1
|
Piffoux M, Leary A, Follana P, Abdeddaim C, Joly F, Bin S, Bonjour M, Boulai A, Callens C, Villeneuve L, Alexandre M, Schwiertz V, Freyer G, Rodrigues M, You B. Olaparib combined to metronomic cyclophosphamide and metformin in women with recurrent advanced/metastatic endometrial cancer: the ENDOLA phase I/II trial. Nat Commun 2025; 16:1821. [PMID: 39979249 PMCID: PMC11842746 DOI: 10.1038/s41467-025-56914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
Endometrial cancers are characterized by frequent alterations in the PI3K-AKT-mTor, IGF1 and DNA repair signaling pathways. Concomitant inhibition of these pathways was warranted. ENDOLA phase I/II trial (NCT02755844) was designed to assess the safety/efficacy of the triplet combination of the PARP inhibitor olaparib, metronomic cyclophosphamide (50 mg daily), and PI3K-AKT-mTor inhibitor metformin (1500 mg daily) in women with recurrent endometrial carcinomas. Olaparib dose-escalation (100-300 mg twice-a-day (bid)) was used to determine the recommended-phase II-trial-dose (RP2D, primary endpoint), followed by an expansion cohort to determine the non-progression rate at 10 weeks (NPR-10w, secondary endpoint). 31 patients were treated. Olaparib RP2D was defined as 300 mg bid. The tolerability was acceptable, and grade 3-4 adverse events (51% patients) were mainly hematological. The NPR-10w was 61.5%, and the median progression-free survival (mPFS) was 5.2 months. In a post-hoc analysis, when explored by molecular subtypes/alterations, longer PFS were observed in patients with tumors characterized by a non-specific-molecular-profile (NSMP, n = 4; mPFS, 9.1 months), and by both TP53 altered & high number of large genomic alterations (LGA ≥ 8)(n = 10, mPFS, 8.6 months)). The analyses about kinetics of circulating biomarkers and pharmacodynamic effects are not reported here. In total, the benefit/toxicity ratio of the all-oral olaparib/cyclophosphamide/metformin regimen was favorable in heavily pretreated patients with recurrent endometrial cancer.
Collapse
Affiliation(s)
- Max Piffoux
- Medical Oncology, Hospices Civils de Lyon, EPSILYON, Lyon, France; GINECO, Paris, France
| | - Alexandra Leary
- Medical Oncology, Institut Gustave Roussy, Villejuif, France; GINECO, Paris, France
| | | | | | - Florence Joly
- Centre Francois Baclesse, Caen, France; GINECO, Paris, France
| | - Sylvie Bin
- Pôle Santé Publique, Hospices Civils de Lyon, Lyon, France
| | - Maxime Bonjour
- Pôle Santé Publique, Hospices Civils de Lyon, Lyon, France
| | - Anais Boulai
- Genetics Department, Institut Curie and Paris Sciences Lettres University, Paris, France
| | - Celine Callens
- Genetics Department, Institut Curie and Paris Sciences Lettres University, Paris, France
| | | | | | | | - Gilles Freyer
- Medical Oncology, Hospices Civils de Lyon, EPSILYON, Lyon, France; GINECO, Paris, France
| | - Manuel Rodrigues
- Medical Oncology, Institut Curie, Paris, France
- INSERM U830, Institut Curie, Paris, France; GINECO, Paris, France
| | - Benoit You
- Medical Oncology, Hospices Civils de Lyon, EPSILYON, Lyon, France; GINECO, Paris, France.
| |
Collapse
|
2
|
Zhang L, Chang J, Wu X. Expression Analysis of FANCD2 in Endometrial Carcinoma. Cancer Manag Res 2024; 16:1715-1725. [PMID: 39654637 PMCID: PMC11626963 DOI: 10.2147/cmar.s488275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Background Cisplatin is a major chemotherapy drug in the treatment of Uterine Corpus Endometrial carcinoma (UCEC), and drug resistance often limits its efficacy. Studying the mechanism of cisplatin resistance in endometrial carcinoma is of great clinical importance. This study aims to analyze the expression and value of FANCD2 in UCEC. Methods The expression of FANCD2, prognosis, and relationship between FANCD2 and immune cell infiltration in UCEC were analyzed by using bioinformatics. The expression levels of FANCD2 in 62 cases of endometrial carcinoma and 28 cases of normal endometrial tissues were detected by RT-PCR, and the relationship between FANCD2 expression and clinicopathological features was analyzed. A FANCD2 knockdown plasmid was constructed and transfected into Ishikawa cells to detect the levels of GSH and MDA in the presence of different concentrations of cisplatin. Results Bioinformatics analysis showed that FANCD2 was highly expressed in UCEC tissues, and patients with high expression had poor prognosis. Immune infiltration analysis revealed that (B cell, CD8 T cell, macrophage, neutrophil, dendritic cell) infiltration was negatively correlated with FANCD2 expression. Compared with those in Ishikawa-Vector, the levels of GSH significantly decreased and those of MDA significantly increased in Ishikawa-FANCD2KD treated with different concentrations of cisplatin. Conclusion FANCD2 was highly expressed in UCEC, and the down-regulation of FANCD2 affected the levels of GSH and MDA to increase the cisplatin sensitivity of Ishikawa cells.
