1
|
Hanafi D, Onyenwoke RU, Kimbro KS. The G-Protein-Coupled Estrogen Receptor Selective Agonist G-1 Attenuates Cell Viability and Migration in High-Grade Serous Ovarian Cancer Cell Lines. Int J Mol Sci 2024; 25:6499. [PMID: 38928205 PMCID: PMC11203932 DOI: 10.3390/ijms25126499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The G-protein-coupled estrogen receptor (GPER; G-protein-coupled estrogen receptor 30, also known as GPR30) is a novel estrogen receptor and has emerged as a promising target for ovarian cancer. GPER, a seven-transmembrane receptor, suppresses cellular viability and migration in studied ovarian cancer cells. However, its impact on the fallopian tube, which is the potential origin of high-grade serous (HGSC) ovarian cancer, has not been addressed. This study was conducted to evaluate the relationship of GPER, ovarian cancer subtypes, i.e., high-grade serous cell lines (OV90 and OVCAR420), as well as the cell type that is the potential origin of HGSC ovarian cancer (i.e., the fallopian tube cell line FT190). The selective ligand assessed here is the agonist G-1, which was utilized in an in vitro study to characterize its effects on cellular viability and migration. As a result, this study has addressed the effect of a specific GPER agonist on cell viability, providing a better understanding of the effects of this compound on our diverse group of studied cell lines. Strikingly, attenuated cell proliferation and migration behaviors were observed in the presence of G-1. Thus, our in vitro study reveals the impact of the origin of HGSC ovarian cancers and highlights the GPER agonist G-1 as a potential therapy for ovarian cancer.
Collapse
Affiliation(s)
- Donia Hanafi
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA;
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA;
| | - Rob U. Onyenwoke
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA;
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA
| | - K. Sean Kimbro
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA;
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA;
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine (MSM), Atlanta, GA 30310, USA
| |
Collapse
|
2
|
Ju JA, Gilkes DM. RhoB: Team Oncogene or Team Tumor Suppressor? Genes (Basel) 2018; 9:E67. [PMID: 29385717 PMCID: PMC5852563 DOI: 10.3390/genes9020067] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/21/2018] [Accepted: 01/24/2018] [Indexed: 12/31/2022] Open
Abstract
Although Rho GTPases RhoA, RhoB, and RhoC share more than 85% amino acid sequence identity, they play very distinct roles in tumor progression. RhoA and RhoC have been suggested in many studies to contribute positively to tumor development, but the role of RhoB in cancer remains elusive. RhoB contains a unique C-terminal region that undergoes specific post-translational modifications affecting its localization and function. In contrast to RhoA and RhoC, RhoB not only localizes at the plasma membrane, but also on endosomes, multivesicular bodies and has even been identified in the nucleus. These unique features are what contribute to the diversity and potentially opposing functions of RhoB in the tumor microenvironment. Here, we discuss the dualistic role that RhoB plays as both an oncogene and tumor suppressor in the context of cancer development and progression.
Collapse
Affiliation(s)
- Julia A Ju
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Daniele M Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
3
|
Emerging Therapeutics to Overcome Chemoresistance in Epithelial Ovarian Cancer: A Mini-Review. Int J Mol Sci 2017; 18:ijms18102171. [PMID: 29057791 PMCID: PMC5666852 DOI: 10.3390/ijms18102171] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is the fifth leading cause of cancer death among women and the most lethal gynecologic malignancy. One of the leading causes of death in high-grade serous ovarian cancer (HGSOC) is chemoresistant disease, which may present as intrinsic or acquired resistance to therapies. Here we discuss some of the known molecular mechanisms of chemoresistance that have been exhaustively investigated in chemoresistant ovarian cancer, including drug efflux pump multidrug resistance protein 1 (MDR1), the epithelial–mesenchymal transition, DNA damage and repair capacity. We also discuss novel therapeutics that may address some of the challenges in bringing approaches that target chemoresistant processes from bench to bedside. Some of these new therapies include novel drug delivery systems, targets that may halt adaptive changes in the tumor, exploitation of tumor mutations that leave cancer cells vulnerable to irreversible damage, and novel drugs that target ribosomal biogenesis, a process that may be uniquely different in cancer versus non-cancerous cells. Each of these approaches, or a combination of them, may provide a greater number of positive outcomes for a broader population of HGSOC patients.
