1
|
Integration of Transcriptome and Epigenome to Identify and Develop Prognostic Markers for Ovarian Cancer. JOURNAL OF ONCOLOGY 2022; 2022:3744466. [PMID: 36081667 PMCID: PMC9448543 DOI: 10.1155/2022/3744466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/04/2022] [Accepted: 06/29/2022] [Indexed: 11/21/2022]
Abstract
DNA methylation is a widely researched epigenetic modification. It is associated with the occurrence and development of cancer and has helped evaluate patients' prognoses. However, most existing DNA methylation prognosis models have not simultaneously considered the changes of the downstream transcriptome. Methods. The RNA-Sequencing data and DNA methylation omics data of ovarian cancer patients were downloaded from The Cancer Genome Atlas (TCGA) database. The Consensus Cluster Plus algorithm was used to construct the methylated molecular subtypes of the ovary. Lasso regression was employed to build a multi-gene signature. An independent data set was applied to verify the prognostic value of the signature. The Gene Set Variation Analysis (GSVA) was used to carry out the enrichment analysis of the pathways linked to the gene signature. The IMvigor 210 cohort was used to explore the predictive efficacy of the gene signature for immunotherapy response. Results. We distinguished ovarian cancer samples into two subtypes with different prognosis, based on the omics data of DNA methylation. Differentially expressed genes and enrichment analysis among subtypes indicated that DNA methylation was related to fatty acid metabolism and the extracellular matrix (ECM)-receptor. Furthermore, we constructed an 8-gene signature, which proved to be efficient and stable in predicting prognostics in ovarian cancer patients with different data sets and distinctive pathological characteristics. Finally, the 8-gene signature could predict patients' responses to immunotherapy. The polymerase chain reaction experiment was further used to verify the expression of 8 genes. Conclusion. We analyzed the prognostic value of the related genes of methylation in ovarian cancer. The 8-gene signature predicted the prognosis and immunotherapy response of ovarian cancer patients well and is expected to be valuable in clinical application.
Collapse
|
2
|
Yang Y, Wu J, Yu X, Wu Q, Cao H, Dai X, Chen H. SLC34A2 promotes cancer proliferation and cell cycle progression by targeting TMPRSS3 in colorectal cancer. Pathol Res Pract 2021; 229:153706. [PMID: 34929599 DOI: 10.1016/j.prp.2021.153706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/26/2021] [Accepted: 11/20/2021] [Indexed: 10/19/2022]
Abstract
Solute carrier family 34 member 2 (SLC34A2), a family member of sodium-driven phosphate cotransporters, has been reported to facilitate cell proliferation and tumor growth. However, the functional mechanism by which SLC34A2 promotes cell growth and cell cycle progression remains poorly understood. Here, we reported that SLC34A2 was overexpressed in CRC by analysis of TCGA and GEO datasets. A total of 45 differentially expressed genes (DEGs) were identified from comparing SLC34A2-high or -low groups and functional enrichment analysis of these DEGs demonstrated that cell cycle pathway was enriched. Interestingly, we found a positive correlation between TMPRSS3 (transmembrane serine protease 3) and SLC34A2, which was confirmed by RT-qPCR and western blotting. Furthermore, TMPRSS3 was also upregulated in CRC tumor tissues compared to normal tissues. Patients with high TMPRSS3 expression had poor prognosis. Functionally, TMPRSS3 deficiency inhibited cell proliferation and colony formation in CRC cells. TMPRSS3 overexpression in SLC34A2-deficient cells antagonized siSLC34A2-mediated cell cycle inhibition by promoting cyclin E, cyclin A protein expression. Based on these results, our study suggests that SLC34A2 promotes cancer proliferation and cell cycle progression by targeting TMPRSS3 in colorectal cancer cells.
