1
|
Gotoh O, Sugiyama Y, Tonooka A, Kosugi M, Kitaura S, Minegishi R, Sano M, Amino S, Furuya R, Tanaka N, Kaneyasu T, Kumegawa K, Abe A, Nomura H, Takazawa Y, Kanao H, Maruyama R, Noda T, Mori S. Genetic and epigenetic alterations in precursor lesions of endometrial endometrioid carcinoma. J Pathol 2024; 263:275-287. [PMID: 38734880 DOI: 10.1002/path.6278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/09/2024] [Accepted: 02/27/2024] [Indexed: 05/13/2024]
Abstract
The hyperplasia-carcinoma sequence is a stepwise tumourigenic programme towards endometrial cancer in which normal endometrial epithelium becomes neoplastic through non-atypical endometrial hyperplasia (NAEH) and atypical endometrial hyperplasia (AEH), under the influence of unopposed oestrogen. NAEH and AEH are known to exhibit polyclonal and monoclonal cell growth, respectively; yet, aside from focal PTEN protein loss, the genetic and epigenetic alterations that occur during the cellular transition remain largely unknown. We sought to explore the potential molecular mechanisms that promote the NAEH-AEH transition and identify molecular markers that could help to differentiate between these two states. We conducted target-panel sequencing on the coding exons of 596 genes, including 96 endometrial cancer driver genes, and DNA methylome microarrays for 48 NAEH and 44 AEH lesions that were separately collected via macro- or micro-dissection from the endometrial tissues of 30 cases. Sequencing analyses revealed acquisition of the PTEN mutation and the clonal expansion of tumour cells in AEH samples. Further, across the transition, alterations to the DNA methylome were characterised by hypermethylation of promoter/enhancer regions and CpG islands, as well as hypo- and hyper-methylation of DNA-binding regions for transcription factors relevant to endometrial cell differentiation and/or tumourigenesis, including FOXA2, SOX17, and HAND2. The identified DNA methylation signature distinguishing NAEH and AEH lesions was reproducible in a validation cohort with modest discriminative capability. These findings not only support the concept that the transition from NAEH to AEH is an essential step within neoplastic cell transformation of endometrial epithelium but also provide deep insight into the molecular mechanism of the tumourigenic programme. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Osamu Gotoh
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Yuko Sugiyama
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
- Division of Gynecology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Akiko Tonooka
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Mayuko Kosugi
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Sunao Kitaura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Ryu Minegishi
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Masatoshi Sano
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Sayuri Amino
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Rie Furuya
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Norio Tanaka
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Tomoko Kaneyasu
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Kohei Kumegawa
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Akiko Abe
- Division of Gynecology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Hidetaka Nomura
- Division of Gynecology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Yutaka Takazawa
- Department of Pathology, Toranomon Hospital, Minato-ku, Japan
| | - Hiroyuki Kanao
- Division of Gynecology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Tetsuo Noda
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Seiichi Mori
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
- Department of Genetic Diagnosis, Cancer Institute Hospital, JFCR, Koto-ku, Japan
| |
Collapse
|
2
|
Mohamed SA, Mahmoud HE, Embaby AM, Haroun M, Sabra SA. Lactoferrin/pectin nanocomplex encapsulating ciprofloxacin and naringin as a lung targeting antibacterial nanoplatform with oxidative stress alleviating effect. Int J Biol Macromol 2024; 261:129842. [PMID: 38309386 DOI: 10.1016/j.ijbiomac.2024.129842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/12/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium with adaptive metabolic abilities. It can cause hospital-acquired infections with significant mortality rates, particularly in people with already existing medical conditions. Its ability to develop resistance to common antibiotics makes managing this type of infections very challenging. Furthermore, oxidative stress is a common consequence of bacterial infection and antibiotic therapy, due to formation of reactive oxygen species (ROS) during their mode of action. In this study we aimed to alleviate oxidative stress and enhance the antibacterial efficacy of ciprofloxacin (CPR) antibiotic by its co-encapsulation with naringin (NAR) within a polyelectrolyte complex (PEX). The PEX comprised of polycationic lactoferrin (LF) and polyanionic pectin (PEC). CPR/NAR-loaded PEX exhibited spherical shape with particle size of 237 ± 3.5 nm, negatively charged zeta potential (-23 ± 2.2 mV) and EE% of 61.2 ± 4.9 for CPR and 76.2 ± 3.4 % for NAR. The LF/PEC complex showed prolonged sequential release profile of CPR to limit bacterial expansion, followed by slow liberation of NAR, which mitigates excess ROS produced by CPR's mechanism of action without affecting its efficacy. Interestingly, this PEX demonstrated good hemocompatibility with no significant in vivo toxicity regarding hepatic and renal functions. In addition, infected mice administrated this nanoplatform intravenously exhibited significant CFU reduction in the lungs and kidneys, along with reduced immunoreactivity against myeloperoxidase. Moreover, this PEX was found to reduce the lungs´ oxidative stress via increasing both glutathione (GSH) and catalase (CAT) levels while lowering malondialdehyde (MDA). In conclusion, CPR/NAR-loaded PEX can offer a promising targeted lung delivery strategy while enhancing the therapeutic outcomes of CPR with reduced oxidative stress.