Collapse
|
4
|
Chen W, Niu S, Ma X, Zhang P, Gao Y, Fan Y, Pang H, Gong H, Shen D, Gu L, Zhang Y, Zhang X. RhoB Acts as a Tumor Suppressor That Inhibits Malignancy of Clear Cell Renal Cell Carcinoma. PLoS One 2016; 11:e0157599. [PMID: 27384222 PMCID: PMC4934884 DOI: 10.1371/journal.pone.0157599] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 05/31/2016] [Indexed: 01/09/2023] Open
Abstract
This study aims to investigate the biological role of RhoB in clear cell renal cell carcinoma (ccRCC). The expression of RhoB was examined in specimens of patients and cell lines by Western blot and Immunohistochemistry. The correlation between RhoB expression and clinicopathologic variables was also analyzed. The effects of RhoB on cell proliferation, cell cycle, cell apoptosis, and invasion/migration were detected by over-expression and knockdown of RhoB level in ccRCC cells via plasmids and RNAi. The results showed that RhoB was low-expressed in ccRCC surgical specimens and cell lines compared with adjacent normal renal tissues and normal human renal proximal tubular epithelial cell lines (HKC), and its protein expression level was significantly associated with the tumor pathologic parameter embracing tumor size(P = 0.0157), pT stage(P = 0.0035), TNM stage(P = 0.0024) and Fuhrman tumor grade(P = 0.0008). Further, over-expression of RhoB remarkably inhibited the cancer cell proliferation, colony formation and promoted cancer cell apoptosis, and aslo reduced the invasion and migration ability of ccRCC cells. Interestingly, up-regulation of RhoB could induce cell cycle arrest in G2/M phase and led to cell cycle regulators(CyclineB1,CDK1) and pro-apoptotic protein(casp3,casp9) aberrant expression. Moreover, knockdown of RhoB in HKC cells promoted cell proliferation and migration. Taken together, our study indicates that RhoB expression is decreased in ccRCC carcinogenesis and progression. Up-regulation of RhoB significantly inhibits ccRCC cell malignant phenotype. These findings show that RhoB may play a tumor suppressive role in ccRCC cells, raising its potential value in futural therapeutic target for the patients of ccRCC.
Collapse
Affiliation(s)
- Weihao Chen
- The State Key Laboratory of Kidney Diseases, Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
- Department of Urology, General Hospital of the Navy, Beijing, China
| | - Shaoxi Niu
- The State Key Laboratory of Kidney Diseases, Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Xin Ma
- The State Key Laboratory of Kidney Diseases, Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Peng Zhang
- The State Key Laboratory of Kidney Diseases, Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Yu Gao
- The State Key Laboratory of Kidney Diseases, Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Yang Fan
- The State Key Laboratory of Kidney Diseases, Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Haigang Pang
- The State Key Laboratory of Kidney Diseases, Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Huijie Gong
- The State Key Laboratory of Kidney Diseases, Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Donglai Shen
- The State Key Laboratory of Kidney Diseases, Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Liangyou Gu
- The State Key Laboratory of Kidney Diseases, Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Yu Zhang
- The State Key Laboratory of Kidney Diseases, Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Xu Zhang
- The State Key Laboratory of Kidney Diseases, Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
5
|
Delmas A, Cherier J, Pohorecka M, Medale-Giamarchi C, Meyer N, Casanova A, Sordet O, Lamant L, Savina A, Pradines A, Favre G. The c-Jun/RHOB/AKT pathway confers resistance of BRAF-mutant melanoma cells to MAPK inhibitors. Oncotarget 2016; 6:15250-64. [PMID: 26098773 PMCID: PMC4558149 DOI: 10.18632/oncotarget.3888] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/25/2015] [Indexed: 11/25/2022] Open
Abstract