Collapse
Affiliation(s)
- Li Zhang
- Department of Obstetrics and Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, People’s Republic of China
| | - Juan Chang
- Department of Hematology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, People’s Republic of China
| | - Xiuwei Wu
- Department of Hematology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, People’s Republic of China
| |
Collapse
|
3
|
Bian X, Sun C, Cheng J, Hong B. Targeting DNA Damage Repair and Immune Checkpoint Proteins for Optimizing the Treatment of Endometrial Cancer. Pharmaceutics 2023; 15:2241. [PMID: 37765210 PMCID: PMC10536053 DOI: 10.3390/pharmaceutics15092241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 09/29/2023] Open
Abstract
The dependence of cancer cells on the DNA damage response (DDR) pathway for the repair of endogenous- or exogenous-factor-induced DNA damage has been extensively studied in various cancer types, including endometrial cancer (EC). Targeting one or more DNA damage repair protein with small molecules has shown encouraging treatment efficacy in preclinical and clinical models. However, the genes coding for DDR factors are rarely mutated in EC, limiting the utility of DDR inhibitors in this disease. In the current review, we recapitulate the functional role of the DNA repair system in the development and progression of cancer. Importantly, we discuss strategies that target DDR proteins, including PARP, CHK1 and WEE1, as monotherapies or in combination with cytotoxic agents in the treatment of EC and highlight the compounds currently being evaluated for their efficacy in EC in clinic. Recent studies indicate that the application of DNA damage agents in cancer cells leads to the activation of innate and adaptive immune responses; targeting immune checkpoint proteins could overcome the immune suppressive environment in tumors. We further summarize recently revolutionized immunotherapies that have been completed or are now being evaluated for their efficacy in advanced EC and propose future directions for the development of DDR-based cancer therapeutics in the treatment of EC.
Collapse
Affiliation(s)
- Xing Bian
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (X.B.); (C.S.); (J.C.)
| | - Chuanbo Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (X.B.); (C.S.); (J.C.)
| | - Jin Cheng
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (X.B.); (C.S.); (J.C.)
| | - Bo Hong
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
4
|
Li Y, Wang X, Hou X, Ma X. Could Inhibiting the DNA Damage Repair Checkpoint Rescue Immune-Checkpoint-Inhibitor-Resistant Endometrial Cancer? J Clin Med 2023; 12:jcm12083014. [PMID: 37109350 PMCID: PMC10144486 DOI: 10.3390/jcm12083014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Endometrial cancer (EC) is increasingly undermining female health worldwide, with poor survival rates for advanced or recurrent/metastatic diseases. The application of immune checkpoint inhibitors (ICIs) has opened a window of opportunity for patients with first-line therapy failure. However, there is a subset of patients with endometrial cancer who remain insensitive to immunotherapy alone. Therefore, it is necessary to develop new therapeutic agents and further explore reliable combinational strategies to optimize the efficacy of immunotherapy. DNA damage repair (DDR) inhibitors as novel targeted drugs are able to generate genomic toxicity and induce cell death in solid tumors, including EC. Recently, growing evidence has demonstrated the DDR pathway modulates innate and adaptive immunity in tumors. In this review, we concentrate on the exploration of the intrinsic correlation between DDR pathways, especially the ATM-CHK2-P53 pathway and the ATR-CHK1-WEE1 pathway, and oncologic immune response, as well as the feasibility of adding DDR inhibitors to ICIs for the treatment of patients with advanced or recurrent/metastatic EC. We hope that this review will offer some beneficial references to the investigation of immunotherapy and provide a reasonable basis for "double-checkpoint inhibition" in EC.
Collapse
Affiliation(s)
- Yinuo Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangyu Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Hou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangyi Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
5
|
Zheng C, Ren Z, Chen H, Yuan X, Suye S, Yin H, Zhou Z, Fu C. FANCD2 promotes the malignant behavior of endometrial cancer cells and its prognostic value. Exp Cell Res 2022; 421:113388. [PMID: 36257352 DOI: 10.1016/j.yexcr.2022.113388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 12/29/2022]
Abstract
Defective DNA damage repair is a key mechanism affecting tumor susceptibility, treatment response, and survival outcome of endometrial cancer (EC). Fanconi anemia complementation group D2 (FANCD2) is the core component of the Fanconi anemia repair pathway. To explore the function of FANCD2 in EC, we examined the expression of FANCD2 in human specimens and databases, and discussed the possible mechanism of carcinogenesis by in vitro assays. Immunohistochemistry results showed overexpression of FANCD2 was detected in EC tissues compared to normal and atypical hyperplasia endometrium. Higher FANCD2 expression was correlated with deeper myometrial invasion (MI) and proficient mismatch repair status. The Cancer Genome Atlas (TCGA) database analysis showed FANCD2 was upregulated in EC compared with normal tissue. The high expression of FANCD2 was associated with poor overall survival in EC. Knockdown of FANCD2 expression in EC cell lines inhibited malignant proliferation and migration ability. We demonstrated that decreased FANCD2 expression results in increased DNA damage and decreased S-phase cells, leading to a decrease in proliferative capacity in EC cells. Down-regulated FANCD2 confers sensitivity of EC cells to interstrand crosslinking agents. This study provides evidence for the malignant progression and prognostic value of FANCD2 in EC.
