1
|
Fernandes Q. Precision meets repurposing: Innovative approaches in human papillomavirus and Epstein-Barr virus-driven cancer therapy. Cancer Lett 2024; 607:217318. [PMID: 39522710 DOI: 10.1016/j.canlet.2024.217318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Viral malignancies represent a distinct entity among cancers. Oncoviruses like the Human Papilloma Virus (HPV) and the Epstein Barr Virus (EBV) are highly potent inducers of oncogenic transformation leading to tumor development. HPV and EBV are known to be increasingly involved in the pathogenesis of various classes of cancers like cervical, head and neck, colorectal, breast, oral and anogenitial. Therapeutic vaccines directed at such oncoviruses, often fail to unleash the desired immune response against the tumor. This is largely due to the immunosuppressive microenvironment of the virus-induced tumors. Consequently, metronomic chemotherapies administered in conjunction with therapeutic viral vaccines have considerably enhanced the antitumor activity of these vaccines. Moreover, given the unique attributes of HPV and EBV-associated cancers, therapeutic agents directly targeting the oncoproteins of these viruses are still obscure. In this light, an increasing number of reports have evidenced the repurposing of drugs for therapeutic benefits in such cancers. This work delineates the significance and implications of metronomic chemotherapy and drug repurposing in HPV and EBV-associated cancers.
Collapse
Affiliation(s)
- Queenie Fernandes
- Translational Cancer Research Facility, National Centre for Cancer Care and Research, Hamad Medical Corporation P.O. Box 3050, Doha, Qatar; College of Medicine, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
2
|
Smalley TB, Nicolaci A, Tran KC, Lokhandwala J, Obertopp N, Matlack JK, Miner RE, Teng MN, Pilon-Thomas S, Binning JM. Targeted degradation of the HPV oncoprotein E6 reduces tumor burden in cervical cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618959. [PMID: 39464070 PMCID: PMC11507957 DOI: 10.1101/2024.10.17.618959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Human Papilloma Virus (HPV)-related cancers are a global health burden, yet there are no targeted therapies available for chronically infected patients. The HPV protein E6 is essential for HPV-mediated tumorigenesis and immune evasion, making it an attractive target for antiviral drug development. In this study, we developed an E6-targeting Proteolysis Targeting Chimera (PROTAC) that inhibits the growth of HPV(+) tumors. To develop E6 antagonists, we generated a panel of nanobodies targeting E6 proteins derived from the oncogenic HPV16 subtype. The highest affinity E6 nanobody, A5, was fused to Von Hippel Lindau protein (VHL) to generate a PROTAC that degrades E6 (PROTACE6). Mutational rescue experiments validated specific degradation via the CRL2VHL E3 ligase. Intralesional administration of the PROTACE6 using a clinically viable DNA vaccine reduced tumor burden in an immunocompetent mouse model of HPV(+) cancer. The inhibitory effect of the PROTACE6 was abrogated by CD4+ and CD8+ T-cell depletion, indicating that the antitumor function of the PROTACE6 relies in part on a host immune response. Overall, these results suggest that the targeted degradation of E6 inhibits its oncogenic function and stimulates a robust immune response against HPV(+) tumors, opening new opportunities for virus-specific therapies in the treatment of HPV-related cancers.
Collapse
Affiliation(s)
- Tracess B Smalley
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Angelo Nicolaci
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
- Cancer Biology PhD Program, University of South Florida, Tampa, Florida, 33612, USA
| | - Kim C Tran
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Jameela Lokhandwala
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Nina Obertopp
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
- Cancer Biology PhD Program, University of South Florida, Tampa, Florida, 33612, USA
| | - Jenet K Matlack
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Robert E Miner
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
- Cancer Biology PhD Program, University of South Florida, Tampa, Florida, 33612, USA
| | - Michael N Teng
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Jennifer M Binning
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| |
Collapse
|
3
|
Yu X, Xu J, Xu D, Bi X, Wang H, Lu Y, Cao M, Wang W, Xu Z, Zheng D, Chen L, Zhang X, Zheng S, Li K. Comprehensive Analysis of the Carcinogenic Process, Tumor Microenvironment, and Drug Response in HPV-Positive Cancers. Front Oncol 2022; 12:842060. [PMID: 35392231 PMCID: PMC8980807 DOI: 10.3389/fonc.2022.842060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/23/2022] [Indexed: 12/30/2022] Open
Abstract
Human papillomavirus (HPV) is a common virus, and about 5% of all cancers worldwide is caused by persistent high-risk HPV infections. Here, we reported a comprehensive analysis of the molecular features for HPV-related cancer types using TCGA (The Cancer Genome Atlas) data with HPV status. We found that the HPV-positive cancer patients had a unique oncogenic process, tumor microenvironment, and drug response compared with HPV-negative patients. In addition, HPV improved overall survival for the four cancer types, namely, cervical squamous cell carcinoma (CESC), head and neck squamous cell carcinoma (HNSC), stomach adenocarcinoma (STAD), and uterine corpus endometrial carcinoma (UCEC). The stronger activity of cell-cycle pathways and lower driver gene mutation rates were observed in HPV-positive patients, which implied the different carcinogenic processes between HPV-positive and HPV-negative groups. The increased activities of immune cells and differences in metabolic pathways helped explain the heterogeneity of prognosis between the two groups. Furthermore, we constructed HPV prediction models for different cancers by the virus infection score (VIS) which was linearly correlated with HPV load and found that VIS was associated with drug response. Altogether, our study reveals that HPV-positive cancer patients have unique molecular characteristics which help the development of precision medicine in HPV-positive cancers.