The response of BRAF-mutant melanoma patients to BRAF inhibitors is dramatically impaired by secondary resistances and rapid relapse. So far, the molecular mechanisms driving these resistances are not completely understood. Here, we show that, in BRAF-mutant melanoma cells, inhibition of BRAF or its target MEK induces RHOB expression by a mechanism that depends on the transcription factor c-Jun. In those cells, RHOB deficiency causes hypersensitivity to BRAF and MEK inhibitors-induced apoptosis. Supporting these results, loss of RHOB expression in metastatic melanoma tissues is associated with an increased progression-free survival of BRAF-mutant patients treated with vemurafenib. Following BRAF inhibition, RHOB activates AKT whose inhibition causes hypersensitivity of BRAF-mutant melanoma cells to BRAF inhibitors. In mice, AKT inhibition synergizes with vemurafenib to block tumor growth of BRAF-mutant metastatic melanoma. Our findings reveal that BRAF inhibition activates a c-Jun/RHOB/AKT pathway that promotes tumor cell survival and further support a role of this pathway in the resistance of melanoma to vemurafenib. Our data also highlight the importance of using RHOB tumor levels as a biomarker to predict vemurafenib patient's response and to select those that would benefit of the combination with AKT inhibitors.
Collapse
Affiliation(s)
- Audrey Delmas
- Inserm, UMR 1037-CRCT, Toulouse, France.,Université Paul Sabatier, Toulouse, France.,Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Laboratory of Medical Biology and Oncogenetics, Toulouse, France
| | - Julia Cherier
- Inserm, UMR 1037-CRCT, Toulouse, France.,Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Laboratory of Medical Biology and Oncogenetics, Toulouse, France
| | - Magdalena Pohorecka
- Inserm, UMR 1037-CRCT, Toulouse, France.,Université Paul Sabatier, Toulouse, France.,Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Laboratory of Medical Biology and Oncogenetics, Toulouse, France
| | - Claire Medale-Giamarchi
- Inserm, UMR 1037-CRCT, Toulouse, France.,Université Paul Sabatier, Toulouse, France.,Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Laboratory of Medical Biology and Oncogenetics, Toulouse, France
| | - Nicolas Meyer
- Inserm, UMR 1037-CRCT, Toulouse, France.,Université Paul Sabatier, Toulouse, France.,Centre Hospitalo-Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, Department of Dermatology, Toulouse, France
| | - Anne Casanova
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Laboratory of Medical Biology and Oncogenetics, Toulouse, France
| | - Olivier Sordet
- Inserm, UMR 1037-CRCT, Toulouse, France.,Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Laboratory of Medical Biology and Oncogenetics, Toulouse, France
| | - Laurence Lamant
- Inserm, UMR 1037-CRCT, Toulouse, France.,Centre Hospitalo-Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, Department of Pathology, Toulouse, France
| | - Ariel Savina
- Scientific Partnerships, Roche SAS, Boulogne Billancourt, France
| | - Anne Pradines
- Inserm, UMR 1037-CRCT, Toulouse, France.,Université Paul Sabatier, Toulouse, France.,Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Laboratory of Medical Biology and Oncogenetics, Toulouse, France
| | - Gilles Favre
- Inserm, UMR 1037-CRCT, Toulouse, France.,Université Paul Sabatier, Toulouse, France.,Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Laboratory of Medical Biology and Oncogenetics, Toulouse, France
| |
Collapse
|
6
|
Montero AJ, Kwon D, Flores A, Kovacs K, Trent JC, Benedetto P, Rocha-Lima C, Merchan JR. A Phase I Clinical, Pharmacokinetic, and Pharmacodynamic Study of Weekly or Every Three Week Ixabepilone and Daily Sunitinib in Patients with Advanced Solid Tumors. Clin Cancer Res 2016; 22:3209-17. [PMID: 26864210 DOI: 10.1158/1078-0432.ccr-15-2184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/12/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE To evaluate the safety, MTD, pharmacokinetics/pharmacodynamics, and early clinical activity of ixabepilone given either weekly or every 3 weeks in combination with daily sunitinib in patients with advanced solid tumors. EXPERIMENTAL DESIGN Eligible patients received either weekly (schedule A) or every 3 weeks (schedule B) ixabepilone at escalating doses (schedule A: 7.5, 15, or 20 mg/m(2); schedule B: 20, 30, or 40 mg/m(2)), and oral sunitinib (37.5 mg daily), starting on day 8 of cycle 1. Dose-limiting toxicities (DLT) were assessed during cycle 1. RESULTS The ixabepilone and sunitinib combination was fairly well tolerated. DLTs were observed in 3 subjects (1 in schedule 3A and 2 in schedule 3B). The most common grade 3-4 hematologic and nonhematologic adverse events were leukopenia and fatigue, respectively. Four