Collapse
Affiliation(s)
- Chunying Zheng
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zhen Ren
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Hongliang Chen
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiaorui Yuan
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Suye Suye
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Huan Yin
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zhixian Zhou
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Chun Fu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
6
|
Wu J, Zhang L, Wu S, Liu Z. Ferroptosis: Opportunities and Challenges in Treating Endometrial Cancer. Front Mol Biosci 2022; 9:929832. [PMID: 35847989 PMCID: PMC9284435 DOI: 10.3389/fmolb.2022.929832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022] Open
Abstract
Ferroptosis, a new way of cell death, is involved in many cancers. A growing number of studies have focused on the unique role of ferroptosis on endometrial cancer. In this study, we made a comprehensive review of the relevant articles published to get deep insights in the association of ferroptosis with endometrial cancer and to present a summary of the roles of different ferroptosis-associated genes. Accordingly, we made an evaluation of the relationships between the ferroptosis-associated genes and TNM stage, tumor grade, histological type, primary therapy outcome, invasion and recurrence of tumor, and accessing the different prognosis molecular typing based on ferroptosis-associated genes. In addition, we presented an introduction of the common drugs, which targeted ferroptosis in endometrial cancer. In so doing, we clarified the opportunities and challenges of ferroptosis activator application in treating endometrial cancer, with a view to provide a novel approach to the disease.
Collapse
Affiliation(s)
- Jianfa Wu
- Department of Gynecology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Gynecology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Li Zhang
- Department of Gynecology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Gynecology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Suqin Wu
- Department of Gynecology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Gynecology, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Suqin Wu, ; Zhou Liu,
| | - Zhou Liu
- Department of Gynecology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Gynecology, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Suqin Wu, ; Zhou Liu,
| |
Collapse
|
7
|
Akter J, Katai Y, Sultana P, Takenobu H, Haruta M, Sugino RP, Mukae K, Satoh S, Wada T, Ohira M, Ando K, Kamijo T. Loss of p53 suppresses replication stress-induced DNA damage in ATRX-deficient neuroblastoma. Oncogenesis 2021; 10:73. [PMID: 34743173 PMCID: PMC8572175 DOI: 10.1038/s41389-021-00363-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
Genetic aberrations are present in the ATRX gene in older high-risk neuroblastoma (NB) patients with very poor clinical outcomes. Its loss-of-function (LoF) facilitates the alternative lengthening of telomeres (ALT) pathway in tumor cells and is strongly linked to replication stress (RS) and DNA damage through G-quadruplex (G4) DNA secondary structures. However, limited information is available on ATRX alteration-related NB tumorigenesis. We herein knocked out (KO) ATRX in MYCN-amplified (NGP) and MYCN single copy (SK-N-AS) NB cells with wild-type (wt) and truncated TP53 at the C terminus, respectively, using CRISPR/Cas9 technologies. The loss of ATRX increased DNA damage and G4 formation related to RS in TP53 wt isogenic ATRX KO NGP cells, but not in SK-N-AS clones. A gene set enrichment analysis (GSEA) showed that the gene sets related to DNA double-strand break repair, negative cell cycle regulation, the G2M checkpoint, and p53 pathway activation were enriched in NGP clones. The accumulation of DNA damage activated the ATM/CHK2/p53 pathway, leading to cell cycle arrest in NGP clones. Interestingly, ATRX loss did not induce RS related to DNA damage response (DDR) in TP53-truncated SK-N-AS cells. p53 inactivation abrogated cell cycle arrest and reduced G4 accumulation in NGP clones. The loss of p53 also induced G4 DNA helicases or Fanconi anemia group D2 protein (FANCD2) with ATRX deficiency, suggesting that ATRX maintained genome integrity and p53 deficiency attenuated RS-induced DNA damage in NB cells featuring inactivated ATRX by regulating DNA repair mechanisms and replication fork stability.
Collapse
Affiliation(s)
- Jesmin Akter
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Yutaka Katai
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Parvin Sultana
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan.,Laboratory of Tumor Molecular Biology, Department of Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Hisanori Takenobu
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Masayuki Haruta
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Ryuichi P Sugino
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Kyosuke Mukae
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Shunpei Satoh
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Tomoko Wada
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Miki Ohira
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Kiyohiro Ando
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Takehiko Kamijo
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan. .,Laboratory of Tumor Molecular Biology, Department of Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
| |
Collapse
|
8
|
Gachechiladze M, Skarda J, Bouchalova K, Soltermann A, Joerger M. Predictive and Prognostic Value of DNA Damage Response Associated Kinases in Solid Tumors. Front Oncol 2020; 10:581217. [PMID: 33224881 PMCID: PMC7670868 DOI: 10.3389/fonc.2020.581217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022] Open
Abstract
Dysfunctional DNA repair with subsequent genome instability and high mutational burden represents a major hallmark of cancer. In established malignant tumors, increased DNA repair capacity mediates resistance to DNA-damaging therapeutics, including cytotoxic drugs, radiotherapy, and selected small molecules including inhibitors of poly (ADP-ribose) polymerase (PARP), Ataxia Telangiectasia Mutated (ATM), ataxia telangiectasia and Rad3-related protein (ATR), and Wee1 kinase (Wee1). In addition, DNA repair deficiency is not only associated with sensitivity to selected anticancer drugs, but also with increased mutagenicity and increased neoantigen load on tumor cells, resulting in increased immunogenicity and improved response to CTLA4- or PD-(L)1 targeting monoclonal antibodies. DNA damage response (DDR) is composed of complex signalling pathways, including the sensing of the DNA damage, signal transduction, cellular response pathways to DNA damage, and activation of DNA repair. DNA double strand breaks (DSBs) are the most dangerous form of DNA damage. Tumor cells are characterised by frequent accumulation of DSBs caused by either endogenous replication stress or the impact of cancer treatment, most prominently chemotherapy and radiotherapy. Therefore, response of cancer cells to DSBs represents a crucial mechanism for how tumors respond to systemic treatment or radiotherapy, and how resistance develops. Ample clinical evidence supports the importance of DDR associated kinases as predictive and prognostic biomarkers in cancer patients. The ATM-CHK2 and ATR-CHK1-WEE1 pathways initiate DNA DSB repair. In the current review, we focus on major DDR associated kinases including ATM, ATR, CHK1, CHK2, and WEE1, and discuss their potential prognostic and predictive value in solid malignancies.