Collapse
Affiliation(s)
- Shaymaa A Mohamed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Hoda E Mahmoud
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Amira M Embaby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Medhat Haroun
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt.
| |
Collapse
|
3
|
Excavation of Molecular Subtypes of Endometrial Cancer Based on DNA Methylation. Genes (Basel) 2022; 13:genes13112106. [DOI: 10.3390/genes13112106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor heterogeneity makes the diagnosis and treatment of endometrial cancer difficult. As an important modulator of gene expression, DNA methylation can affect tumor heterogeneity and, therefore, provide effective information for clinical treatment. In this study, we explored specific prognostic clusters based on 482 examples of endometrial cancer methylation data in the TCGA database. By analyzing 4870 CpG clusters, we distinguished three clusters with different prognostics. Differences in DNA methylation levels are associated with differences in age, grade, clinical pathological staging, and prognosis. Subsequently, we screened out 264 specific hypermethylation and hypomethylation sites and constructed a prognostic model for Bayesian network classification, which corresponded to the classification of the test set to the classification results of the train set. Since the tumor microenvironment plays a key role in determining immunotherapy responses, we conducted relevant analyses based on clusters separated from DNA methylation data to determine the immune function of each cluster. We also predicted their sensitivity to chemotherapy drugs. Specific classifications of DNA methylation may help to address the heterogeneity of previously existing molecular clusters of endometrial cancer, as well as to develop more effective, individualized treatments.
Collapse
|
4
|
Evaluating the tumor immune profile based on a three-gene prognostic risk model in HER2 positive breast cancer. Sci Rep 2022; 12:9311. [PMID: 35665772 PMCID: PMC9166798 DOI: 10.1038/s41598-022-13499-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
To date, there have not been great breakthroughs in immunotherapy for HER2 positive breast cancer (HPBC). This study aimed to build a risk model that might contribute to predicting prognosis and discriminating the immune landscape in patients with HPBC. We analyzed the tumor immune profile of HPBC patients from the TCGA using the ESTIMATE algorithm. Thirty survival-related differentially expressed genes were selected according to the ImmuneScore and StromalScore. A prognostic risk model consisting of PTGDR, PNOC and CCL23 was established by LASSO analysis, and all patients were classified into the high- and low-risk score groups according to the risk scores. Subsequently, the risk model was proven to be efficient and reliable. Immune related pathways were the dominantly enriched category. ssGSEA showed stronger immune infiltration in the low-risk score group, including the infiltration of TILs, CD8 T cells, NK cells, DCs, and so on. Moreover, we found that the expression of immune checkpoint genes, including PD-L1, CTLA-4, TIGIT, TIM-3 and LAG-3, was significantly upregulated in the low-risk score group. All the results were validated with corresponding data from the GEO database. In summary, our investigation indicated that the risk model composed of PTGDR, PNOC and CCL23 has potential to predict prognosis and evaluate the tumor immune microenvironment in HPBC patients. More importantly, HPBC patients with a low-risk scores are likely to benefit from immune treatment.