patients (3 in schedule A) achieved a partial response, while 13 patients had stable disease. Nine of 17 heavily pretreated colorectal cancer patients had clinical benefit. Coadministration of sunitinib with ixabepilone on a weekly (but not every 3 week) schedule was associated with a significant increase in the half-life and a significant decrease in the clearance of ixabepilone. Correlative studies demonstrated a significant association between higher baseline plasma angiogenic activity (PAA) and clinical benefit in schedule A patients. Weekly, but not every 3 weeks, ixabepilone led to a significant decrease in PAA postbaseline. CONCLUSIONS Coadministration of ixabepilone with sunitinib has acceptable toxicity and encouraging clinical activity in heavily pretreated patients, particularly in patients with metastatic colorectal cancer. Clin Cancer Res; 22(13); 3209-17. ©2016 AACR.
Collapse
Affiliation(s)
- Alberto J Montero
- Department of Medicine, Division of Hematology-Oncology, University of Miami Sylvester Comprehensive Cancer Center, Miami, Florida.
| | - Deukwoo Kwon
- Biostatistics and Bioinformatics Core, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Aurea Flores
- Department of Medicine, Division of Hematology-Oncology, University of Miami Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Krisztina Kovacs
- Department of Medicine, Division of Hematology-Oncology, University of Miami Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Jonathan C Trent
- Department of Medicine, Division of Hematology-Oncology, University of Miami Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Pasquale Benedetto
- Department of Medicine, Division of Hematology-Oncology, University of Miami Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Caio Rocha-Lima
- Department of Medicine, Division of Hematology-Oncology, University of Miami Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Jaime R Merchan
- Department of Medicine, Division of Hematology-Oncology, University of Miami Sylvester Comprehensive Cancer Center, Miami, Florida.
| |
Collapse
|
7
|
Tu CC, Huang CY, Cheng WL, Hung CS, Chang YJ, Wei PL. Silencing A7-nAChR levels increases the sensitivity of gastric cancer cells to ixabepilone treatment. Tumour Biol 2016; 37:9493-501. [PMID: 26790437 DOI: 10.1007/s13277-015-4751-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/29/2015] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer is an important health issue worldwide. Currently, improving the therapeutic efficacy of chemotherapy drugs is an important goal of cancer research. Alpha-7 nicotine acetylcholine receptor (A7-nAChR) is the key molecule that mediates gastric cancer progression, metastasis, and therapy responses; however, the role of A7-nAChR in the therapeutic efficacy of ixabepilone remains unclear. A7-nAChR expression was silenced by small interfering RNA (siRNA) technology. The cytotoxicity of ixabepilone was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and ixabepilone-induced apoptosis was analyzed by flow cytometry and annexin V/propidium iodide (PI) apoptotic assay. The expression patterns of anti-apoptotic proteins (AKT, phospho-AKT, Mcl-1, and Bcl-2) and pro-apoptotic proteins (Bad and Bax) were determined by western blot. Our study found that A7-nAChR knockdown (A7-nAChR-KD) AGS cells were more sensitive to ixabepilone administration than scrambled control AGS cells. We found that A7-nAChR knockdown enhanced ixabepilone-induced cell death as evidenced by the increased number of annexin V-positive (apoptotic) cells. After scrambled control and A7-nAChR-KD cells were treated with ixabepilone, we found that pAKT and AKT levels were significantly reduced in both groups of cells. The levels of Bcl-2 and the anti-apoptotic Mcl-1 isoform increased dramatically after ixabepilone treatment in scrambled control cells but not in A7-nAChR-KD cells. Bad and Bax levels did not change between the treatment group and vehicle group in both A7-nAChR-KD and scrambled control cells, whereas cleaved PARP levels dramatically increased in ixabepilone-treated A7-nAChR-KD cells. Our results demonstrated that knockdown of A7-nAChR enhanced the sensitivity of gastric cancer cells to ixabepilone administration. Thus, the A7-nAChR expression level in patients with gastric cancer may be a good indicator of ixabepilone sensitivity.