Collapse
Affiliation(s)
- Mariam Gachechiladze
- Department of Clinical and Molecular Pathology, Institute of Translational and Molecular Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Josef Skarda
- Department of Clinical and Molecular Pathology, Institute of Translational and Molecular Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | | | | | - Markus Joerger
- Department of Medical Oncology and Haematology, Cantonal Hospital, St. Gallen, Switzerland
| |
Collapse
|
9
|
FANCD2 Confers a Malignant Phenotype in Esophageal Squamous Cell Carcinoma by Regulating Cell Cycle Progression. Cancers (Basel) 2020; 12:cancers12092545. [PMID: 32906798 PMCID: PMC7565464 DOI: 10.3390/cancers12092545] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 01/05/2023] Open
Abstract
Fanconi anemia patients with germline genetic defects in FANCD2 are highly susceptible to cancers. Esophageal squamous cell carcinoma (ESCC) is a deadly cancer. Little is known about the function of FANCD2 in ESCC. For detailed molecular and mechanistic insights on the functional role of FANCD2 in ESCC, in vivo and in vitro assays and RNA sequencing approaches were used. Utilizing Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) technology, FANCD2 knockout models were established to examine the functional impact in mouse models for tumor growth and metastasis and in vitro assays for cell growth, cell cycle, and cellular localization. Our RNA sequence analyses were integrated with public datasets. FANCD2 confers a malignant phenotype in ESCC. FANCD2 is significantly upregulated in ESCC tumors, as compared to normal counterparts. Depletion of FANCD2 protein expression significantly suppresses the cancer cell proliferation and tumor colony formation and metastasis potential, as well as cell cycle progression, by involving cyclin-CDK and ATR/ATM signaling. FANCD2 translocates from the nucleus to the cytoplasm during cell cycle progression. We provide evidence of a novel role of FANCD2 in ESCC tumor progression and its potential usefulness as a biomarker for ESCC disease management.
Collapse
|
10
|
Xiong S, Mhawech-Fauceglia P, Tsao-Wei D, Roman L, Gaur RK, Epstein AL, Pinski J. Expression of the luteinizing hormone receptor (LHR) in ovarian cancer. BMC Cancer 2019; 19:1114. [PMID: 31729966 PMCID: PMC6857310 DOI: 10.1186/s12885-019-6153-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/11/2019] [Indexed: 11/10/2022] Open
Abstract
We investigated the association of LHR expression in epithelial ovarian cancer (OC) with clinical and pathologic characteristics of patients. LHR expression was examined immunohistochemically using tissue microarrays (TMAs) of specimens from 232 OC patients. Each sample was scored quantitatively evaluating LHR staining intensity (LHR-I) and percentage of LHR (LHR-P) staining cells in tumor cells examined. LHR-I was assessed as no staining (negative), weak (+ 1), moderate (+ 2), and strong positive (+ 3). LHR-P was measured as 1 to 5, 6 to 50% and > 50% of the tumor cells examined. Positive LHR staining was found in 202 (87%) patients' tumor specimens and 66% patients had strong intensity LHR expression. In 197 (85%) of patients, LHR-P was measured in > 50% of tumor cells. LHR-I was significantly associated with pathologic stage (p = 0.007). We found that 72% of stage III or IV patients expressed strong LHR-I in tumor cells. There were 87% of Silberberg's grade 2 or 3 patients compared to 70% of grade 1 patients with LHR expression observed in > 50% of tumor cells, p = 0.037. Tumor stage was significantly associated with overall survival and recurrence free survival, p < 0.001 for both analyses, even after adjustment for age, tumor grade and whether patient had persistent disease after therapy or not. Our study demonstrates that LHR is highly expressed in the majority of OC patients. Both LHR-I and LHR-P are significantly associated with either the pathologic stage or tumor grade.