Collapse
Affiliation(s)
- Xiaorong Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jiankai Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Dahua Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Xiaoman Bi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Hong Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Yanda Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Meng Cao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wenxiang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhizhou Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Dehua Zheng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Liyang Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Xiaodian Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Shaojiang Zheng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Kongning Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
4
|
Jiang Y, Gu H, Zheng X, Pan B, Liu P, Zheng M. Pretreatment C-Reactive Protein/Albumin Ratio is Associated With Poor Survival in Patients With 2018 FIGO Stage IB-IIA HPV-Positive Cervical Cancer. Pathol Oncol Res 2022; 27:1609946. [PMID: 34992504 PMCID: PMC8724028 DOI: 10.3389/pore.2021.1609946] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022]
Abstract
Objectives: The present study aimed to identify the predictive value of inflammatory indexes stratified according to human papillomavirus (HPV) infection status in women with FIGO 2018 stage IB∼IIA cervical cancer. We also explored the influences of HPV infection status on the survival of cervical cancer patients. Methods: We collected data for 583 women with stage IB∼IIA cervical cancer in Sun Yat-sen University Cancer Center between 2009 and 2017. The t-test, chi-squared (χ2) test and Fisher’s exact test were applied to compare the differences of inflammatory indexes and clinicopathological features between HPV-positive and HPV-negative groups. Univariate and multivariate analyses were used to identify clinicopathological factors that were associated with the prognosis of cervical cancer patients. Results: There were no differences in overall survival (OS) and progression-free survival (PFS) between HPV-positive and HPV-negative groups. In HPV-positive group, the maximum tumor size, neoadjuvant chemotherapy and the body mass index (BMI) correlated significantly with C-reactive protein/albumin ratio (CAR). The maximum tumor size and the prognostic nutritional index (PNI) correlated significantly with the platelet-lymphocyte ratio (PLR). The maximum tumor size, neoadjuvant chemotherapy and PLR correlated significantly with PNI. Univariate and multivariate analyses showed that the depth of tumor invasion (HR: 3.651, 95% CI: 1.464–9.103, p = 0.005; HR: 2.478, 95% CI: 1.218–5.043, p = 0.012) and CAR (HR: 5.201, 95% CI: 2.080–13.004, p < 0.0001; HR: 2.769, 95% CI: 1.406–5.455, p = 0.003) were independent predictors of poor OS and PFS. PNI was an independent protective factor of OS (HR: 0.341, 95% CI: 0.156–0.745, p = 0.007). PLR was an independent factor of PFS (HR: 1.991, 95% CI: 1.018–3.894, p = 0.044). In HPV-negative group, BMI correlated significantly with CAR. Only depth of invasion (HR: 9.192, 95% CI: 1.016–83.173, p = 0.048) was the independent predictor of poor OS, and no inflammation indexes were independent predictors of prognosis. Conclusion: In patients with HPV-positive cervical cancer, depth of invasion, PNI and CAR are independent factors of OS, and depth of invasion, PLR and CAR are independent factors for PFS. For patients with HPV-negative disease, no inflammation indexes had predictive value for prognosis. The predictive value of inflammation indexes on prognosis is more significant in patients with HPV-positive cervical cancer. Stratification of HPV infection status promotes a more precise clinical application of inflammation indexes, thus improving their accuracy and feasibility.
Collapse
Affiliation(s)
- Yinan Jiang
- Department of Gynecology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Haifeng Gu
- Department of Gynecology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiaojing Zheng
- Department of Gynecology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Baoyue Pan
- Department of Gynecology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Pingping Liu
- Department of Gynecology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Min Zheng
- Department of Gynecology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
5
|
Repositioning Fenofibrate to Reactivate p53 and Reprogram the Tumor-Immune Microenvironment in HPV+ Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14020282. [PMID: 35053444 PMCID: PMC8773501 DOI: 10.3390/cancers14020282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/15/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary A critical need for optimal management of human papillomavirus-associated head and neck squamous cell carcinoma (HPV+ HNSCC) patients is the development of therapeutic strategies to exploit the inherent vulnerabilities of this unique disease. We identified fenofibrate, an FDA-approved drug, as a potent anti-cancer agent for HPV+ HNSCC. Fenofibrate induced the accumulation of the p53 tumor suppressor and re-programmed the tumor microenvironment to drive immune cell infiltration. We provide compelling evidence to reposition fenofibrate as a single agent or in combination with standard therapies for the HPV+ HNSCC setting. Abstract Human papillomavirus-associated head and neck squamous cell carcinoma (HPV+ HNSCC) is recognized as a distinct disease with unique etiology and clinical features. Current standard of care therapeutic modalities are identical for HPV+ and HPV− HNSCC and thus, there remains an opportunity to develop innovative pharmacologic approaches to exploit the inherent vulnerabilities of HPV+ HNSCC. In this study, using an inducible HPVE6E7 knockdown system, we found that HPV+ HNSCC cells are addicted to HPVE6E7, such that loss of these viral oncogenes impaired tumorigenicity in vitro and in vivo. A number of druggable pathways, including PPAR and Wnt, were modulated in response to HPVE6E7 loss. Fenofibrate showed significant anti-proliferative effects in a panel of HPV+ cancer cell lines. Additionally, fenofibrate impaired tumor growth as monotherapy and potentiated the activity of cisplatin in a pre-clinical HPV+ animal model. Systemic fenofibrate treatment induced p53 protein accumulation, and surprisingly, re-programmed the tumor-immune microenvironment to drive immune cell infiltration. Since fenofibrate is FDA-approved with a favorable long-term safety record, repositioning of this drug, as a single agent or in combination with cisplatin or checkpoint blockade, for the HPV+ HNSCC setting should be prioritized.
Collapse
|
6
|
Salinas-Montalvo AM, Supramaniam A, McMillan NA, Idris A. RNA-based gene targeting therapies for human papillomavirus driven cancers. Cancer Lett 2021; 523:111-120. [PMID: 34627949 DOI: 10.1016/j.canlet.2021.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
While platinum-based chemotherapy, radiation therapy and or surgery are effective in reducing human papillomavirus (HPV) driven cancer tumours, they have some significant drawbacks, including low specificity for tumour, toxicity, and severe adverse effects. Though current therapies for HPV-driven cancers are effective, severe late toxicity associated with current treatments contributes to the deterioration of patient quality of life. This warrants the need for novel therapies for HPV derived cancers. In this short review, we examined RNA-based therapies targeting the major HPV oncogenes, including short-interfering RNAs (siRNAs) and clustered regularly interspaced short palindromic repeats (CRISPR) as putative treatment modalities. We also explore other potential RNA-based targeting approaches such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and mRNA vaccines as future treatment modalities for HPV cancers. Some of these technologies have already been approved for clinical use for a range of other human diseases but not for HPV cancers. Here we explore the emerging evidence supporting the effectiveness of some of these gene-based therapies for HPV malignancies. In short, the evidence sheds promising light on the feasibility of translating these technologies into a clinically relevant treatment modality for HPV derived cancers and potentially other virally driven human cancers.
Collapse
Affiliation(s)
- Ana María Salinas-Montalvo
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Aroon Supramaniam
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Nigel Aj McMillan
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Adi Idris
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
7
|
Shih WL, Fang CT, Chen PJ. Chapter XX Antiviral Treatment and Cancer Control. Recent Results Cancer Res 2021; 217:325-354. [PMID: 33200371 DOI: 10.1007/978-3-030-57362-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Hepatitis B virus (HBV), hepatitis C virus (HCV), human papilloma virus (HPV), Epstein-Barr virus (EBV), human T-cell lymphotropic virus type 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), and Merkel cell polyomavirus (MCV) contribute to about 10-15% global burden of human cancers. Conventional chemotherapy or molecular target therapies have been used to treat virus-associated cancers. However, a more proactive approach would be the use of antiviral treatment to suppress or eliminate viral infections to prevent the occurrence of cancer in the first place. Antiviral treatments against chronic HBV and HCV infection have achieved this goal, with significant reduction in the incidence of hepatocellular carcinoma in treated patients. Antiviral treatments for EBV, KSHV, and HTLV-1 had limited success in treating refractory EBV-associated lymphoma and post-transplant lymphoproliferative disorder, KSHV-associated Kaposi's sarcoma in AIDS patients, and HTLV-1-associated acute, chronic, and smoldering subtypes of adult T-cell lymphoma, respectively. Therapeutic HPV vaccine and RNA interference-based therapies for treating HPV-associated infection or cervical cancers also showed some encouraging results. Taken together, antiviral therapies have yielded promising results in cancer prevention and treatment. More large-scale studies in a real-world setting are necessary to confirm the efficacy of antiviral therapy. Further investigation for more effective and convenient antiviral regimens warrants more attention.