Collapse
Affiliation(s)
- Yi Yang
- Department of Oncological Surgery, Kunshan Traditional Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan City, Jiangsu Province 215300, China
| | - Jiang Wu
- Department of Oncological Surgery, Kunshan Traditional Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan City, Jiangsu Province 215300, China
| | - Xiaofeng Yu
- Department of Oncological Surgery, Kunshan Traditional Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan City, Jiangsu Province 215300, China
| | - Qing Wu
- Department of Oncological Surgery, Kunshan Traditional Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan City, Jiangsu Province 215300, China
| | - Huihua Cao
- Department of Oncological Surgery, Kunshan Traditional Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan City, Jiangsu Province 215300, China
| | - Xinyi Dai
- Department of Spleen and Stomach Disease Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210092, China
| | - Haijun Chen
- Department of Oncological Surgery, Kunshan Traditional Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan City, Jiangsu Province 215300, China.
| |
Collapse
|
3
|
Martin CE, Murray AS, Sala-Hamrick KE, Mackinder JR, Harrison EC, Lundgren JG, Varela FA, List K. Posttranslational modifications of serine protease TMPRSS13 regulate zymogen activation, proteolytic activity, and cell surface localization. J Biol Chem 2021; 297:101227. [PMID: 34562451 PMCID: PMC8503615 DOI: 10.1016/j.jbc.2021.101227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/01/2022] Open
Abstract
TMPRSS13, a member of the type II transmembrane serine protease (TTSP) family, harbors four N-linked glycosylation sites in its extracellular domain. Two of the glycosylated residues are located in the scavenger receptor cysteine-rich (SRCR) protein domain, while the remaining two sites are in the catalytic serine protease (SP) domain. In this study, we examined the role of N-linked glycosylation in the proteolytic activity, autoactivation, and cellular localization of TMPRSS13. Individual and combinatory site-directed mutagenesis of the glycosylated asparagine residues indicated that glycosylation of the SP domain is critical for TMPRSS13 autoactivation and catalytic activity toward one of its protein substrates, the prostasin zymogen. Additionally, SP domain glycosylation-deficient TMPRSS13 displayed impaired trafficking of TMPRSS13 to the cell surface, which correlated with increased retention in the endoplasmic reticulum. Importantly, we showed that N-linked glycosylation was a critical determinant for subsequent phosphorylation of endogenous TMPRSS13. Taken together, we conclude that glycosylation plays an important role in regulating TMPRSS13 activation and activity, phosphorylation, and cell surface localization.
Collapse
Affiliation(s)
- Carly E Martin
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA; Department of Oncology, Wayne State University, Detroit, Michigan, USA
| | - Andrew S Murray
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA; Department of Oncology, Wayne State University, Detroit, Michigan, USA; Division of Hematological Malignancies and Cellular Therapy, Duke University, Durham, North Carolina, USA
| | | | - Jacob R Mackinder
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA
| | - Evan C Harrison
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA
| | - Joseph G Lundgren
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA; Department of Oncology, Wayne State University, Detroit, Michigan, USA
| | - Fausto A Varela
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Karin List
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA; Department of Oncology, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
4
|
Abstract
Over the last two decades, a novel subgroup of serine proteases, the cell surface-anchored serine proteases, has emerged as an important component of the human degradome, and several members have garnered significant attention for their roles in cancer progression and metastasis. A large body of literature describes that cell surface-anchored serine proteases are deregulated in cancer and that they contribute to both tumor formation and metastasis through diverse molecular mechanisms. The loss of precise regulation of cell surface-anchored serine protease expression and/or catalytic activity may be contributing to the etiology of several cancer types. There is therefore a strong impetus to understand the events that lead to deregulation at the gene and protein levels, how these precipitate in various stages of tumorigenesis, and whether targeting of selected proteases can lead to novel cancer intervention strategies. This review summarizes current knowledge about cell surface-anchored serine proteases and their role in cancer based on biochemical characterization, cell culture-based studies, expression studies, and in vivo experiments. Efforts to develop inhibitors to target cell surface-anchored serine proteases in cancer therapy will also be summarized.