Collapse
Affiliation(s)
- Shigang Xiong
- Department of Medicine/Medical Oncology Division, University of Southern California, 1441 Eastlake Ave, Los Angeles, CA, 90033, USA
| | - Paulette Mhawech-Fauceglia
- Aurora Diagnostics, Department of Pathology, Gynecologic Pathology Consultant, San Antonio, TX, 78209, USA
| | - Denice Tsao-Wei
- University of Southern California, Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA, 90033, USA
| | - Lynda Roman
- Department of Obstetrics & Gynecology, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Rajesh K Gaur
- Department of Medicine/Medical Oncology Division, University of Southern California, 1441 Eastlake Ave, Los Angeles, CA, 90033, USA
| | - Alan L Epstein
- Department of Pathology, University of Southern California, HMR 2011 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Jacek Pinski
- Department of Medicine/Medical Oncology Division, University of Southern California, 1441 Eastlake Ave, Los Angeles, CA, 90033, USA. .,University of Southern California, Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA, 90033, USA.
| |
Collapse
|
11
|
Obesity, DNA Damage, and Development of Obesity-Related Diseases. Int J Mol Sci 2019; 20:ijms20051146. [PMID: 30845725 PMCID: PMC6429223 DOI: 10.3390/ijms20051146] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity has been recognized to increase the risk of such diseases as cardiovascular diseases, diabetes, and cancer. It indicates that obesity can impact genome stability. Oxidative stress and inflammation, commonly occurring in obesity, can induce DNA damage and inhibit DNA repair mechanisms. Accumulation of DNA damage can lead to an enhanced mutation rate and can alter gene expression resulting in disturbances in cell metabolism. Obesity-associated DNA damage can promote cancer growth by favoring cancer cell proliferation and migration, and resistance to apoptosis. Estimation of the DNA damage and/or disturbances in DNA repair could be potentially useful in the risk assessment and prevention of obesity-associated metabolic disorders as well as cancers. DNA damage in people with obesity appears to be reversible and both weight loss and improvement of dietary habits and diet composition can affect genome stability.
Collapse
|
12
|
Palla VV, Karaolanis G, Katafigiotis I, Anastasiou I, Patapis P, Dimitroulis D, Perrea D. gamma-H2AX: Can it be established as a classical cancer prognostic factor? Tumour Biol 2017; 39:1010428317695931. [DOI: 10.1177/1010428317695931] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Double-strand breaks are among the first procedures taking place in cancer formation and progression as a result of endogenic and exogenic factors. The histone variant H2AX undergoes phosphorylation at serine 139 due to double-strand breaks, and the gamma-H2AX is formatted as a result of genomic instability. The detection of gamma-H2AX can potentially serve as a biomarker for transformation of normal tissue to premalignant and consequently to malignant tissues. gamma-H2AX has already been investigated in a variety of cancer types, including breast, lung, colon, cervix, and ovary cancers. The prognostic value of gamma-H2AX is indicated in certain cancer types, such as breast or endometrial cancer, but further investigation is needed to establish gamma-H2AX as a prognostic marker. This review outlines the role of gamma-H2AX in cell cycle, and its formation as a result of DNA damage. We investigate the role of gamma-H2AX formation in several cancer types and its correlation with other prognostic factors, and we try to find out whether it fulfills the requirements for its establishment as a classical cancer prognostic factor.
Collapse
Affiliation(s)
- Viktoria-Varvara Palla
- Department of Obstetrics and Gynecology, Diakonie-Klinikum Schwäbisch Hall, Schwäbisch Hall, Germany
| | - Georgios Karaolanis
- 1st Department of Surgery, Vascular Unit, Laiko General Hospital, Medical School of Athens, Athens, Greece
| | - Ioannis Katafigiotis
- 1st University Urology Clinic, Laiko Hospital, University of Athens, Athens, Greece
| | - Ioannis Anastasiou
- 1st University Urology Clinic, Laiko Hospital, University of Athens, Athens, Greece
| | - Paul Patapis
- 3rd Department of Surgery, Attikon General Hospital, University of Athens, Athens, Greece
| | | | - Despoina Perrea
- 2nd Department of Surgery, Laiko Hospital, University of Athens, Athens, Greece
| |
Collapse
|
13
|
Hope ER, Mhawech-Fauceglia P, Pejovic T, Zahn CM, Wang G, Conrads TP, Larry Maxwell G, Hamilton CA, Darcy KM, Syed V. Nestin: A biomarker of aggressive uterine cancers. Gynecol Oncol 2015; 140:503-11. [PMID: 26718725 DOI: 10.1016/j.ygyno.2015.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/11/2015] [Accepted: 12/18/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Evidence of potential prognostic and predictive value for nestin was investigated in well-annotated uterine cancers (UCs). METHODS Nestin expression and previously-published biomarkers were evaluated by immunohistochemistry (IHC) in UC tissue microarrays. Biomarkers were categorized as low vs. high, and nestin was cut at 10% positive staining. Relationship between nestin and clinicopathologic factors, biomarkers and outcome were evaluated using exact/log-rank testing or logistic/Cox modeling. RESULTS There were 323 eligible cases, 34% had advanced stage disease, 37% had type II disease, and 5% were carcinosarcomas. High nestin, observed in 19% of cases, was more common in advanced vs. early stage disease, type II cancers or uterine carcinosarcoma vs. type I cancers, grade 3 disease, positive lymphovascular space invasion (LVSI) and tumors >6cm (p<0.05). Nestin was inversely correlated with ER, PR and TFF3, and correlated with p53 and IMP3. Women with high vs. low nestin had worse progression-free survival (PFS) and cancer-specific survival overall, and worse PFS in the subset who received no adjuvant therapy or radiation, or had early stage, type I disease or tumors with both low and high ER, PR, TFF3, PTEN, p53 or IMP3. The relationship between nestin and PFS was independent of stage, LVSI and risk categorization but not type of UC. CONCLUSIONS High nestin was more common in UCs with aggressive features and poor outcome. Nestin may represent a predictive biomarker for treatment selection for patients previously considered to be lower risk and a candidate for no or radiation-based adjuvant therapy, and compliment ER/PR testing.