Collapse
Affiliation(s)
- Wei-Liang Shih
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Tai Fang
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Jer Chen
- Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
8
|
Kumar A, Rathi E, Hariharapura RC, Kini SG. Is viral E6 oncoprotein a viable target? A critical analysis in the context of cervical cancer. Med Res Rev 2020; 40:2019-2048. [PMID: 32483862 DOI: 10.1002/med.21697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022]
Abstract
An understanding of the pathology of cervical cancer (CC) mediated by E6/E7 oncoproteins of high-risk human papillomavirus (HPV) was developed by late 80's. But if we look at the present scenario, not a single drug could be developed to inhibit these oncoproteins and in turn, be used specifically for the treatment of CC. The readers are advised not to presume the "viability of E6 protein" as mentioned in the title relates to just druggability of E6. The viability aspect will cover almost everything a researcher should know to develop E6 inhibitors until the preclinical stage. Herein, we have analysed the achievements and shortcomings of the scientific community in the last four decades in targeting HPV E6 against CC. Role of all HPV proteins has been briefly described for better perspective with a little detailed discussion of the role of E6. We have reviewed the articles from 1985 onward, reporting in vitro inhibition of E6. Recently, many computational studies have reported potent E6 inhibitors and these have also been reviewed. Subsequently, a critical analysis has been reported to cover the in vitro assay protocols and in vivo models to develop E6 inhibitors. A paragraph has been devoted to the role of public policy to fight CC employing vaccines and whether the vaccine against HPV has quenched the zeal to develop drugs against it. The review concludes with the challenges and the way forward.
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ekta Rathi
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghu Chandrashekar Hariharapura
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Suvarna G Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
9
|
Áyen Á, Jiménez Martínez Y, Boulaiz H. Targeted Gene Delivery Therapies for Cervical Cancer. Cancers (Basel) 2020; 12:cancers12051301. [PMID: 32455616 PMCID: PMC7281413 DOI: 10.3390/cancers12051301] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022] Open
Abstract
Despite being largely preventable through early vaccination and screening strategies, cervical cancer is the most common type of gynecological malignancy worldwide and constitutes one of the leading causes of cancer deaths in women. Patients with advanced or recurrent disease have a very poor prognosis; hence, novel therapeutic modalities to improve clinical outcomes in cervical malignancy are needed. In this regard, targeted gene delivery therapy is presented as a promising approach, which leads to the development of multiple strategies focused on different aspects. These range from altered gene restoration, immune system potentiation, and oncolytic virotherapy to the use of nanotechnology and the design of improved and enhanced gene delivery systems, among others. In the present manuscript, we review the current progress made in targeted gene delivery therapy for cervical cancer, the advantages and drawbacks and their clinical application. At present, multiple targeted gene delivery systems have been reported with encouraging preclinical results. However, the translation to humans has not yet shown a significant clinical benefit due principally to the lack of efficient vectors. Real efforts are being made to develop new gene delivery systems, to improve tumor targeting and to minimize toxicity in normal tissues.
Collapse
Affiliation(s)
- Ángela Áyen
- Department of Dermatology, San Cecilio Universitary Hospital, 18016 Granada, Spain;
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
| | - Yaiza Jiménez Martínez
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain;
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain
| | - Houria Boulaiz
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain;
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Correspondence: ; Tel.: +34-958-241-271
| |
Collapse
|
10
|
Chen Y, Jiang H, Wang T, He D, Tian R, Cui Z, Tian X, Gao Q, Ma X, Yang J, Wu J, Tan S, Xu H, Tang X, Wang Y, Yu Z, Han H, Das BC, Severinov K, Hitzeroth II, Debata PR, Xu W, Fan W, Jin Z, Cao C, Yu M, Xie W, Huang Z, Hu Z, You Z. In vitro and in vivo growth inhibition of human cervical cancer cells via human papillomavirus E6/E7 mRNAs' cleavage by CRISPR/Cas13a system. Antiviral Res 2020; 178:104794. [PMID: 32298665 DOI: 10.1016/j.antiviral.2020.104794] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/16/2020] [Accepted: 04/09/2020] [Indexed: 12/26/2022]
Abstract
Sustained infection of high-risk human papillomavirus (HR-HPVs), especially HPV16 and HPV18, is a major cause of cervical cancer. E6 and E7 oncoproteins, encoded by the HPV genome, are critical for transformation and maintenance of malignant phenotypes of cervical cancer. Here, we used an emerging programmable clustered regularly interspaced short palindromic repeat (CRISPR)/Cas13a system to cleave HPV 16/18 E6/E7 messenger RNAs (mRNAs). The results showed that customized CRISPR/Cas13a system effectively and specifically knocked down HPV 16/18 E6/E7 mRNAs, inducing growth inhibition and apoptosis in HPV16-positive SiHa and HPV18-positive HeLa Cell lines, but not in HPV-negative C33A cell line. Simultaneously, we detected downregulation of E6/E7 oncoproteins and upregulation of tumor suppressor P53 and RB proteins. In addition, we used subcutaneous xenograft tumor growth assays to find that the weight and volume of tumors in the SiHa-16E6CR1 group knocked down by the CRISPR/Cas13a system were significantly lower than those in the SiHa-VECTOR group lacking crRNA. Our study demonstrated that targeting HPV E6/E7 mRNAs by the CRISPR/Cas13a system may be a candidate therapeutic strategy for HPV-related cervical cancer.
Collapse
Affiliation(s)
- Yili Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongye Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Wang
- Department of Anesthesia Operation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dan He
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rui Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zifeng Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xun Tian
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qinglei Gao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xin Ma
- Department of Urology, The General Hospital of the People's Liberation Army, Beijing, China
| | - Jianrong Yang
- Department of Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Songwei Tan
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Xu
- Department of Obstetrics and Gynecology, Yuebei People's Hospital, Medical College of Shantou University, Shaoguan, Guangdong, China
| | - Xiongzhi Tang
- Department of Gynecology, Guilin People's Hospital, Guilin, The Guangxi Zhuang Autonomous Region, China
| | - Yan Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiying Yu
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Hui Han
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine & Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Bhudev C Das
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Uttar Pradesh, Noida, 201313, India
| | - Konstantin Severinov
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, 143025, Russia
| | - Inga Isabel Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, 7701, South Africa
| | - Priya Ranjan Debata
- Department of Zoology, North Orissa University, Takatpur, Baripada, Odisha, 757003, India
| | - Wei Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiwen Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhuang Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chen Cao
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Miao Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiling Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhaoyue Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zheng Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Zeshan You
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Zhen S, Liu Y, Lu J, Tuo X, Yang X, Chen H, Chen W, Li X. Human Papillomavirus Oncogene Manipulation Using Clustered Regularly Interspersed Short Palindromic Repeats/Cas9 Delivered by pH-Sensitive Cationic Liposomes. Hum Gene Ther 2020; 31:309-324. [PMID: 31973584 DOI: 10.1089/hum.2019.312] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) technology enables targeted gene editing, but cancer gene therapy with this approach requires improvements to enable safe and efficient delivery of CRISPR/Cas9 to tumors. We developed and evaluated a self-assembled liposome to selectively deliver CRISPR/Cas9 to cancer tissues. Our CRISPR/Cas9 system effectively inhibited proliferation of human papillomavirus (HPV) 16-positive cervical cancer cells and induced apoptosis by inactivating the HR-HPV16E6/E7 oncogene. Based on this system, we prepared a long-circulating pH-sensitive cationic nano-liposome complex with a high cell targeting and gene knockout rate. Intratumoral injection of cationic liposomes targeted to splicing HPV16 E6/E7 in nude mice significantly inhibited tumor growth without significant toxicity in vivo. Liposomes that targeted HPV16 E6/E7 splicing were established as a basis for treatment of HPV16-positive cervical cancer drug candidates. Our study demonstrates that this liposome offers an efficient delivery system for nonviral gene editing, adding to the armamentarium of gene editing tools to advance safe and effective precision medicine-based cancer therapeutics.