Collapse
|
5
|
Anwar SL, Wulaningsih W, Lehmann U. Transposable Elements in Human Cancer: Causes and Consequences of Deregulation. Int J Mol Sci 2017; 18:E974. [PMID: 28471386 PMCID: PMC5454887 DOI: 10.3390/ijms18050974] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/26/2017] [Accepted: 04/29/2017] [Indexed: 01/04/2023] Open
Abstract
Transposable elements (TEs) comprise nearly half of the human genome and play an essential role in the maintenance of genomic stability, chromosomal architecture, and transcriptional regulation. TEs are repetitive sequences consisting of RNA transposons, DNA transposons, and endogenous retroviruses that can invade the human genome with a substantial contribution in human evolution and genomic diversity. TEs are therefore firmly regulated from early embryonic development and during the entire course of human life by epigenetic mechanisms, in particular DNA methylation and histone modifications. The deregulation of TEs has been reported in some developmental diseases, as well as for different types of human cancers. To date, the role of TEs, the mechanisms underlying TE reactivation, and the interplay with DNA methylation in human cancers remain largely unexplained. We reviewed the loss of epigenetic regulation and subsequent genomic instability, chromosomal aberrations, transcriptional deregulation, oncogenic activation, and aberrations of non-coding RNAs as the potential mechanisms underlying TE deregulation in human cancers.
Collapse
Affiliation(s)
- Sumadi Lukman Anwar
- Division of Surgical Oncology, Department of Surgery Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover 30625, Germany.
- PILAR (Philippine and Indonesian Scholar) Research and Education, 20 Station Road, Cambridge CB1 2JD, UK.
| | - Wahyu Wulaningsih
- PILAR (Philippine and Indonesian Scholar) Research and Education, 20 Station Road, Cambridge CB1 2JD, UK.
- MRC (Medical Research Council) Unit for Lifelong Health and Ageing, University College London, London WC1B 5JU, UK.
- Division of Haematology/Oncology, Faculty of Medicine Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Ulrich Lehmann
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover 30625, Germany.
| |
Collapse
|
6
|
Zhang D, Qiu S, Wang Q, Zheng J. TMPRSS3 modulates ovarian cancer cell proliferation, invasion and metastasis. Oncol Rep 2015; 35:81-8. [PMID: 26531004 DOI: 10.3892/or.2015.4356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/13/2015] [Indexed: 11/06/2022] Open
Abstract
Overexpression of transmembrane protease, serine 3 (TMPRSS3) has been detected in ovarian cancer. However, the molecular mechanisms of TMPRSS3 in ovarian cancer remain unclear. In the present study, we found that TMPRSS3 was significantly expressed in ovarian cancer cells. Overexpression of TMPRSS3 promoted the proliferation, invasion and migration of A2780 cells. Conversely, knockdown of TMPRSS3 in HO8910 cells inhibited the proliferation, invasion and migration. Furthermore, TMPRSS3 affected the expression levels of E-cadherin, vimentin and Twist. In addition, TMPRSS3 induced activation of ERK1/2 in ovarian cancer cells, and the ERK1/2 pathway was required for the TMPRSS3-mediated proliferation, invasion and migration of ovarian cancer cells. Finally, knockdown of TMPRSS3 inhibited ovarian cancer HO8910 cell growth and metastasis in vivo. Collectively, the present study suggests that TMPRSS3 plays a crucial role in the development and progression of ovarian cancer. Therefore, TMPRSS3 represents a potential therapeutic target of ovarian cancer.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shuang Qiu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Qi Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jianhua Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
7
|
Liu T, Yu N, Ding F, Wang S, Li S, Zhang X, Sun X, Chen Y, Liu P. Verifying the markers of ovarian cancer using RNA-seq data. Mol Med Rep 2015; 12:1125-30. [PMID: 25776533 DOI: 10.3892/mmr.2015.3489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 12/12/2014] [Indexed: 11/06/2022] Open
Abstract
Markers associated with diagnosis, presentation and potential therapeutic targets have received widespread attention in ovarian cancer research in the past few years. However, the majority of these markers have been investigated individually, and the changes in expression and the association between them are rarely documented. Next‑generation sequencing, also termed RNA-seq when the sequencing targets are cDNAs, can provide a whole blueprint of the transcriptome of a specific tissue. In the present study, RNA-seq data of human ovarian cancer samples were used to verify the expression of known markers and to identify the association between them. A total of 563 markers associated with ovarian cancer were retrieved from the database of the National Center of Biotechnology Information, and used as the target markers. The transcriptome of the ovarian tissue of four different tumors, containing tumor presentation and recurrence stages, were sequenced using the Illumina GAII platform. Approximately 85.97% markers were expressed of the total 563 markers, and the majority of them were involved in pathways associated with cancer, signaling and infection. In total, 85 markers were found to be aberrantly expressed in tumor cells from patients with ovarian cancer who had recurrences, including 33 upregulated markers at the recurrence stage. Therefore, they may have roles ovarian tumor due to their aberrant expression. Differentially expressed markers and the associations between them can be assessed by examining the RNA-seq data. These findings may provide novel information for further studies on ovarian cancer.