Collapse
|
5
|
Loaeza-Loaeza J, Illades-Aguiar B, Del Moral-Hernández O, Castro-Coronel Y, Leyva-Vázquez MA, Dircio-Maldonado R, Ortiz-Ortiz J, Hernández-Sotelo D. The CpG island methylator phenotype increases the risk of high-grade squamous intraepithelial lesions and cervical cancer. Clin Epigenetics 2022; 14:4. [PMID: 34991696 PMCID: PMC8740093 DOI: 10.1186/s13148-021-01224-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Background High-risk human papillomavirus (HR-HPV) infection is the main cause of cervical cancer, but additional alterations are necessary for its development. Abnormal DNA methylation has an important role in the origin and dissemination of cervical cancer and other human tumors. In this work, we analyzed the methylation of eight genes (AJAP1, CDH1, CDH13, MAGI2, MGMT, MYOD1, RASSF1A and SOX17) that participate in several biological processes for the maintenance of cell normality. We analyzed DNA methylation by methylation-specific PCR (MSP) and HPV infection using the INNO‑LiPA genotyping kit in 59 samples diagnostic of normal cervical tissue (non-SIL), 107 low-grade squamous intraepithelial lesions (LSILs), 29 high-grade squamous intraepithelial lesions (HSILs) and 51 cervical cancers (CCs). Results We found that all samples of LSIL, HSIL, and CC were HPV-positive, and the genotypes with higher frequencies were 16, 18, 51 and 56. In general, the genes analyzed displayed a significant tendency toward an increase in methylation levels according to increasing cervical lesion severity, except for the CDH13 gene. High CpG island methylator phenotype (CIMP) was associated with a 50.6-fold (95% CI 4.72–2267.3)-increased risk of HSIL and a 122-fold risk of CC (95% CI 10.04–5349.7). Conclusions We found that CIMP high was significantly associated with HSIL and CC risk. These results could indicate that CIMP together with HR-HPV infection and other factors participates in the development of HSIL and CC. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01224-0.
Collapse
Affiliation(s)
- Jaqueline Loaeza-Loaeza
- Laboratory of Cancer Epigenetics, School of Chemical and Biological Sciences, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070, Chilpancingo, Guerrero, Mexico
| | - Berenice Illades-Aguiar
- Laboratory of Molecular Biomedicine, School of Chemical and Biological Sciences, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070, Chilpancingo, Guerrero, Mexico
| | - Oscar Del Moral-Hernández
- Laboratory of Cancer Virology, School of Chemical and Biological Sciences, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070, Chilpancingo, Guerrero, Mexico
| | - Yaneth Castro-Coronel
- Laboratory of Cytopathology and Histochemistry, School of Chemical and Biological Sciences, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070, Chilpancingo, Guerrero, Mexico
| | - Marco A Leyva-Vázquez
- Laboratory of Molecular Biomedicine, School of Chemical and Biological Sciences, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070, Chilpancingo, Guerrero, Mexico
| | - Roberto Dircio-Maldonado
- Laboratory of Molecular Biomedicine, School of Chemical and Biological Sciences, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070, Chilpancingo, Guerrero, Mexico
| | - Julio Ortiz-Ortiz
- Laboratory of Molecular Biomedicine, School of Chemical and Biological Sciences, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070, Chilpancingo, Guerrero, Mexico
| | - Daniel Hernández-Sotelo
- Laboratory of Cancer Epigenetics, School of Chemical and Biological Sciences, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070, Chilpancingo, Guerrero, Mexico.
| |
Collapse
|
6
|
SOX1 and PAX1 Are Hypermethylated in Cervical Adenocarcinoma and Associated with Better Prognosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3981529. [PMID: 33376722 PMCID: PMC7738792 DOI: 10.1155/2020/3981529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/31/2022]
Abstract
Background The increased risk and poor survival outcome of cervical adenocarcinoma (CAC) demand for effective early diagnostic biomarkers that can predict the disease progression and outcome. The purpose of this study was to investigate the value of methylation status of SOX1 and PAX1 in the detection and prognosis of CAC. Methods We performed a quantitative methylation-specific polymerase chain reaction in 205 cervical paraffin-embedded specimens (175 CACs, 30 noncancer cervical tissues). Overall and progression-free survival (OS and PFS, respectively) rates were calculated and compared using the Kaplan-Meier method. The prognostic value of SOX1m and PAX1m on CAC patients was assessed by the Cox regression model. A mathematical formula combining SOX1m, PAX1m, and age was constructed for survival prediction. Results The methylation status of SOX1 and PAX1 was higher in CAC tissues than in noncancer cervical tissues. In addition, SOX1m-positive CAC patients showed a higher 5-year OS rate than SOX1m-negative patients. In CAC patients with smaller tumor size (<4 cm), the PAX1m-positive group showed a higher 5-year PFS rate than the PAX1m-negative group. In the algorithm combining SOX1m, PAX1m, and age, the low-risk group showed a better 5-year OS and PFS rate than the high-risk group. Conclusion SOX1 and PAX1 methylation levels are higher in CAC than in normal cervical tissues and are potential biomarkers for monitoring CAC prognosis.