Collapse
Affiliation(s)
- Shuai Zhen
- Center for Translational Medicine, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R China.,Medical Heredity Research Center, Northwest Women's and Children's Hospital, Shaanxi, P.R. China
| | - Yan Liu
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| | - Jiaojiao Lu
- Center for Translational Medicine, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R China
| | - Xiaoqian Tuo
- Center for Translational Medicine, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R China
| | - Xiling Yang
- Center for Translational Medicine, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R China
| | - Hong Chen
- Center for Translational Medicine, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R China
| | - Wei Chen
- Center for Translational Medicine, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R China
| | - Xu Li
- Center for Translational Medicine, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R China.,Medical Heredity Research Center, Northwest Women's and Children's Hospital, Shaanxi, P.R. China
| |
Collapse
|
12
|
Chen T, Yang S, Xu J, Lu W, Xie X. Transcriptome sequencing profiles of cervical cancer tissues and SiHa cells. Funct Integr Genomics 2019; 20:211-221. [PMID: 31456134 DOI: 10.1007/s10142-019-00706-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/08/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023]
Abstract
High-risk human papillomavirus (HPV) is a causal factor for cervical cancer, of which HPV16 is the predominant genotype, but the detailed mechanism remains to be elucidated. In this study, we performed transcriptome sequencing in cervical cancer tissues with HPV16-positive and normal tissues with HPV16-negative, and SiHa cells with or without HPV16 E6/E7 knockdown, and identified 140 differential expressed genes (DEGs) in two data sets. We carried out a series of bioinformatic analyses to learn more about the 140 DEGs, and found that 140 DEGs were mostly enriched in cell cycle and DNA repair through Kyoto Encyclopedia of Genes and Genomes pathway enrichment, Gene Ontology annotation, and gene set enrichment analysis. A total of 20 genes including RMI1, MKI67, FANCB, KIF14, CENPI, RACGAP1, EXO1, KIF4A, FOXM1, C19orf57, PSRC1, NUSAP1, CIT, NDC80, MCM7, GINS2, MCM6, ORC1, TLX2, and UHRF1 were screened by co-expression analysis; of those, the expressions of 6 (CENPI, FANCB, KIF14, ORC1, RACGAP1, and RMI1) were verified by qRT-PCR. Further, we found that E2F family, NF-Y, AhR:Arnt, and KROX family may be involved in modulating DEGs by TransFind prediction. TF2DNA database and co-expression analysis suggested that 12 TFs (ZNF367, TLX2, DEPDC1B, E2F8, ZNF541, EGR2, ZMAT3, HES6, CEBPA, MYBL2, FOXM1, and RAD51) were upstream modulators of DEGs. Our findings may provide a new understanding for effects of HPV oncogenes in the maintenance of cancerous state at the transcriptional level.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shizhou Yang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing Xie
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
13
|
Gupta SM, Mania-Pramanik J. Molecular mechanisms in progression of HPV-associated cervical carcinogenesis. J Biomed Sci 2019; 26:28. [PMID: 31014351 PMCID: PMC6477741 DOI: 10.1186/s12929-019-0520-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer is the fourth most frequent cancer in women worldwide and a major cause of mortality in developing countries. Persistent infection with high-risk human papillomavirus (HPV) is a necessary cause for the development of cervical cancer. In addition, genetic and epigenetic alterations in host cell genes are crucial for progression of cervical precancerous lesions to invasive cancer. Although much progress has been made in understanding the life cycle of HPV and it’s role in the development of cervical cancer, there is still a critical need for accurate surveillance strategies and targeted therapeutic options to eradicate these cancers in patients. Given the widespread nature of HPV infection and the type specificity of currently available HPV vaccines, it is crucial that molecular details of the natural history of HPV infection as well as the biological activities of viral oncoproteins be elucidated. A better understanding of the mechanisms involved in oncogenesis can provide novel insights and opportunities for designing effective therapeutic approaches against HPV-associated malignancies. In this review, we briefly summarize epigenetic alterations and events that cause alterations in host genomes inducing cell cycle deregulation, aberrant proliferation and genomic instability contributing to tumorigenesis.
Collapse
Affiliation(s)
- Sadhana M Gupta
- Department of Infectious Diseases Biology, National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, 400012, India.
| | - Jayanti Mania-Pramanik
- Department of Infectious Diseases Biology, National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, 400012, India
| |
Collapse
|
14
|
Human Papillomavirus 16 Oncoproteins Downregulate the Expression of miR-148a-3p, miR-190a-5p, and miR-199b-5p in Cervical Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1942867. [PMID: 30627542 PMCID: PMC6304571 DOI: 10.1155/2018/1942867] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022]
Abstract
Almost all cervical cancers are associated with human papillomavirus (HPV); however, the majority of women infected with this virus do not develop cervical cancer. Therefore, new markers are needed for reliable screening of cervical cancer, especially in relation to HPV infection. We aimed to identify potential microRNAs that may serve as diagnostic markers for cervical cancer development in high-risk HPV-positive patients. We evaluated the microRNA expression profiles in 12 cervical tissues using the hybridization method and verified them by quantitative polymerase chain reaction (qPCR). Finally, we evaluated the effects of HPV16 oncoproteins on the expression of selected microRNAs using cervical cancer cells (CaSki and SiHa) and RNA interference. With the hybridization method, eight microRNAs (miR-9-5p, miR-136-5p, miR-148a-3p, miR-190a-5p, miR-199b-5p, miR-382-5p, miR-597-5p, and miR-655-3p) were found to be expressed differently in the HPV16-positive cervical cancer group and HPV16-positive normal group (fold change ≥ 2). The results of qPCR showed that miR-148a-3p, miR-190a-5p, miR-199b-5p, and miR-655-3p levels significantly decreased in the cancer group compared with the normal group. Upon silencing of HPV16 E5 and E6/E7, miR-148a-3p levels increased in both cell lines. Silencing of E6/E7 in SiHa cells led to the increase in miR-199b-5p and miR-190a-5p levels. Three HPV16 oncoproteins (E5, E6, and E7) downregulate miR-148a-3p, while E6/E7 inhibit miR-199b-5p and miR-190a-5p expression in cervical carcinoma. The three microRNAs, miR-148a-3p, miR-199b-5p, and miR-190a-5p, may be novel diagnostic biomarkers for cervical cancer development in high-risk HPV-positive patients.