Collapse
Affiliation(s)
- Tianfeng Liu
- Department of Gynecology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Nina Yu
- Department of Gynecology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Feng Ding
- Department of Gynecology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Surong Wang
- Department of Gynecology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Shihong Li
- Department of Gynecology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Xiaofei Zhang
- Department of Gynecology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Xiangxiu Sun
- Department of Gynecology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Ying Chen
- Department of Gynecology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Peishu Liu
- Department of Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
8
|
Hsiung CN, Chu HW, Huang YL, Chou WC, Hu LY, Hsu HM, Wu PE, Hou MF, Yu JC, Shen CY. Functional variants at the 21q22.3 locus involved in breast cancer progression identified by screening of genome-wide estrogen response elements. Breast Cancer Res 2014; 16:455. [PMID: 25298020 PMCID: PMC4303134 DOI: 10.1186/s13058-014-0455-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/02/2014] [Indexed: 02/07/2023] Open
Abstract
Introduction Estrogen forms a complex with the estrogen receptor (ER) that binds to estrogen response elements (EREs) in the regulatory region of estrogen-responsive genes and regulates their transcription. Sequence variants in the regulatory regions have the potential to affect the transcription factor–regulatory sequence interaction, resulting in altered expression of target genes. This study explored the association between single-nucleotide polymorphisms (SNPs) within the ERE-associated sequences and breast cancer progression. Methods The ERE-associated sequences throughout the whole genome that have been demonstrated to bind ERα in vivo were blasted against online information from SNP data sets and 54 SNPs located adjacent to estrogen-responsive genes were selected for genotyping in two independent cohorts of breast cancer patients: 779 patients in the initial screening stage and another 888 in the validation stage. Deaths due to breast cancer or recurrence of breast cancer were defined as the respective events of interest, and the hazard ratios of individual SNPs were estimated based on the Cox proportional hazards model. Furthermore, functional assays were performed, and information from publicly available genomic data and bioinformatics platforms were used to provide additional evidence for the associations identified in the association analyses. Results The SNPs at 21q22.3 ERE were significantly associated with overall survival and disease-free survival of patients. Furthermore, these 21q22.3 SNPs (rs2839494 and rs1078272) could affect the binding of this ERE-associated sequence to ERα or Rad21 (an ERα coactivator), respectively, which resulted in a difference in ERα-activated expression of the reporter gene. Conclusion These findings support the idea that functional variants in the ERα-regulating sequence at 21q22.3 are important in determining breast cancer progression. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0455-1) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Luostari K, Hartikainen JM, Tengström M, Palvimo JJ, Kataja V, Mannermaa A, Kosma VM. Type II transmembrane serine protease gene variants associate with breast cancer. PLoS One 2014; 9:e102519. [PMID: 25029565 PMCID: PMC4100901 DOI: 10.1371/journal.pone.0102519] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/19/2014] [Indexed: 01/03/2023] Open
Abstract
