatin plus paclitaxel. Identified genes were evaluated for influence on overall survival from OVCA using principal component analysis (PCA) modeling in an independent clinical OVCA dataset (n=218). Immunohistochemistry analysis indicated that 83% of OVCA cells and 92% of primary OVCA expressed the HGF receptor, c-Met. MK8033 exhibited significant anti-proliferative effects against a panel of human OVCA cell lines. Combination index values determined by the Chou-Talalay isobologram equation indicated synergistic activity in combinations of MK8033 and carboplatin plus paclitaxel. Pearson's correlation identified a 47-gene signature to be associated with MK8033-carboplatin plus paclitaxel response. PCA modeling indicated an association of this 47-gene response signature with overall survival from OVCA (P=0.013). These data indicate that HGF/c-Met pathway signaling may influence OVCA chemosensitivity and overall patient survival. Furthermore, HGF/c-Met inhibition by MK8033 represents a promising new therapeutic avenue to increase OVCA sensitivity to carboplatin plus paclitaxel.
Collapse
Affiliation(s)
- Douglas C Marchion
- Department of Women's Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Aune G, Stunes AK, Lian AM, Reseland JE, Tingulstad S, Torp SH, Syversen U. Circulating interleukin-8 and plasminogen activator inhibitor-1 are increased in women with ovarian carcinoma. RESULTS IN IMMUNOLOGY 2012; 2:190-5. [PMID: 24371583 DOI: 10.1016/j.rinim.2012.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/08/2012] [Accepted: 10/15/2012] [Indexed: 12/16/2022]
Abstract
Elevated serum levels of several cytokines have been reported in ovarian cancer. We have previously found a diagnostic and prognostic value of hepatocyte growth factor (HGF). The aims of this study were to evaluate the diagnostic and prognostic value of multiple serum cytokines in women with ovarian tumors, and to examine possible associations between serum levels of cytokines and the previously analyzed HGF. Preoperative levels of multiple cytokines were quantified by serum-based immunoassays in 113 women with a pelvic mass: 57 carcinomas, 23 borderline tumors, and 33 benign ovarian tumors. The results were related to clinicopathological parameters. Univariate and multivariate analyses of five-year overall survival were performed. The women with ovarian carcinoma had significantly higher preoperative serum levels of cancer antigen 125 (CA 125), interleukin 8 (IL-8), and plasminogen activator inhibitor-1 (PAI-1) than women with benign ovarian tumors. Serum IL-8 and PAI-1 levels were positively correlated to serum levels of HGF. In a multivariate analysis of five-year overall survival, IL-8 had a prognostic impact. Serum levels of IL-8 and PAI-1 were elevated in women with ovarian carcinoma compared to women with benign ovarian tumors, and positively correlated to serum HGF levels in women with ovarian tumors. IL-8 also seemed to have a prognostic impact.
Collapse
Affiliation(s)
- Guro Aune
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian, University of Science and Technology (NTNU), Trondheim, Norway
| | - Astrid Kamilla Stunes
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian, University of Science and Technology (NTNU), Trondheim, Norway
| | - Aina-Mari Lian
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo (UiO), Oslo, Norway
| | - Janne Elin Reseland
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo (UiO), Oslo, Norway
| | - Solveig Tingulstad
- Department of Gynecological Oncology, Department of Laboratory Medicine, Children's and Women's Health, St. Olav's University Hospital, Trondheim, Norway
| | - Sverre H Torp
- Department of Pathology and Medical Genetics, Department of Laboratory Medicine, Children's and Women's Health, St. Olav's University Hospital, Trondheim, Norway
| | - Unni Syversen
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian, University of Science and Technology (NTNU), Trondheim, Norway ; Department of Endocrinology, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
38
|
Abstract
The receptor tyrosine kinase c-MET and its ligand, hepatocyte growth factor (HGF), regulate multiple cellular processes that stimulate cell proliferation, invasion and angiogenesis. This review provides an overview of the evidence to support c-MET or the HGF/c-MET signaling pathway as relevant targets for personalized cancer treatment based on high frequencies of c-MET and/or HGF overexpression, activation, amplification in non-small cell lung carcinoma (NSCLC), gastric, ovarian, pancreatic, thyroid, breast, head and neck, colon and kidney carcinomas. Additionally, the current knowledge of small molecule inhibitors (tivantinib [ARQ 197]), c-MET/HGF antibodies (rilotumumab and MetMAb) and mechanisms of resistance to c-MET-targeted therapies are discussed.