Collapse
|
15
|
Dadar M, Chakraborty S, Dhama K, Prasad M, Khandia R, Hassan S, Munjal A, Tiwari R, Karthik K, Kumar D, Iqbal HMN, Chaicumpa W. Advances in Designing and Developing Vaccines, Drugs and Therapeutic Approaches to Counter Human Papilloma Virus. Front Immunol 2018; 9:2478. [PMID: 30483247 PMCID: PMC6240620 DOI: 10.3389/fimmu.2018.02478] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/08/2018] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) is a viral infection with skin-to-skin based transmission mode. HPV annually caused over 500,000 cancer cases including cervical, anogenital and oropharyngeal cancer among others. HPV vaccination has become a public-health concern, worldwide, to prevent the cases of HPV infections including precancerous lesions, cervical cancers, and genital warts especially in adolescent female and male population by launching national programs with international alliances. Currently, available prophylactic and therapeutic vaccines are expensive to be used in developing countries for vaccination programs. The recent progress in immunotherapy, biotechnology, recombinant DNA technology and molecular biology along with alternative and complementary medicinal systems have paved novel ways and valuable opportunities to design and develop effective prophylactic and therapeutic vaccines, drugs and treatment approach to counter HPV effectively. Exploration and more researches on such advances could result in the gradual reduction in the incidences of HPV cases across the world. The present review presents a current global scenario and futuristic prospects of the advanced prophylactic and therapeutic approaches against HPV along with recent patents coverage of the progress and advances in drugs, vaccines and therapeutic regimens to effectively combat HPV infections and its cancerous conditions.
Collapse
Affiliation(s)
- Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, West Tripura, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Minakshi Prasad
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Sameer Hassan
- Department of Biomedical Informatics, National Institute for Research in Tuberculosis, Indian Council of Medical Research, Chennai, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, U P Pt. Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Faculty of Medicine SIriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
16
|
Du S, Liu K, Gao P, Li Z, Zheng J. Differential anticancer activities of arsenic trioxide on head and neck cancer cells with different human papillomavirus status. Life Sci 2018; 212:182-193. [PMID: 30243648 DOI: 10.1016/j.lfs.2018.09.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
AIMS Approximately 20% of head and neck squamous cell carcinomas (HNSCCs) are caused by human papillomavirus (HPV) infection. The effect of arsenic trioxide (ATO) on HPV oncogene expression of HNSCC cells remains unknown. In this study, we investigated the anti-cancer activity and possible molecular pathways of ATO on the six HNSCC cell lines (three HPV-positive and three HPV-negative). METHODS The effects of ATO on the cell proliferation, apoptosis, cell cycle of HNSCC cells were analyzed using CCK-8 assay, colony formation and flow cytometry. Transwell assay was used to examine the effect of ATO on cell migration. The transcriptional and protein expression of key genes were determined by real-time PCR and Western blot, respectively. Using a xenograft model, we assessed the effects of ATO on HNSCC cells in vivo. KEY FINDINGS HPV-positive and -negative HNSCC cells had different expression of key genes. ATO inhibited HNSCC cell proliferation and migration and induced apoptosis and these effects were more significant in HPV-positive HNSCC cells than in HPV-negative HNSCC cells. ATO treatment reduced the expression of HPV16-E6/E7 and cyclin D1 proteins and enhanced the expression of p16, pRb, and p53 in HPV-positive HNSCC cells. By contrast, ATO treatment reduced the expression of epidermal growth factor receptor, cyclin D1 and mutant p53 and enhanced the expression of pRb in HPV-negative HNSCC cells. Anti-cancer effect of ATO on HNSCCs was confirmed by inhibiting xenograft growth in vivo. SIGNIFICANCE Our data suggest that ATO is a potential therapeutic drug for HNSCCs, especially HPV-positive HNSCCs.
Collapse
Affiliation(s)
- Shanmei Du
- Department of Pathology, Medical School of Southeast University, Nanjing 210009, China
| | - Kui Liu
- Department of Pathology, Medical School of Southeast University, Nanjing 210009, China; Center of Translational Medicine, Zibo Central Hospital, Zibo 255036, China
| | - Peng Gao
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Zhongyou Li
- Department of Molecular Oncology, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Jie Zheng
- Department of Pathology, Medical School of Southeast University, Nanjing 210009, China.
| |
Collapse
|
17
|
Li L, Xu C, Long J, Shen D, Zhou W, Zhou Q, Yang J, Jiang M. E6 and E7 gene silencing results in decreased methylation of tumor suppressor genes and induces phenotype transformation of human cervical carcinoma cell lines. Oncotarget 2016; 6:23930-43. [PMID: 26329329 PMCID: PMC4695162 DOI: 10.18632/oncotarget.4525] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 06/02/2015] [Indexed: 01/01/2023] Open
Abstract
In SiHa and CaSki cells, E6 and E7-targeting shRNA specifically and effectively knocked down human papillomavirus (HPV) 16 E6 and E7 at the transcriptional level, reduced the E6 and E7 mRNA levels by more than 80% compared with control cells that expressed a scrambled-sequence shRNA. E6 and E7 repression resulted in down-regulation of DNA methyltransferase mRNA and protein expression, decreased DNA methylation and increased mRNA expression levels of tumor suppressor genes, induced a certain apoptosis and inhibited proliferation in E6 and E7 shRNA-infected SiHa and CaSki cells compared with the uninfected cells. Repression of E6 and E7 oncogenes resulted in restoration of DNA methyltransferase suppressor pathways and induced apoptosis in HPV16-positive cervical carcinoma cell lines. Our findings suggest that the potential carcinogenic mechanism of HPV16 through influencing DNA methylation pathway to activate the development of cervical cancer exist, and maybe as a candidate therapeutic strategy for cervical and other HPV-associated cancers.
Collapse
Affiliation(s)
- Liming Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Cui Xu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Jia Long
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Danbei Shen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Wuqing Zhou
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Qiyan Zhou
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Jia Yang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Mingjun Jiang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
18
|
Levine RM, Dinh CV, Harris MA, Kokkoli E. Targeting HPV-infected cervical cancer cells with PEGylated liposomes encapsulating siRNA and the role of siRNA complexation with polyethylenimine. Bioeng Transl Med 2016; 1:168-180. [PMID: 29313012 PMCID: PMC5675078 DOI: 10.1002/btm2.10022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 01/02/2023] Open
Abstract
The greatest obstacle to clinical application of cancer gene therapy is lack of effective delivery tools. Gene delivery vehicles must protect against degradation, avoid immunogenic effects and prevent off target delivery which can cause harmful side effects. PEGylated liposomes have greatly improved tumor localization of small molecule drugs and are a promising tool for nucleic acid delivery as the polyethylene glycol (PEG) coating protects against immune recognition and blood clearance. In this study, small interfering RNA (siRNA) was fully encapsulated within PEGylated liposomes by complexing the siRNA with a cationic polymer, polyethyleneimine (PEI), before encapsulation. Formation methods and material compositions were then investigated for their effects on encapsulation. This technology was translated for protective delivery of siRNA designed for human papillomavirus (HPV) viral gene silencing and cervical cancer treatment. PEGylated liposomes encapsulating siRNA were functionalized with the AG86 targeting peptide-amphiphile which binds to the α6β4 integrin, a cervical cancer biomarker. It was found that both targeting and polymer complexation before encapsulation were critical components to effective transfection.