Collapse
Affiliation(s)
- Chao-Chiang Tu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, New Taipei Hospital, Taipei, Taiwan
| | - Chien-Yu Huang
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wan-Li Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Sheng Hung
- Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, 250 Wu-Xin Street, Taipei City, 110, Taiwan
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, 250 Wu-Xin Street, Taipei City, 110, Taiwan.
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
- Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, 250 Wu-Xin Street, Taipei City, 110, Taiwan.
| |
Collapse
|
8
|
Rozati S, Cheng PF, Widmer DS, Fujii K, Levesque MP, Dummer R. Romidepsin and Azacitidine Synergize in their Epigenetic Modulatory Effects to Induce Apoptosis in CTCL. Clin Cancer Res 2015; 22:2020-31. [DOI: 10.1158/1078-0432.ccr-15-1435] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/19/2015] [Indexed: 11/16/2022]
|
9
|
Marlow LA, Bok I, Smallridge RC, Copland JA. RhoB upregulation leads to either apoptosis or cytostasis through differential target selection. Endocr Relat Cancer 2015. [PMID: 26206775 PMCID: PMC4559850 DOI: 10.1530/erc-14-0302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Anaplastic thyroid carcinoma is a highly aggressive undifferentiated carcinoma with a mortality rate near 100% due to an assortment of genomic abnormalities which impede the success of therapeutic options. Our laboratory has previously identified that RhoB upregulation serves as a novel molecular therapeutic target and agents upregulating RhoB combined with paclitaxel lead to antitumor synergy. Knowing that histone deacetylase 1 (HDAC1) transcriptionally suppresses RhoB, we sought to extend our findings to other HDACs and to identify the HDAC inhibitor (HDACi) that optimally synergize with paclitaxel. Here we identify HDAC6 as a newly discovered RhoB repressor. By using isoform selective HDAC inhibitors (HDACi) and shRNAs, we show that RhoB has divergent downstream signaling partners, which are dependent on the HDAC isoform that is inhibited. When RhoB upregulates only p21 (cyclin kinase inhibitor) using a class I HDACi (romidepsin), cells undergo cytostasis. When RhoB upregulates BIMEL using class II/(I) HDACi (belinostat or vorinostat), apoptosis occurs. Combinatorial synergy with paclitaxel is dependent upon RhoB and BIMEL while upregulation of RhoB and only p21 blocks synergy. This bifurcated regulation of the cell cycle by RhoB is novel and silencing either p21 or BIMEL turns the previously silenced pathway on, leading to phenotypic reversal. This study intimates that the combination of belinostat/vorinostat with paclitaxel may prove to be an effective therapeutic strategy via the novel observation that class II/(I) HDACi antagonize HDAC6-mediated suppression of RhoB and subsequent BIMEL, thereby promoting antitumor synergy. These overall observations may provide a mechanistic understanding of optimal therapeutic response.