Collapse
Affiliation(s)
- Erica R Hope
- Walter Reed National Military Medical Center, Department of Obstetrics and Gynecology, 8901 Wisconsin Avenue, Bethesda, MD 20889, United States; Women's Health Integrated Research Center at Inova Health System, Department of Defense Gynecologic Cancer Center of Excellence, 3289 Woodburn Road, Suites 370 and 375, Annandale, VA 22003, United States
| | - Paulette Mhawech-Fauceglia
- University of Southern California, Department of Pathology, 1100 N. State Street, Los Angeles, CA 90033, United States
| | - Tanja Pejovic
- Oregon Health & Science University, Department of Obstetrics and Gynecology, 3181 SW Sam Jackson Park Road, L466, Portland, OR 97239, United States
| | - Christopher M Zahn
- American College of Obstetricians and Gynecologists, 409 125th St. SW, Washington, DC 20024, United States; Uniformed Services University, Department of Obstetrics & Gynecology, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Guisong Wang
- Women's Health Integrated Research Center at Inova Health System, Department of Defense Gynecologic Cancer Center of Excellence, 3289 Woodburn Road, Suites 370 and 375, Annandale, VA 22003, United States
| | - Thomas P Conrads
- Women's Health Integrated Research Center at Inova Health System, Department of Defense Gynecologic Cancer Center of Excellence, 3289 Woodburn Road, Suites 370 and 375, Annandale, VA 22003, United States; Uniformed Services University, Department of Obstetrics & Gynecology, 4301 Jones Bridge Road, Bethesda, MD 20814, United States; John P. Murtha Cancer Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, United States
| | - G Larry Maxwell
- Women's Health Integrated Research Center at Inova Health System, Department of Defense Gynecologic Cancer Center of Excellence, 3289 Woodburn Road, Suites 370 and 375, Annandale, VA 22003, United States; John P. Murtha Cancer Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, United States; Inova Fairfax Hospital, Department of Obstetrics & Gynecology, 3300 Gallows Road, Falls Church, VA 22042, United States
| | - Chad A Hamilton
- Walter Reed National Military Medical Center, Department of Obstetrics and Gynecology, 8901 Wisconsin Avenue, Bethesda, MD 20889, United States; Women's Health Integrated Research Center at Inova Health System, Department of Defense Gynecologic Cancer Center of Excellence, 3289 Woodburn Road, Suites 370 and 375, Annandale, VA 22003, United States; Uniformed Services University, Department of Obstetrics & Gynecology, 4301 Jones Bridge Road, Bethesda, MD 20814, United States; John P. Murtha Cancer Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, United States
| | - Kathleen M Darcy
- Women's Health Integrated Research Center at Inova Health System, Department of Defense Gynecologic Cancer Center of Excellence, 3289 Woodburn Road, Suites 370 and 375, Annandale, VA 22003, United States; Uniformed Services University, Department of Obstetrics & Gynecology, 4301 Jones Bridge Road, Bethesda, MD 20814, United States; John P. Murtha Cancer Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, United States.
| | - Viqar Syed
- Uniformed Services University, Department of Obstetrics & Gynecology, 4301 Jones Bridge Road, Bethesda, MD 20814, United States; John P. Murtha Cancer Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, United States.
| |
Collapse
|
14
|
Park SH, Noh SJ, Kim KM, Bae JS, Kwon KS, Jung SH, Kim JR, Lee H, Chung MJ, Moon WS, Kang MJ, Jang KY. Expression of DNA Damage Response Molecules PARP1, γH2AX, BRCA1, and BRCA2 Predicts Poor Survival of Breast Carcinoma Patients. Transl Oncol 2015; 8:239-49. [PMID: 26310369 PMCID: PMC4562981 DOI: 10.1016/j.tranon.2015.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/18/2015] [Accepted: 04/24/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND: Poly(ADP-ribose) polymerase 1 (PARP1), γH2AX, BRCA1, and BRCA2 are conventional molecular indicators of DNA damage in cells and are often overexpressed in various cancers. In this study, we aimed, using immunohistochemical detection, whether the co-expression of PARP1, γH2AX, BRCA1, and BRCA2 in breast carcinoma (BCA) tissue can provide more reliable prediction of survival of BCA patients. MATERIALS AND METHODS: We investigated immunohistochemical expression and prognostic significance of the expression of PARP1, γH2AX, BRCA1, and BRCA2 in 192 cases of BCAs. RESULTS: The expression of these four molecules predicted earlier distant metastatic relapse, shorter overall survival (OS), and relapse-free survival (RFS) by univariate analysis. Multivariate analysis revealed the expression of PARP1, γH2AX, and BRCA2 as independent poor prognostic indicators of OS and RFS. In addition, the combined expressional pattern of BRCA1, BRCA2, PARP1, and γH2AX (CSbbph) was an additional independent prognostic predictor for OS (P < .001) and RFS (P < .001). The 10-year OS rate was 95% in the CSbbph-low (CSbbph scores 0 and 1) subgroup, but that was only 35% in the CSbbph-high (CSbbph score 4) subgroup. CONCLUSION: This study has demonstrated that the individual and combined expression patterns of PARP1, γH2AX, BRCA1, and BRCA2 could be helpful in determining an accurate prognosis for BCA patients and for the selection of BCA patients who could potentially benefit from anti-PARP1 therapy with a combination of genotoxic chemotherapeutic agents.