Collapse
Affiliation(s)
- Rachel M. Levine
- Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMN55455
| | - Christina V. Dinh
- Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMN55455
| | - Michael A. Harris
- Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMN55455
| | - Efrosini Kokkoli
- Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMN55455
| |
Collapse
|
19
|
Pei Z, Zeng J, Gao Y, Li F, Li W, Zhou H, Yang Y, Wu R, Chen Y, Liu J. Oxymatrine inhibits the proliferation of CaSki cells via downregulating HPV16E7 expression. Oncol Rep 2016; 36:291-8. [PMID: 27176229 DOI: 10.3892/or.2016.4800] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/21/2016] [Indexed: 11/06/2022] Open
Abstract
Treatment of recurrent and metastatic cervical cancer remains a challenge, especially in developing countries, which lack efficient screening programs. HPV16E7 has been reported to play an important role in the development of cervical cancer. In recent years, oxymatrine, which was traditionally used as anti-malarial agent, has been shown to inhibit tumor growth with low toxicity to normal cells. In the present study, we investigated the mechanisms underlying the antitumor effect of oxymatrine in cervical cancer. The CCK-8 assay was used to compare the proliferation of untreated and oxymatrine-treated cervical cancer CaSki cells. Flow cytometry was applied to observe the effect of oxymatrine on apoptosis and the cell cycle distribution of CaSki cells. We used qRT-PCR and western blot analysis to determine the mRNA level and protein level of HPV16E7. The HPV16E7 siRNA inhibition was also performed to confirm the effect of downregulating HPV16E7 on the proliferation in CaSki cells. Our results revealed that oxymatrine-treated cells showed time-dependent and dose-dependent inhibition of proliferation and a significant increase in apoptosis. Oxymatrine arrested CaSki cells in G0/G1 phase and S phase while decreased the cells in G2/M phase. The expression of HPV16E7 was significantly downregulated in oxymatrine-treated cells compared with control cells. Knock-down of HPV16E7 effectively inhibited the proliferation of CaSki cells. In conclusion, our data suggest that oxymatrine inhibits cervical cancer growth via downregulation of HPV16E7. Oxymatrine can be considered to be a potential preventive and therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Zhijun Pei
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jing Zeng
- Department of Infection Control, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yan Gao
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Fuyan Li
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Wei Li
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Hong Zhou
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yi Yang
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Ruimin Wu
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yijia Chen
- Department of PET Center and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jie Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
20
|
Artificial microRNAs against the viral E6 protein provoke apoptosis in HPV positive cancer cells. Biochem Biophys Res Commun 2015; 465:658-64. [DOI: 10.1016/j.bbrc.2015.07.144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 02/07/2023]
|
21
|
Human Papillomavirus: Current and Future RNAi Therapeutic Strategies for Cervical Cancer. J Clin Med 2015; 4:1126-55. [PMID: 26239469 PMCID: PMC4470221 DOI: 10.3390/jcm4051126] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/08/2015] [Indexed: 12/16/2022] Open
Abstract
Human papillomaviruses (HPVs) are small DNA viruses; some oncogenic ones can cause different types of cancer, in particular cervical cancer. HPV-associated carcinogenesis provides a classical model system for RNA interference (RNAi) based cancer therapies, because the viral oncogenes E6 and E7 that cause cervical cancer are expressed only in cancerous cells. Previous studies on the development of therapeutic RNAi facilitated the advancement of therapeutic siRNAs and demonstrated its versatility by siRNA-mediated depletion of single or multiple cellular/viral targets. Sequence-specific gene silencing using RNAi shows promise as a novel therapeutic approach for the treatment of a variety of diseases that currently lack effective treatments. However, siRNA-based targeting requires further validation of its efficacy in vitro and in vivo, for its potential off-target effects, and of the design of conventional therapies to be used in combination with siRNAs and their drug delivery vehicles. In this review we discuss what is currently known about HPV-associated carcinogenesis and the potential for combining siRNA with other treatment strategies for the development of future therapies. Finally, we present our assessment of the most promising path to the development of RNAi therapeutic strategies for clinical settings.
Collapse
|
22
|
Chen J. Signaling pathways in HPV-associated cancers and therapeutic implications. Rev Med Virol 2015; 25 Suppl 1:24-53. [PMID: 25752815 DOI: 10.1002/rmv.1823] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 10/15/2014] [Accepted: 12/27/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Jiezhong Chen
- School of Biomedical Sciences and Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; Brisbane Queensland Australia
| |
Collapse
|
23
|
HIV Latency and the noncoding RNA therapeutic landscape. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 848:169-89. [PMID: 25757621 DOI: 10.1007/978-1-4939-2432-5_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Human Immunodeficiency Virus (HIV) belongs to the subfamily of lentiviruses that are characterized by long incubation periods and chronic, persistent infection. The virus integrates into the genome of infected CD4+ cells and, in a subpopulation of cells, adopts a transcriptionally silent state, a process referred to a viral latency. This property makes it exceedingly difficult to therapeutically target the virus and eradicate infection. If left untreated, the inexorable demise of the infected individual's immune system ensues, a causal result of Acquired Immunodeficiency Syndrome (AIDS). Latently infected cells provide a reservoir that maintains viral infection indefinitely. In this chapter we explore the role of noncoding RNAs in HIV infection and in the establishment and maintenance of viral latency. Both short and long noncoding RNAs are endogenous modulators of epigenetic regulation in human cells and play an active role in gene expression. Lastly, we explore therapeutic modalities based on expressed RNAs that are capable of countering infection, transcriptionally regulating the virus, and suppressing or activating the latent state.
Collapse
|
24
|
Nin DS, Yew CW, Tay SK, Deng LW. Targeted silencing of MLL5β inhibits tumor growth and promotes gamma-irradiation sensitization in HPV16/18-associated cervical cancers. Mol Cancer Ther 2014; 13:2572-82. [PMID: 25172963 DOI: 10.1158/1535-7163.mct-14-0019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously identified a novel MLL5 isoform, MLL5β, which was essential for E6 and E7 transcriptional activation in HPV16/18-associated cervical cancers. In this report, we investigated the potential of RNAi-mediated silencing of MLL5β through the use of MLL5β-siRNA as a novel therapeutic strategy for HPV16/18-positive cervical cancer. We observed concurrent downregulation of E6 and E7 after MLL5β silencing, leading to growth inhibition via the activation of apoptosis and senescence in the HeLa cell model. This corresponded with the enhanced antitumor effects of MLL5β-siRNA compared with E6- or E7-siRNA single treatments. Significant reduction in tumor size after MLLβ-siRNA treatment in the HeLa xenograft tumor model further emphasized the importance of MLL5β in HPV16/18-associated tumor growth and the potential of RNAi therapeutics that target MLL5β. We also identified MLL5β as a modulator of gamma-irradiation (IR) sensitization properties of cisplatin. We observed that while MLL5β silencing alone was enough to evoke cisplatin-like IR sensitization in tumor cells in vitro, overexpression of MLL5β inhibited the ability of cisplatin to sensitize HeLa cells to IR-induced cytotoxicity. MLL5β-siRNA-IR cotreatment was also observed to enhance tumor growth inhibition in vivo. Taken together, our findings highlight the potential of targeted silencing of MLL5β via the use of MLL5β-siRNA as a novel therapeutic strategy and propose that MLL5β-siRNA could be a viable alternative for cisplatin in the current cisplatin-based chemotherapeutics for HPV16/18-associated cervical cancers.