Type II transmembrane serine proteases (TTSPs) are related to tumor growth, invasion, and metastasis in cancer. Genetic variants in these genes may alter their function, leading to cancer onset and progression, and affect patient outcome. Here, 464 breast cancer cases and 370 controls were genotyped for 82 single-nucleotide polymorphisms covering eight genes. Association of the genotypes was estimated against breast cancer risk, breast cancer-specific survival, and survival in different treatment groups, and clinicopathological variables. SNPs in TMPRSS3 (rs3814903 and rs11203200), TMPRSS7 (rs1844925), and HGF (rs5745752) associated significantly with breast cancer risk (Ptrend = 0.008-0.042). SNPs in TMPRSS1 (rs12151195 and rs12461158), TMPRSS2 (rs2276205), TMPRSS3 (rs3814903), and TMPRSS7 (rs2399403) associated with prognosis (P = 0.004-0.046). When estimating the combined effect of the variants, the risk of breast cancer was higher with 4-5 alleles present compared to 0-2 alleles (P = 0.0001; OR, 2.34; 95% CI, 1.39-3.94). Women with 6-8 survival-associating alleles had a 3.3 times higher risk of dying of breast cancer compared to women with 1-3 alleles (P = 0.001; HR, 3.30; 95% CI, 1.58-6.88). The results demonstrate the combined effect of variants in TTSPs and their related genes in breast cancer risk and patient outcome. Functional analysis of these variants will lead to further understanding of this gene family, which may improve individualized risk estimation and development of new strategies for treatment of breast cancer.
Collapse
Affiliation(s)
- Kaisa Luostari
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Jaana M. Hartikainen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Maria Tengström
- Institute of Clinical Medicine, Oncology, University of Eastern Finland, Kuopio, Finland
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Jorma J. Palvimo
- Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Vesa Kataja
- Institute of Clinical Medicine, Oncology, University of Eastern Finland, Kuopio, Finland
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Arto Mannermaa
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Veli-Matti Kosma
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
10
|
Dorn J, Beaufort N, Schmitt M, Diamandis EP, Goettig P, Magdolen V. Function and clinical relevance of kallikrein-related peptidases and other serine proteases in gynecological cancers. Crit Rev Clin Lab Sci 2014; 51:63-84. [PMID: 24490956 DOI: 10.3109/10408363.2013.865701] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gynecological cancers, including malignant tumors of the ovaries, the endometrium and the cervix, account for approximately 10% of tumor-associated deaths in women of the Western world. For screening, diagnosis, prognosis, and therapy response prediction, the group of enzymes known as serine (Ser-)proteases show great promise as biomarkers. In the present review, following a summary of the clinical facts regarding malignant tumors of the ovaries, the endometrium and the cervix, and characterization of the most important Ser-proteases, we thoroughly review the current state of knowledge relating to the use of proteases as biomarkers of the most frequent gynecological cancers. Within the Ser-protease group, the kallikrein-related peptidase (KLK) family, which encompasses a subgroup of 15 members, holds particular promise, with some acting via a tumor-promoting mechanism and others behaving as protective factors. Further, the urokinase-type plasminogen activator (uPA) and its inhibitor PAI-1 (plasminogen activator inhibitor-1) seem to play an unfavorable role in gynecological tumors, while down-regulation of high-temperature requirement proteins A 1, 2 and 3 (HtrA1,2,3) is associated with malignant disease and cancer progression. Expression/activity levels of other Ser-proteases, including the type II transmembrane Ser-proteases (TTSPs) matriptase, hepsin (TMPRSS1), and the hepsin-related protease (TMPRSS3), as well as the glycosyl-phosphatidylinositol (GPI)-anchored Ser-proteases prostasin and testisin, may be of clinical relevance in gynecological cancers. In conclusion, proteases are a rich source of biomarkers of gynecological cancer, though the enzymes' exact roles and functions merit further investigation.
Collapse
Affiliation(s)
- Julia Dorn
- Klinische Forschergruppe der Frauenklinik der Technischen Universität München, Klinikum rechts der Isar , Munich , Germany
| | | | | | | | | | | |
Collapse
|