Collapse
|
7
|
Doherty MT, Sanni OB, Coleman HG, Cardwell CR, McCluggage WG, Quinn D, Wylie J, McMenamin ÚC. Concurrent and future risk of endometrial cancer in women with endometrial hyperplasia: A systematic review and meta-analysis. PLoS One 2020; 15:e0232231. [PMID: 32343732 PMCID: PMC7188276 DOI: 10.1371/journal.pone.0232231] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/09/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND To inform treatment decisions in women diagnosed with endometrial hyperplasia, quantification of the potential for concurrent endometrial cancer and the future risk of progression to cancer is required. METHODS We identified studies up to September 2018 that reported on the prevalence of concurrent cancer (within three months of endometrial hyperplasia diagnosis), or the incidence of cancer, identified at least three months after hyperplasia diagnosis. Random-effects meta-analyses produced pooled estimates and 95% confidence intervals (CIs). RESULTS A total of 36 articles were identified; 15 investigating concurrent and 21 progression to cancer. In pooled analysis of 11 studies of atypical hyperplasia, the pooled prevalence of concurrent endometrial cancer was 32.6% (95% CI: 24.1%, 42.4%) while no studies evaluated concurrent cancer in non-atypical hyperplasia. The risk of progression to cancer was high in atypical hyperplasia (n = 5 studies, annual incidence rate = 8.2%, 95% CI 3.9%, 17.3%) and only one study reported on non-atypical hyperplasia (annual incidence rate = 2.6%, 95% CI: 0.6%, 10.6%). CONCLUSIONS Overall, a third of women with atypical hyperplasia had concurrent endometrial cancer, although the number of studies, especially population-based, is small. Progression to cancer in atypical hyperplasia was high, but few studies were identified. Population-based estimates are required, in both atypical and non-atypical hyperplasia patients to better inform treatment strategies.
Collapse
Affiliation(s)
- Michelle T. Doherty
- Cancer Epidemiology Research Group, Centre for Public Health, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Omolara B. Sanni
- Cancer Epidemiology Research Group, Centre for Public Health, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Helen G. Coleman
- Cancer Epidemiology Research Group, Centre for Public Health, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Chris R. Cardwell
- Cancer Epidemiology Research Group, Centre for Public Health, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - W. Glenn McCluggage
- Department of Pathology, Belfast Health and Social Care Trust, Grosvenor Road, Belfast, Northern Ireland, United Kingdom
| | - Declan Quinn
- Department of Obstetrics and Gynaecology, Antrim Area Hospital, Northern Health and Social Care Trust, Antrim, Northern Ireland, United Kingdom
| | - James Wylie
- Department of Obstetrics and Gynaecology, Antrim Area Hospital, Northern Health and Social Care Trust, Antrim, Northern Ireland, United Kingdom
| | - Úna C. McMenamin
- Cancer Epidemiology Research Group, Centre for Public Health, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
8
|
Yang F, Liu D, Deng Y, Wang J, Mei S, Ge S, Li H, Zhang C, Zhang T. Frequent promoter methylation of HOXD10 in endometrial carcinoma and its pathological significance. Oncol Lett 2020; 19:3602-3608. [PMID: 32269635 DOI: 10.3892/ol.2020.11467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/02/2020] [Indexed: 02/07/2023] Open
Abstract
Homeobox D 10 (HOXD10) is important in cell differentiation and morphogenesis and serves as a tumor suppressor gene (TSG) in a number of malignancies. The present study investigated its promoter methylation status and association with the clinicopathological features of endometrial cancer (EC), and measured HOXD10 protein expression levels. EC samples (n=62), including 50 endometroid adenocarcinoma (EA) and 12 mucinous endometrial carcinoma samples (EC) and 70 non-cancerous samples were collected. All samples were evaluated for the methylation status of several TSGs, including HOXD10, using methylation-specific PCR. HOXD10 expression level was evaluated using immunohistochemistry. 5-Aza-2-deoxycytidine treatment was performed in the EC cell line Ishikawa to observe the change in HOXD10 expression levels. HOXD10 promoter methylation was more frequent in cancer samples (P<0.001). Downregulation of HOXD10 in EC samples was confirmed at the protein level using immunohistochemistry (P<0.001) and immunohistochemical staining was negatively associated with methylation status (P<0.05). Less HOXD10 protein was expressed in MEC compared with EA samples (P<0.001). The HOXD10 promoter was hypermethylated in both EA and MEC, causing decreased HOXD10 protein expression levels in EC cells. HOXD10 expression levels were partially reversed by 5-Aza-2-deoxycytidine treatment. The results of the present study demonstrated that epigenetic silencing of HOXD10 putatively contributed to the tumorigenesis of EA. Although there was no significant difference in HOXD10 methylation between EA and MEC, HOXD10 protein expression levels differed between these two diseases, indicating that it may be a useful protein biomarker for distinguishing between these two lesions.