Collapse
Affiliation(s)
- Dawn Sijin Nin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Chow Wenn Yew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Sun Kuie Tay
- Department of Obstetrics and Gynaecology, Gynaecologic Oncology Section, Singapore General Hospital and National Cancer Center Singapore, Singapore
| | - Lih-Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore.
| |
Collapse
|
25
|
Wang H, Gao P, Zheng J. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells. Biochem Biophys Res Commun 2014; 451:556-61. [PMID: 25117446 DOI: 10.1016/j.bbrc.2014.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 08/04/2014] [Indexed: 11/29/2022]
Abstract
Arsenic trioxide (As2O3) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As2O3 induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As2O3 on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As2O3 than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As2O3 than HPV 16-positive CaSki and SiHa cells. After As2O3 treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As2O3 is a potential anticancer drug for cervical cancer.
Collapse
Affiliation(s)
- Hongtao Wang
- Department of Pathology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Peng Gao
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jie Zheng
- Department of Pathology, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
26
|
Manipulation of cellular DNA damage repair machinery facilitates propagation of human papillomaviruses. Semin Cancer Biol 2014; 26:30-42. [PMID: 24412279 DOI: 10.1016/j.semcancer.2013.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 12/05/2013] [Accepted: 12/18/2013] [Indexed: 01/08/2023]
Abstract
In general, the interplay among viruses and DNA damage repair (DDR) pathways can be divided based on whether the interaction promotes or inhibits the viral lifecycle. The propagation of human papillomaviruses is both promoted and inhibited by DDR proteins. As a result, HPV proteins both activate repair pathways, such as the ATM and ATR pathways, and inhibit other pathways, most notably the p53 signaling pathway. Indeed, the role of HPV proteins, with regard to the DDR pathways, can be divided into two broad categories. The first set of viral proteins, HPV E1 and E2 activate a DNA damage response and recruit repair proteins to viral replication centers, where these proteins are likely usurped to replicate the viral genome. Because the activation of the DDR response typically elicits a cell cycle arrest that would impeded the viral lifecycle, the second set of HPV proteins, HPV E6 and E7, prevents the DDR response from pausing cell cycle progression or inducing apoptosis. This review provides a detailed account of the interactions among HPV proteins and DDR proteins that facilitate HPV propagation.
Collapse
|
27
|
Abstract
Hepatitis B virus (HBV), hepatitis C virus (HCV), human papillomavirus (HPV), and Epstein-Barr virus (EBV) contribute to about 10-15 % global burden of human cancers. Conventional chemotherapy or molecular target therapies have been used to treat virus-associated cancers. However, a more proactive approach would be the use of antiviral treatment to suppress or eliminate viral infections to prevent the occurrence of cancer in the first place. Antiviral treatments against chronic HBV and HCV infections have achieved this goal, with significant reduction in the incidence of hepatocellular carcinoma in treated patients. Antiviral treatments for EBV, Kaposi's sarcoma-associated herpesvirus (KSHV), and human T-cell lymphotropic virus type 1 (HTLV-1) had limited success in treating refractory EBV-associated lymphoma and post-transplant lymphoproliferative disorder, KSHV-associated Kaposi's sarcoma in AIDS patients, and HTLV-1-associated acute, chronic, and smoldering subtypes of adult T-cell lymphoma, respectively. Therapeutic HPV vaccine and RNA-interference-based therapies for treating HPV-associated cervical cancers also showed some encouraging results. Taken together, antiviral therapies have yielded promising results in cancer prevention and treatment. More large-scale studies are necessary to confirm the efficacy of antiviral therapy. Further investigation for more effective and convenient antiviral regimens warrants more attention.
Collapse
Affiliation(s)
- Wei-Liang Shih
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
28
|
Human RNAi pathway: crosstalk with organelles and cells. Funct Integr Genomics 2013; 14:31-46. [PMID: 24197738 DOI: 10.1007/s10142-013-0344-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 12/12/2022]
Abstract
Understanding gene regulation mechanisms has been a serious challenge in biology. As a novel mechanism, small non-coding RNAs are an alternative means of gene regulation in a specific and efficient manner. There are growing reports on regulatory roles of these RNAs including transcriptional gene silencing/activation and post-transcriptional gene silencing events. Also, there are several known small non-coding RNAs which all work through RNA interference pathway. Interestingly, these small RNAs are secreted from cells toward targeted cells presenting new communication approach in cell-cell or cell-organ signal transduction. In fact, understanding cellular and molecular basis of these pathways will strongly improve developing targeted therapies and potent and specific regulatory tools. This study will review some of the most recent findings in this subject and will introduce a super-pathway RNA interference-based small RNA silencing network.
Collapse
|
29
|
Varela MA, Roberts TC, Wood MJA. Epigenetics and ncRNAs in brain function and disease: mechanisms and prospects for therapy. Neurotherapeutics 2013; 10:621-31. [PMID: 24068583 PMCID: PMC3805859 DOI: 10.1007/s13311-013-0212-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The most fundamental roles of non-coding RNAs (ncRNAs) and epigenetic mechanisms are the guidance of cellular differentiation in development and the regulation of gene expression in adult tissues. In brain, both ncRNAs and the various epigenetic gene regulatory mechanisms play a fundamental role in neurogenesis and normal neuronal function. Thus, epigenetic chromatin remodelling can render coding sites transcriptionally inactive by DNA methylation, histone modifications or antisense RNA interactions. On the other hand, microRNAs (miRNAs) are ncRNA molecules that can regulate the expression of hundreds of genes post-transcriptionally, typically recognising binding sites in the 3' untranslated region (UTR) of mRNA transcripts. Furthermore, there are a myriad of interactions in the interface of miRNAs and epigenetics. For example, epigenetic mechanisms can silence miRNA coding sites, and miRNAs can be the effectors of transcriptional gene silencing, targeting complementary promoters or silencing the expression of epigenetic modifier genes like MECP2 and EZH2 leading to global changes in the epigenome. Alterations in this regulatory machinery play a key role in the pathology of complex disorders including cancer and neurological diseases. For example, miRNA genes are frequently inactivated by epimutations in gliomas. Here we describe the interactions between epigenetic and ncRNA regulatory systems and discuss therapeutic potential, with an emphasis on tumors, cognitive disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Miguel A. Varela
- />Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Thomas C. Roberts
- />Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
- />Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA USA
| | - Matthew J. A. Wood
- />Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| |
Collapse
|
30
|
Halim TA, Farooqi AA, Zaman F. Nip the HPV encoded evil in the cancer bud: HPV reshapes TRAILs and signaling landscapes. Cancer Cell Int 2013; 13:61. [PMID: 23773282 PMCID: PMC3691735 DOI: 10.1186/1475-2867-13-61] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/17/2013] [Indexed: 12/18/2022] Open
Abstract
HPV encoded proteins can elicit ectopic protein–protein interactions that re-wire signaling pathways, in a mode that promotes malignancy. Moreover, accumulating data related to HPV is now providing compelling substantiation of a central role played by HPV in escaping immunosurveillance and impairment of apoptotic response. What emerges is an intricate network of Wnt, TGF, Notch signaling cascades that forms higher-order ligand–receptor complexes routing downstream signaling in HPV infected cells. These HPV infected cells are regulated both extracellularly by ligand receptor axis and intracellularly by HPV encoded proteins and impair TRAIL mediated apoptosis. We divide this review into different sections addressing how linear signaling pathways integrate to facilitate carcinogenesis and compounds that directly or indirectly reverse these aberrant interactions offer new possibilities for therapy in cancer. Although HPV encoded proteins mediated misrepresentation of pathways is difficult to target, improved drug-discovery platforms and new technologies have facilitated the discovery of agents that can target dysregulated pathways in HPV infected cervical cancer cells, thus setting the stage for preclinical models and clinical trials.