Collapse
Affiliation(s)
- Laura A Marlow
- Departments of Cancer BiologyInternal MedicineDivision of EndocrinologyEndocrine Malignancy Working GroupMayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - Ilah Bok
- Departments of Cancer BiologyInternal MedicineDivision of EndocrinologyEndocrine Malignancy Working GroupMayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - Robert C Smallridge
- Departments of Cancer BiologyInternal MedicineDivision of EndocrinologyEndocrine Malignancy Working GroupMayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA Departments of Cancer BiologyInternal MedicineDivision of EndocrinologyEndocrine Malignancy Working GroupMayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA Departments of Cancer BiologyInternal MedicineDivision of EndocrinologyEndocrine Malignancy Working GroupMayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - John A Copland
- Departments of Cancer BiologyInternal MedicineDivision of EndocrinologyEndocrine Malignancy Working GroupMayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA Departments of Cancer BiologyInternal MedicineDivision of EndocrinologyEndocrine Malignancy Working GroupMayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| |
Collapse
|
10
|
Tan Y, Yin H, Zhang H, Fang J, Zheng W, Li D, Li Y, Cao W, Sun C, Liang Y, Zeng J, Zou H, Fu W, Yang X. Sp1-driven up-regulation of miR-19a decreases RHOB and promotes pancreatic cancer. Oncotarget 2015; 6:17391-403. [PMID: 26041879 PMCID: PMC4627316 DOI: 10.18632/oncotarget.3975] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/13/2015] [Indexed: 01/20/2023] Open
Abstract
Cancer treatment alters microRNA (miRNA) expression, revealing potential therapeutic targets (oncotarget). Here we treated pancreatic cancer (ASPC-1) cells with either recombinant human endostatin (rh-endostatin) or gemcitabine. Then high-throughput sequencing assay was performed to screen for altered miRNAs. Both treatments decreased levels of MiR-19a. We found that miR-19a stimulated cell proliferation, migration, invasion in vitro and tumor growth in vivo. High levels of miR-19a correlated with poor prognosis in patients. Ras homolog family member B (RHOB) was identified as a direct target of miR-19a. Furthermore, RHOB was down-regulated in human pancreatic cancer samples. Restoration of RHOB induced apoptosis, inhibited proliferation and migration of ASPC-1 cells. SP-1 was identified as an upstream transcription factor of miR-19a gene, promoting miR-19a transcription. Rh-endostatin decreased miR-19a expression by down-regulating SP-1. These findings suggest that miR-19a is a potential therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Yonggang Tan
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, P.R. China
- Department of Pathology, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| | - Hongzhuan Yin
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| | - Heying Zhang
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| | - Jun Fang
- Laboratory of Microbiology & Oncology, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Wei Zheng
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| | - Dan Li
- Department of Pathology, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| | - Yue Li
- Department of Pathology, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| | - Wei Cao
- Department of Pathology, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| | - Cheng Sun
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| | - Yusi Liang
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| | - Juan Zeng
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| | - Huawei Zou
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| | - Weineng Fu
- Department of Medical Genetics, China Medical University, Shenyang, P.R. China
| | - Xianghong Yang
- Department of Pathology, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| |
Collapse
|
11
|
Aspe JR, Diaz Osterman CJ, Jutzy JMS, Deshields S, Whang S, Wall NR. Enhancement of Gemcitabine sensitivity in pancreatic adenocarcinoma by novel exosome-mediated delivery of the Survivin-T34A mutant. J Extracell Vesicles 2014; 3:23244. [PMID: 24624263 PMCID: PMC3929070 DOI: 10.3402/jev.v3.23244] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 12/12/2022] Open
Abstract
Background Current therapeutic options for advanced pancreatic cancer have been largely disappointing with modest results at best, and though adjuvant therapy remains controversial, most remain in agreement that Gemcitabine should stand as part of any combination study. The inhibitor of apoptosis (IAP) protein Survivin is a key factor in maintaining apoptosis resistance, and its dominant-negative mutant (Survivin-T34A) has been shown to block Survivin, inducing caspase activation and apoptosis. Methods In this study, exosomes, collected from a melanoma cell line built to harbor a tetracycline-regulated Survivin-T34A, were plated on the pancreatic adenocarcinoma (MIA PaCa-2) cell line. Evaluation of the presence of Survivin-T34A in these exosomes followed by their ability to induce Gemcitabine-potentiative cell killing was the objective of this work. Results Here we show that exosomes collected in the absence of tetracycline (tet-off) from the engineered melanoma cell do contain Survivin-T34A and when used alone or in combination with Gemcitabine, induced a significant increase in apoptotic cell death when compared to Gemcitabine alone on a variety of pancreatic cancer cell lines. Conclusion This exosomes/Survivin-T34A study shows that a new delivery method for anticancer proteins within the cancer microenvironment may prove useful in targeting cancers of the pancreas.