Collapse
Affiliation(s)
- Fan Yang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Dongchen Liu
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Yupeng Deng
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Jun Wang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Shuyu Mei
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Shuang Ge
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Hailing Li
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Tingguo Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
9
|
Moinova HR, LaFramboise T, Lutterbaugh JD, Chandar AK, Dumot J, Faulx A, Brock W, De la Cruz Cabrera O, Guda K, Barnholtz-Sloan JS, Iyer PG, Canto MI, Wang JS, Shaheen NJ, Thota PN, Willis JE, Chak A, Markowitz SD. Identifying DNA methylation biomarkers for non-endoscopic detection of Barrett's esophagus. Sci Transl Med 2019; 10:10/424/eaao5848. [PMID: 29343623 DOI: 10.1126/scitranslmed.aao5848] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/08/2017] [Indexed: 12/17/2022]
Abstract
We report a biomarker-based non-endoscopic method for detecting Barrett's esophagus (BE) based on detecting methylated DNAs retrieved via a swallowable balloon-based esophageal sampling device. BE is the precursor of, and a major recognized risk factor for, developing esophageal adenocarcinoma. Endoscopy, the current standard for BE detection, is not cost-effective for population screening. We performed genome-wide screening to ascertain regions targeted for recurrent aberrant cytosine methylation in BE, identifying high-frequency methylation within the CCNA1 locus. We tested CCNA1 DNA methylation as a BE biomarker in cytology brushings of the distal esophagus from 173 individuals with or without BE. CCNA1 DNA methylation demonstrated an area under the curve of 0.95 for discriminating BE-related metaplasia and neoplasia cases versus normal individuals, performing identically to methylation of VIM DNA, an established BE biomarker. When combined, the resulting two biomarker panel was 95% sensitive and 91% specific. These results were replicated in an independent validation cohort of 149 individuals who were assayed using the same cutoff values for test positivity established in the training population. To progress toward non-endoscopic esophageal screening, we engineered a well-tolerated, swallowable, encapsulated balloon device able to selectively sample the distal esophagus within 5 min. In balloon samples from 86 individuals, tests of CCNA1 plus VIM DNA methylation detected BE metaplasia with 90.3% sensitivity and 91.7% specificity. Combining the balloon sampling device with molecular assays of CCNA1 plus VIM DNA methylation enables an efficient, well-tolerated, sensitive, and specific method of screening at-risk populations for BE.
Collapse
Affiliation(s)
- Helen R Moinova
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Thomas LaFramboise
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - James D Lutterbaugh
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Apoorva Krishna Chandar
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - John Dumot
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Ashley Faulx
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Wendy Brock
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | | | - Kishore Guda
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Prasad G Iyer
- Barrett's Esophagus Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Marcia I Canto
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Jean S Wang
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicholas J Shaheen
- Center for Esophageal Diseases and Swallowing, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Prashanti N Thota
- Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Joseph E Willis
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA. .,Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.,University Hospitals Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Amitabh Chak
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.,University Hospitals Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Sanford D Markowitz
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.,University Hospitals Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
10
|
Danková Z, Braný D, Dvorská D, Ňachajová M, Fiolka R, Grendár M, Hatok J, Kubatka P, Holubeková V, Halašová E, Bielik T, Žúbor P. Methylation status of KLF4 and HS3ST2 genes as predictors of endometrial cancer and hyperplastic endometrial lesions. Int J Mol Med 2018; 42:3318-3328. [PMID: 30221668 PMCID: PMC6202087 DOI: 10.3892/ijmm.2018.3872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/04/2018] [Indexed: 12/31/2022] Open
Abstract
Endometrial carcinoma is one of the most common tumours in developed countries. In addition to the active role of genetic factors, epigenetic changes also have an important effect. The present study analysed the methylation status of kruppel like factor 4 (KLF4) and heparan sulfate‑glucosamine 3‑sulfotransferase 2 (HS3ST2) genes in three endometrial tissue types for carcinoma prediction. The sample comprised 91 women with histologically‑confirmed endometrial carcinoma (64.16±9.64 years old), 36 women with hyperplasia (53.39±9.64 years old) and 45 with no signs or symptoms of malignancy (48.53±11.11 years old). The CpG dinucleotide methylation levels were examined by quantitative pyrosequencing, and the discrimination accuracy of the model was calculated using the Random Forest classification algorithm of the area under the ROC curve (AUC). The mean values of KLF4 and HS3ST2 methylation indices were 23.83±11.39 and 8.52±2.57 in the control samples; 30.40±8.52 and 33.76±20.66 in hyperplasia and 34.72±10.79 and 34.49±18.39 in the cancerous tissues. Multinomial logistic regression indicated that the HS3ST2 CpG1 methylation status is a predictor of hyperplasia (P<0.05) and that the KLF4 CpG2 dinucleotide can predict carcinoma formation (P<0.001). The AUC value of 0.95 indicates high discrimination accuracy of the CpG nucleotides methylation status model between the controls and the two other diagnoses. The results of the present study establish the likelihood that aberrations in KLF4 and HS3ST2 gene methylation levels are important in the development of endometrial hyperplasia and carcinoma, with hyperplasia an intermediate step between healthy and tumour tissues.