Collapse
Affiliation(s)
- See-Hyoung Park
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sang Jae Noh
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Kyoung Min Kim
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Jun Sang Bae
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Keun Sang Kwon
- Department of Preventive Medicine, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Sung Hoo Jung
- Department of Surgery, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Jung Ryul Kim
- Department of Orthopaedic Surgery, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Ho Lee
- Department of Forensic Medicine, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Myoung Ja Chung
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Woo Sung Moon
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Myoung Jae Kang
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea.
| |
Collapse
|
15
|
Prognostic Significance of Nuclear Phospho-ATM Expression in Melanoma. PLoS One 2015; 10:e0134678. [PMID: 26275218 PMCID: PMC4537129 DOI: 10.1371/journal.pone.0134678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/13/2015] [Indexed: 12/21/2022] Open
Abstract
UV radiation induced genomic instability is one of the leading causes for melanoma. Phosphorylation of Ataxia Telangiectasia Mutated (ATM) is one of the initial events that follow DNA damage. Phospho-ATM (p-ATM) plays a key role in the activation of DNA repair and several oncogenic pathways as well as in the maintenance of genomic integrity. The present study was therefore performed to understand the significance of p-ATM in melanoma progression and to correlate it with patient prognosis. Tissue microarray and immunohistochemical analysis were employed to study the expression of p-ATM in melanoma patients. A total of 366 melanoma patients (230 primary melanoma and 136 metastatic melanoma) were used for the study. Chi-square test, Kaplan-Meier, univariate and multivariate Cox regression analysis were used to elucidate the prognostic significance of p-ATM expression. Results revealed that both loss of, and gain in, p-ATM expression were associated with progression of melanoma from normal nevi to metastatic melanoma. Patients whose samples showed negative or strong p-ATM staining had significantly worse 5-year survival compared to patients who had weak to moderate expression. Loss of p-ATM expression was associated with relatively better 5-year survival, but the corresponding 10-year survival curve almost overlapped with that of strong p-ATM expression. p-ATM expression was found to be an independent prognostic factor for 5-year but not for 10-year patient survival. In conclusion our findings show that loss of p-ATM expression and gain-in p-ATM expression are indicators of worse melanoma patient survival.
Collapse
|
16
|
Shan W, Wang C, Zhang Z, Luo X, Ning C, Yu Y, Feng Y, Gu C, Chen X. ATM may be a protective factor in endometrial carcinogenesis with the progesterone pathway. Tumour Biol 2015; 36:1529-37. [DOI: 10.1007/s13277-014-2712-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/05/2014] [Indexed: 12/14/2022] Open
|
17
|
Monsalves E, Juraschka K, Tateno T, Agnihotri S, Asa SL, Ezzat S, Zadeh G. The PI3K/AKT/mTOR pathway in the pathophysiology and treatment of pituitary adenomas. Endocr Relat Cancer 2014; 21:R331-44. [PMID: 25052915 DOI: 10.1530/erc-14-0188] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pituitary adenomas are common intracranial neoplasms. Patients with these tumors exhibit a wide range of clinically challenging problems, stemming either from results of sellar mass effect in pituitary macroadenoma or the diverse effects of aberrant hormone production by adenoma cells. While some patients are cured/controlled by surgical resection and/or medical therapy, a proportion of patients exhibit tumors that are refractory to current modalities. New therapeutic approaches are needed for these patients. Activation of the AKT/phophotidylinositide-3-kinase pathway, including mTOR activation, is common in human neoplasia, and a number of therapeutic approaches are being employed to neutralize activation of this pathway in human cancer. This review examines the role of this pathway in pituitary tumors with respect to tumor biology and its potential role as a therapeutic target.