Collapse
Affiliation(s)
- Jonathan R Aspe
- Division of Biochemistry & Microbiology, Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Carlos J Diaz Osterman
- Division of Biochemistry & Microbiology, Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jessica M S Jutzy
- Division of Biochemistry & Microbiology, Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Simone Deshields
- Division of Biochemistry & Microbiology, Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Sonia Whang
- Division of Biochemistry & Microbiology, Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Nathan R Wall
- Division of Biochemistry & Microbiology, Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
12
|
Synergistic effect between cisplatin and sunitinib malate on human urinary bladder-cancer cell lines. BIOMED RESEARCH INTERNATIONAL 2013; 2013:791406. [PMID: 24369536 PMCID: PMC3863483 DOI: 10.1155/2013/791406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/31/2013] [Indexed: 12/18/2022]
Abstract
The aim of this paper is to analyse sunitinib malate in vitro ability to enhance cisplatin cytotoxicity in T24, 5637, and HT1376 human urinary bladder-cancer cell lines. Cells were treated with cisplatin (3, 6, 13, and 18 μM) and sunitinib malate (1, 2, 4, 6, and 20 μM), either in isolation or combined, over the course of 72 hours. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, acridine orange, and monodansylcadaverine staining and flow cytometry were performed. The combination index (CI) was calculated based on the Chou and Talalay method. In isolation, cisplatin and sunitinib malate statistically (P < 0.05) decrease cell viability in all cell lines in a dose-dependent manner, with the presence of autophagic vacuoles. A cell cycle arrest in early S-phase and in G0/G1-phase was also found after exposure to cisplatin and sunitinib malate, in isolation, respectively. Treatment of urinary bladder-cancer cells with a combination of cisplatin and sunitinib malate showed a synergistic effect (CI < 1). Autophagy and apoptosis studies showed a greater incidence when the combined treatment was put into use. This hints at the possibility of a new combined therapeutic approach. If confirmed in vivo, this conjugation may provide a means of new perspectives in muscle-invasive urinary bladder cancer treatment.
Collapse
|
13
|
Rogalska A, Gajek A, Marczak A. Analysis of epothilone B-induced cell death in normal ovarian cells. Cell Biol Int 2013; 37:1330-9. [DOI: 10.1002/cbin.10165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 07/22/2013] [Indexed: 01/15/2023]
Affiliation(s)
- Aneta Rogalska
- Department of Thermobiology; Institute of Biophysics; Faculty of Biology and Environmental Protection; University of Lodz; Pomorska 141/143 90-236 Lodz Poland
| | - Arkadiusz Gajek
- Department of Thermobiology; Institute of Biophysics; Faculty of Biology and Environmental Protection; University of Lodz; Pomorska 141/143 90-236 Lodz Poland
| | - Agnieszka Marczak
- Department of Thermobiology; Institute of Biophysics; Faculty of Biology and Environmental Protection; University of Lodz; Pomorska 141/143 90-236 Lodz Poland
| |
Collapse
|