Collapse
Affiliation(s)
- Zuzana Danková
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Dušan Braný
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Dana Dvorská
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Marcela Ňachajová
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Roman Fiolka
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Marián Grendár
- Bioinformatic Unit, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Jozef Hatok
- Department of Medical Biochemistry, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Peter Kubatka
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Veronika Holubeková
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Erika Halašová
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Tibor Bielik
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Pavol Žúbor
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|
11
|
Elevated miR-20b-5p expression in peripheral blood mononuclear cells: A novel, independent molecular biomarker of favorable prognosis in chronic lymphocytic leukemia. Leuk Res 2018; 70:1-7. [PMID: 29715621 DOI: 10.1016/j.leukres.2018.04.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 12/21/2022]
Abstract
MicroRNA-20b-5p (miR-20b-5p) is part of the miR-106a/363 cluster and a member of the cancer-related miR-17 family. miR-20b-5p regulates important transcription factors, including hypoxia-inducible factor 1 (HIF1) and signal transducer and activator of transcription 3 (STAT3). Recently, the dysregulation of miR-20b-5p expression has been observed in many B-cell lymphomas and T-cell leukemias. In this research study, we examined the putative prognostic value of miR-20b-5p in CLL. Therefore, total RNA was isolated from peripheral blood mononuclear cells (PBMCs) collected from 88 CLL patients; next, total RNA was polyadenylated and first-strand cDNA was synthesized, using an oligo-dT-adapter primer. miR-20b-5p expression was quantified using an in-house-developed real-time quantitative PCR assay. Kaplan-Meier OS analysis and bootstrap univariate Cox regression showed that high miR-20b-5p expression predicts better OS for CLL patients (p < 0.001). Interestingly, miR-20b-5p overexpression retains its favorable prognostic role in CLL patients of intermediate risk or stratified according to established prognostic factors [CD38 expression and mutational status of the immunoglobulin heavy chain variable (IGHV) region]. In conclusion, miR-20b-5p is a potential independent molecular biomarker of favorable prognosis in CLL.
Collapse
|
12
|
Wahid B, Bashir H, Bilal M, Wahid K, Sumrin A. Developing a deeper insight into reproductive biomarkers. Clin Exp Reprod Med 2017; 44:159-170. [PMID: 29376011 PMCID: PMC5783911 DOI: 10.5653/cerm.2017.44.4.159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 10/26/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022] Open
Abstract
The development of biomarkers of reproductive medicine is still in its infancy because many black boxes are still present in reproductive medicine. Novel approaches to human infertility diagnostics and treatment must be developed because reproductive medicine has lagged behind in the implementation of biomarkers in clinical medicine. Despite the dearth of the available literature, the current rapid pace of publications suggests that this gap will soon be filled therefore; this review is a précis of the research that has been done so far and will provide a basis for the development of biomarkers in reproductive medicine.