Collapse
Affiliation(s)
- J Rafael Sierra
- Princess Margaret Hospital/Ontario Cancer Institute and University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
39
|
Le QT, Fisher R, Oliner KS, Young RJ, Cao H, Kong C, Graves E, Hicks RJ, McArthur GA, Peters L, O'Sullivan B, Giaccia A, Rischin D. Prognostic and predictive significance of plasma HGF and IL-8 in a phase III trial of chemoradiation with or without tirapazamine in locoregionally advanced head and neck cancer. Clin Cancer Res 2012; 18:1798-807. [PMID: 22383739 DOI: 10.1158/1078-0432.ccr-11-2094] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Hepatocyte growth factor (HGF) is a hypoxia-induced secreted protein that binds to cMet and regulates interleukin (IL)-8 expression. We evaluated the role of circulating HGF and IL-8 as prognostic and predictive factors for efficacy of tirapazamine (TPZ), a hypoxic cell cytotoxin. EXPERIMENTAL DESIGN Patients with stages III to IV head and neck cancer were randomized to receive radiotherapy with cisplatin (CIS) or CIS plus TPZ (TPZ/CIS). Eligibility for the substudy included plasma sample availability for HGF and IL-8 assay by ELISA and no major radiation deviations (N = 498). Analyses included adjustment for major prognostic factors. p16(INK4A) staining (human papillomavirus surrogate) was carried out on available tumors. Thirty-nine patients had hypoxia imaging with (18)F-fluoroazomycin arabinoside ((18)FAZA)-positron emission tomography. RESULTS Elevated IL-8 level was associated with worse overall survival (OS) irrespective of treatment. There was an interaction between HGF and treatment arm (P = 0.053); elevated HGF was associated with worse OS in the control but not in the TPZ/CIS arm. Similar trends were observed in analyses restricted to p16(INK4A)-negative patients. Four subgroups defined by high and low HGF/IL-8 levels were examined for TPZ effect; the test for interaction with arm was P = 0.099. TPZ/CIS seemed to be beneficial for patients with high HGF and IL-8 but adverse for low HGF and high IL-8. Only HGF correlated with (18)FAZA tumor standard uptake value. CONCLUSIONS IL-8 is an independent prognostic factor irrespective of treatment. There is an interaction between HGF and treatment arm. Certain subgroups based on IL-8/HGF levels seemed to do better with TPZ/CIS while others did worse, highlighting the complexity of hypoxia targeting in unselected patients.
Collapse
Affiliation(s)
- Quynh-Thu Le
- Radiation Oncology & Pathology, Stanford University, Stanford, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sun R, Zhang Q, Guo L, Chen MY, Sun Y, Cao B, Sun J. HGF stimulates proliferation through the HGF/c-Met pathway in nasopharyngeal carcinoma cells. Oncol Lett 2012; 3:1124-1128. [PMID: 22783404 DOI: 10.3892/ol.2012.613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/16/2012] [Indexed: 01/05/2023] Open
Abstract
Hepatocyte growth factor (HGF) and its receptor c-Met are important in the development and homeostasis of a variety of human malignancies. However, the role of the HGF/c-Met signaling pathway in nasopharyngeal carcinoma (NPC) has not been clearly elucidated. This study examined the effect of HGF/c-Met on proliferation and migration in several NPC cell lines. RT-PCR was used to detect the HGF gene in CNE-1, CNE-2, HK-1, HONE-1 and SUNE-1 NPC cells. However, HGF gene expression was not detected in any of these cells. Using immunoblotting analysis, the Met25 protein was identified in HONE-1, HK-1 and CNE-1 cells. Results from fluorescence-activated cell sorting (FACS) analysis revealed that anti-Met25 mAb specifically bound Met-expressing HONE-1, HK-1 and CNE-1 cells. It was further demonstrated that exogenous HGF was able to stimulate the proliferation of HONE-1 and HK-1 cells and the healing of scrape wounds in HONE-1 NPC cells. Our results reveal the potential therapeutic applications of combination therapy with antibodies targeting HGF in NPC patients.
Collapse
Affiliation(s)
- Rui Sun
- State Key Laboratory of Oncology in Southern China
| | | | | | | | | | | | | |
Collapse
|
41
|
Gulzar ZG, McKenney JK, Brooks JD. Increased expression of NuSAP in recurrent prostate cancer is mediated by E2F1. Oncogene 2012; 32:70-7. [PMID: 22349817 PMCID: PMC3360134 DOI: 10.1038/onc.2012.27] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Increasing evidence suggests that prostate cancer is overdiagnosed and overtreated, and prognostic biomarkers would aid in treatment selection. To define prognostic biomarkers for aggressive prostate cancer, we carried out gene-expression profiling of 98 prostate tumors and 52 benign adjacent prostate tissue samples with detailed clinical annotation. We identified 28 transcripts significantly associated with recurrence after radical prostatectomy including NuSAP, a protein that binds DNA to the mitotic spindle. Elevated NuSAP transcript levels were associated with poor outcome in two independent prostate cancer gene-expression datasets. To characterize the role and regulation of NuSAP in prostate cancer, we studied the expression of NuSAP in the LNCaP and PC3 human prostate cancer cell lines. Posttranscriptional silencing of the NuSAP gene severely hampered the ability of PC3 to invade and proliferate in vitro. The promoter region of the NuSAP gene contains two CCAAT boxes and binding sites for E2F. Transient transfection of an E2F1 cDNA and 431 bp of the NuSAP promoter demonstrated E2F1 as an important regulator of expression. Deletion of the E2F-binding site at nucleotide -246 negated the effects of E2F1 on NuSAP expression. Electrophoretic mobility shift assays demonstrated that nuclear extracts of cells overexpressing E2F1 bound directly to the E2F-binding site in the NuSAP promoter region. Finally, immunohistochemistry showed a strong correlation between E2F1 and NuSAP expression in human prostate cancer samples. NuSAP is a novel biomarker for prostate cancer recurrence after surgery and its overexpression appears to be driven in part by E2F1 activation.
Collapse
Affiliation(s)
- Z G Gulzar
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305-5118, USA
| | | | | |
Collapse
|