Collapse
Affiliation(s)
- Talha Abdul Halim
- Laboratory for Translational oncology and Personalized Medicine, RLMC, 35 Km Ferozepur Road, Lahore, Pakistan.
| | | | | |
Collapse
|
31
|
Zhou J, Li B, Peng C, Wang F, Fu Z, Zhou C, Hong D, Ye F, Lü W, Xie X. Inhibition of cervical cancer cell growth in vitro and in vivo by lentiviral-vector mediated shRNA targeting the common promoter of HPV16 E6 and E7 oncogenes. Antiviral Res 2013; 98:305-13. [PMID: 23523766 DOI: 10.1016/j.antiviral.2013.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 11/19/2022]
Abstract
Deregulated expression of high-risk human papillomavirus oncogenes (E6 and E7) is a pivotal event for pathogenesis and progression in cervical cancer. Both viral oncogenes are therefore regarded as ideal therapeutic targets. Small interfering RNAs (siRNA) or double-stranded RNAs can knock down target genes effectively through siRNA-induced transcriptional gene silencing (TGS). Here, we established lentiviral-vector mediated shRNA (LV-shRNA) targeting common promoter of HPV16 E6/E7 and targeting E6 transcript, transduced the lentiviral construct into cervical HPV16-positive cell lines Siha and Caski, then selected and established stably transduced monoclonal cell lines. The results showed that LV-shRNA targeting promoter, as well as targeting E6 transcript, effectively knocked down E6 and E7 expression, resulted in accumulation of p53 and pRB protein and decrease of MCM7 and p16 protein, and consequently remarkably reduced the abilities of proliferation and invasiveness of cervical cancers cells in vitro. Then we inoculated subcutaneously those monoclonal cells into nude mice to establish the transplanted tumor animal models, and found dramatically inhibited tumorigenesis and growth, as well as prolonged survival time of mice incubated by cells with LV-shRNA targeting promoter and E6 transcript. Our results may provide evidence for application of LV-shRNA targeting HR-HPV key oncogenes, as a new treatment strategy, in cervical and other HPV-associated cancer therapy.
Collapse
Affiliation(s)
- Jiansong Zhou
- Women's Reproductive Health Laboratory of Zhejiang Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Toscano-Garibay JD, Aquino-Jarquin G. Regulation exerted by miRNAs in the promoter and UTR sequences: MDR1/P-gp expression as a particular case. DNA Cell Biol 2012; 31:1358-64. [PMID: 22662865 DOI: 10.1089/dna.2012.1703] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
One of the common forms of multidrug resistance (MDR) is caused by activation of the mdr1 (ABCB1) gene, resulting in overexpression of P-glycoprotein (P-gp) and conferring cancer cell resistance to a broad range of chemotherapeutics. Recently, P-gp-mediated MDR has been associated with aberrant expression of microRNAs (miRNAs) in several types of cancer. miRNAs are small noncoding RNAs that regulate gene expression in a posttranscriptional manner through partial or total hybridization with specific sequences in the 3'-UTR of target mRNAs. Interestingly, there are at least two reports that suggest an additional regulation by miRNAs at the mdr1 promoter level. Here, we critically analyzed some of the miRNAs that regulate P-gp expression at two different levels: posttranscriptional and transcriptional. We proposed that the latter may occur through two possible scenarios: (1) direct miRNA hybridization with an active promoter and (2) triplex structure formation (double-stranded DNA/RNA) stabilized by Argonaute 2. Also, we classified transcriptional gene silencing (1) by homology, represented by small interfering RNAs directed to viral promoters, and (2) by complementarity (Watson-Crick/Hoogsteen base pairing), mediated by miRNAs. Transcriptional regulation could represent a new avenue of knowledge applicable to the modulation of other genes mediated by these noncoding RNAs.
Collapse
Affiliation(s)
- Julia D Toscano-Garibay
- Regenerative Medicine Laboratory, Research Direction, Hospital Juarez of Mexico, Mexico City, Mexico
| | | |
Collapse
|
33
|
Abstract
Myostatin (Mstn) is a secreted growth factor that negatively regulates muscle mass and is therefore a potential pharmacological target for the treatment of muscle wasting disorders such as Duchenne muscular dystrophy. Here we describe a novel Mstn blockade approach in which small interfering RNAs (siRNAs) complementary to a promoter-associated transcript induce transcriptional gene silencing (TGS) in two differentiated mouse muscle cell lines. Silencing is sensitive to treatment with the histone deacetylase inhibitor trichostatin A, and the silent state chromatin mark H3K9me2 is enriched at the Mstn promoter following siRNA transfection, suggesting epigenetic remodeling underlies the silencing effect. These observations suggest that long-term epigenetic silencing may be feasible for Mstn and that TGS is a promising novel therapeutic strategy for the treatment of muscle wasting disorders.
Collapse
|
34
|
Knowling S, Stapleton K, Turner AMW, Uhlmann E, Lehmann T, Vollmer J, Morris KV. Chemically Modified Oligonucleotides Modulate an Epigenetically Varied and Transient Form of Transcription Silencing of HIV-1 in Human Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2012; 1:e16. [PMID: 23343927 PMCID: PMC3381641 DOI: 10.1038/mtna.2012.8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Small noncoding RNAs (ncRNAs) have been shown to guide epigenetic silencing complexes to target loci in human cells. When targeted to gene promoters, these small RNAs can lead to long-term stable epigenetic silencing of gene transcription. To date, small RNAs have been shown to modulate transcriptional gene silencing (TGS) of human immunodeficiency virus type 1 (HIV-1) as well as several other disease-related genes, but it has remained unknown as to what extent particular chemistries can be used to generate single-stranded backbone-modified oligonucleotides that are amenable to this form of gene targeting and regulation. Here, we present data indicating that specific combinations of backbone modifications can be used to generate single-stranded antisense oligonucleotides that can functionally direct TGS of HIV-1 in a manner that is however, independent of epigenetic changes at the target loci. Furthermore, this functionality appears contingent on the absence of a 5' phosphate in the oligonucleotide. These data suggest that chemically modified oligonucleotide based approaches could be implemented as a means to regulate gene transcription in an epigenetically independent manner.
Collapse
Affiliation(s)
- Stuart Knowling
- Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|