Collapse
Affiliation(s)
- Braira Wahid
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan.,Genome Centre for Molecular Based Diagnosis and Research, Lahore, Pakistan
| | - Hamid Bashir
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Bilal
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Khansa Wahid
- Lahore College for Women University, Lahore, Pakistan
| | - Aleena Sumrin
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
13
|
Papageorgiou SG, Kontos CK, Diamantopoulos MA, Bouchla A, Glezou E, Bazani E, Pappa V, Scorilas A. MicroRNA-155-5p Overexpression in Peripheral Blood Mononuclear Cells of Chronic Lymphocytic Leukemia Patients Is a Novel, Independent Molecular Biomarker of Poor Prognosis. DISEASE MARKERS 2017; 2017:2046545. [PMID: 29463948 PMCID: PMC5804407 DOI: 10.1155/2017/2046545] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/20/2017] [Indexed: 12/28/2022]
Abstract
MicroRNA-155-5p (miR-155-5p) is a proinflammatory, oncogenic miRNA, involved in various physiological processes, including hematopoiesis, immunity, inflammation, and cell lineage differentiation. It regulates important transcription factors, such as E2F2, hypoxia-inducible factor 1 (HIF1), and FOXO3. Recently, the dysregulation of miR-155-5p expression has been linked to chronic lymphocytic leukemia (CLL) pathogenesis. In this research study, we investigated the potential diagnostic and prognostic value of miR-155-5p in CLL. To achieve our goal, we isolated total RNA from peripheral blood mononuclear cells (PBMCs) collected from 88 CLL patients and 36 nonleukemic blood donors and performed polyadenylation of total RNA and reverse transcription. Next, we quantified miR-155-5p levels using an in-house-developed real-time quantitative PCR method, before proceeding to extensive biostatistical analysis. Thus, it appears that miR-155-5p is significantly overexpressed in PBMCs of CLL patients and can distinguish them from nonleukemic population. Kaplan-Meier OS analysis and bootstrap univariate Cox regression showed that high miR-155-5p expression predicts inferior OS for CLL patients (p < 0.001). Interestingly, miR-155-5p overexpression retains its unfavorable prognostic role in CLL patients stratified according to established prognostic factors [CD38 expression and mutational status of the immunoglobulin heavy chain variable region (IGHV)]. Thus, miR-155-5p appears as a promising, independent molecular biomarker of unfavorable prognosis in CLL.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Male
- MicroRNAs/blood
- MicroRNAs/genetics
- Middle Aged
- Prognosis
- Survival Analysis
- Up-Regulation
Collapse
Affiliation(s)
- Sotirios G. Papageorgiou
- Second Department of Internal Medicine and Research Unit, University General Hospital “Attikon”, 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Marios A. Diamantopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Anthi Bouchla
- Second Department of Internal Medicine and Research Unit, University General Hospital “Attikon”, 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Eirini Glezou
- Second Department of Internal Medicine and Research Unit, University General Hospital “Attikon”, 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Efthymia Bazani
- Second Department of Internal Medicine and Research Unit, University General Hospital “Attikon”, 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Vasiliki Pappa
- Second Department of Internal Medicine and Research Unit, University General Hospital “Attikon”, 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| |
Collapse
|
14
|
Chao TK, Huang TS, Liao YP, Huang RL, Su PH, Shen HY, Lai HC, Wang YC. Pyruvate kinase M2 is a poor prognostic marker of and a therapeutic target in ovarian cancer. PLoS One 2017; 12:e0182166. [PMID: 28753677 PMCID: PMC5533430 DOI: 10.1371/journal.pone.0182166] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/13/2017] [Indexed: 12/20/2022] Open
Abstract
Pyruvate kinase M2 (PKM2) regulates glycolysis and oxidative phosphorylation; however, the role of PKM2 in ovarian cancer remains largely unknown. We investigated whether ovarian cancer metabolism could provide insight into the development of therapeutic strategies. We performed immunohistochemical staining for PKM2 on a tissue microarray for multivariate analysis. It revealed that patients exhibiting higher PKM2 expression were significantly associated with malignancy groups (p < 0.001) and pathogenesis models (p < 0.001), had poor progression-free survival rates (p = 0.01) as compared with patients exhibiting lower PKM2 levels, and yielded a hazard ratio of death of 2.02 (95% confidence interval: 0.70–5.85). In cell lines, PKM2 inhibitor significantly inhibited the glycolytic rate according to cellular glucose consumption (p < 0.001). We also utilized Seahorse assays to assess metabolism-related cell-specific factors and the impact of PKM2 inhibitors. Energy shifts as per Seahorse analysis showed attenuation of the extracellular acidification rate (p < 0.05) and no significant difference in oxygen-consumption rate in SKOV3 cells. Treatment with PKM2 inhibitor suppressed ovarian cancer growth and cell migration in vitro and inhibited tumor growth without significant toxicity in a xenograft study. PKM2 inhibition disturbed Warburg effects and inhibited ovarian cancer cell growth. Targeting PKM2 may constitute a promising therapy for patients with ovarian cancer, and clinical trials involving shikonin are warranted.