Collapse
Affiliation(s)
- Eric Monsalves
- Institute of Medical ScienceDepartment of Medical BiophysicsUniversity of Toronto, Toronto, Ontario, CanadaDivision of NeurosurgeryToronto Western Hospital, 399 Bathurst Street, 4W-439, Toronto, Ontario, Canada M5T 2S8Ontario Cancer InstitutePrincess Margaret Hospital, Toronto, Ontario, CanadaEndocrine Oncology Site GroupPrincess Margaret Hospital, Toronto, Ontario, CanadaDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Toronto, Ontario, CanadaInstitute of Medical ScienceDepartment of Medical BiophysicsUniversity of Toronto, Toronto, Ontario, CanadaDivision of NeurosurgeryToronto Western Hospital, 399 Bathurst Street, 4W-439, Toronto, Ontario, Canada M5T 2S8Ontario Cancer InstitutePrincess Margaret Hospital, Toronto, Ontario, CanadaEndocrine Oncology Site GroupPrincess Margaret Hospital, Toronto, Ontario, CanadaDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Toronto, Ontario, Canada
| | - Kyle Juraschka
- Institute of Medical ScienceDepartment of Medical BiophysicsUniversity of Toronto, Toronto, Ontario, CanadaDivision of NeurosurgeryToronto Western Hospital, 399 Bathurst Street, 4W-439, Toronto, Ontario, Canada M5T 2S8Ontario Cancer InstitutePrincess Margaret Hospital, Toronto, Ontario, CanadaEndocrine Oncology Site GroupPrincess Margaret Hospital, Toronto, Ontario, CanadaDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Toronto, Ontario, Canada
| | - Toru Tateno
- Institute of Medical ScienceDepartment of Medical BiophysicsUniversity of Toronto, Toronto, Ontario, CanadaDivision of NeurosurgeryToronto Western Hospital, 399 Bathurst Street, 4W-439, Toronto, Ontario, Canada M5T 2S8Ontario Cancer InstitutePrincess Margaret Hospital, Toronto, Ontario, CanadaEndocrine Oncology Site GroupPrincess Margaret Hospital, Toronto, Ontario, CanadaDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Toronto, Ontario, Canada
| | - Sameer Agnihotri
- Institute of Medical ScienceDepartment of Medical BiophysicsUniversity of Toronto, Toronto, Ontario, CanadaDivision of NeurosurgeryToronto Western Hospital, 399 Bathurst Street, 4W-439, Toronto, Ontario, Canada M5T 2S8Ontario Cancer InstitutePrincess Margaret Hospital, Toronto, Ontario, CanadaEndocrine Oncology Site GroupPrincess Margaret Hospital, Toronto, Ontario, CanadaDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Toronto, Ontario, Canada
| | - Sylvia L Asa
- Institute of Medical ScienceDepartment of Medical BiophysicsUniversity of Toronto, Toronto, Ontario, CanadaDivision of NeurosurgeryToronto Western Hospital, 399 Bathurst Street, 4W-439, Toronto, Ontario, Canada M5T 2S8Ontario Cancer InstitutePrincess Margaret Hospital, Toronto, Ontario, CanadaEndocrine Oncology Site GroupPrincess Margaret Hospital, Toronto, Ontario, CanadaDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Toronto, Ontario, Canada
| | - Shereen Ezzat
- Institute of Medical ScienceDepartment of Medical BiophysicsUniversity of Toronto, Toronto, Ontario, CanadaDivision of NeurosurgeryToronto Western Hospital, 399 Bathurst Street, 4W-439, Toronto, Ontario, Canada M5T 2S8Ontario Cancer InstitutePrincess Margaret Hospital, Toronto, Ontario, CanadaEndocrine Oncology Site GroupPrincess Margaret Hospital, Toronto, Ontario, CanadaDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Toronto, Ontario, CanadaInstitute of Medical ScienceDepartment of Medical BiophysicsUniversity of Toronto, Toronto, Ontario, CanadaDivision of NeurosurgeryToronto Western Hospital, 399 Bathurst Street, 4W-439, Toronto, Ontario, Canada M5T 2S8Ontario Cancer InstitutePrincess Margaret Hospital, Toronto, Ontario, CanadaEndocrine Oncology Site GroupPrincess Margaret Hospital, Toronto, Ontario, CanadaDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Toronto, Ontario, CanadaInstitute of Medical ScienceDepartment of Medical BiophysicsUniversity of Toronto, Toronto, Ontario, CanadaDivision of NeurosurgeryToronto Western Hospital, 399 Bathurst Street, 4W-439, Toronto, Ontario, Canada M5T 2S8Ontario Cancer InstitutePrincess Margaret Hospital, Toronto, Ontario, CanadaEndocrine Oncology Site GroupPrincess Margaret Hospital, Toronto, Ontario, CanadaDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Institute of Medical ScienceDepartment of Medical BiophysicsUniversity of Toronto, Toronto, Ontario, CanadaDivision of NeurosurgeryToronto Western Hospital, 399 Bathurst Street, 4W-439, Toronto, Ontario, Canada M5T 2S8Ontario Cancer InstitutePrincess Margaret Hospital, Toronto, Ontario, CanadaEndocrine Oncology Site GroupPrincess Margaret Hospital, Toronto, Ontario, CanadaDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Toronto, Ontario, CanadaInstitute of Medical ScienceDepartment of Medical BiophysicsUniversity of Toronto, Toronto, Ontario, CanadaDivision of NeurosurgeryToronto Western Hospital, 399 Bathurst Street, 4W-439, Toronto, Ontario, Canada M5T 2S8Ontario Cancer InstitutePrincess Margaret Hospital, Toronto, Ontario, CanadaEndocrine Oncology Site GroupPrincess Margaret Hospital, Toronto, Ontario, CanadaDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Toronto, Ontario, Canada
| |
Collapse
|