Collapse
Affiliation(s)
- Tai-Kuang Chao
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
- Laboratory of Epigenetics and Cancer Stem Cells, National Defense Medical Centre, Taipei, Taiwan
| | - Tien-Shuo Huang
- Laboratory of Epigenetics and Cancer Stem Cells, National Defense Medical Centre, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Obstetrics and Gynecology, School of medicine, College of medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ping Liao
- Laboratory of Epigenetics and Cancer Stem Cells, National Defense Medical Centre, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Obstetrics and Gynecology, School of medicine, College of medicine, Taipei Medical University, Taipei, Taiwan
| | - Rui-Lan Huang
- Laboratory of Epigenetics and Cancer Stem Cells, National Defense Medical Centre, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Obstetrics and Gynecology, School of medicine, College of medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Hsuan Su
- Laboratory of Epigenetics and Cancer Stem Cells, National Defense Medical Centre, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Obstetrics and Gynecology, School of medicine, College of medicine, Taipei Medical University, Taipei, Taiwan
| | - Hueng-Yuan Shen
- Department of Nuclear Medicine and PET center, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
| | - Hung-Cheng Lai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Laboratory of Epigenetics and Cancer Stem Cells, National Defense Medical Centre, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Obstetrics and Gynecology, School of medicine, College of medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chi Wang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Laboratory of Epigenetics and Cancer Stem Cells, National Defense Medical Centre, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
15
|
Su PH, Hsu YW, Huang RL, Weng YC, Wang HC, Chen YC, Tsai YJ, Yuan CC, Lai HC. Methylomics of nitroxidative stress on precancerous cells reveals DNA methylation alteration at the transition from in situ to invasive cervical cancer. Oncotarget 2017; 8:65281-65291. [PMID: 29029430 PMCID: PMC5630330 DOI: 10.18632/oncotarget.18370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/26/2017] [Indexed: 12/30/2022] Open
Abstract
Epigenetic dysregulation is important in cervical cancer development, but the underlying mechanism is largely unknown. Increasing evidence indicates that DNA methylation is sensitive to changes in microenvironmental factors, such as nitric oxide (NO) in the chronic inflammatory cervix. However, the epigenomic effects of NO in cancer have not been investigated. In this study, we explored the methylomic effects of nitroxidative stress in HPV-immortalized precancerous cells. Chronic NO exposure promoted the acquisition of malignant phenotypes such as cell growth, migration, invasion, and anchorage-independent growth. Epigenetic analysis confirmed hypermethylation of PTPRR. Whole-genome methylation analysis showed BOLA2B, FGF8, HSPA6, LYPD2, and SHE were hypermethylated in cells. The hypermethylation BOLA2B, FGF8, HSPA6, and SHE was confirmed in cervical scrapings from invasive cancer, but not in CIN3/CIS, CIN2 and CIN1 (p=0.019, 0.023, 0.023 and 0.027 respectively), suggesting the role in the transition from in situ to invasive process. Our results reveal that nitroxidative stress causes epigenetic changes in HPV-infected cells. Investigation of these methylation changes in persistent HPV infection may help identify new biomarkers of DNA methylation for cervical cancer screening, especially for precancerous lesions.
Collapse
Affiliation(s)
- Po-Hsuan Su
- Translational Epigenetics Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yao-Wen Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Rui-Lan Huang
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Weng
- Translational Epigenetics Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hui-Chen Wang
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chih Chen
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yueh-Ju Tsai
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chiou-Chung Yuan
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hung-Cheng Lai
- Translational Epigenetics Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| |
Collapse
|
16
|
Kontos CK, Papageorgiou SG, Diamantopoulos MA, Scorilas A, Bazani E, Vasilatou D, Gkontopoulos K, Glezou E, Stavroulaki G, Dimitriadis G, Pappa V. mRNA overexpression of the hypoxia inducible factor 1 alpha subunit gene (HIF1A): An independent predictor of poor overall survival in chronic lymphocytic leukemia. Leuk Res 2016; 53:65-73. [PMID: 28038356 DOI: 10.1016/j.leukres.2016.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 12/17/2022]
Abstract
The hypoxia inducible factor 1 (HIF1) is a heterodimeric transcription factor that ultimately regulates cellular responses to changes in oxygen tension. In this study, we examined the potential diagnostic and prognostic potential of the mRNA expression of HIF1 regulatory α-subunit (HIF1A) in chronic lymphocytic leukemia (CLL). For this purpose, total RNA was isolated from peripheral blood mononuclear cells collected from 88 CLL patients and 33 non-leukemic blood donors, and poly(A)-RNA was reversely transcribed. HIF1A mRNA levels were quantified using real-time PCR. Kaplan-Meier survival analysis showed that high HIF1A mRNA expression predicts inferior overall survival for CLL patients (p=0.001). Bootstrap univariate Cox regression analysis confirmed that HIF1A mRNA overexpression is a significant unfavorable prognosticator in CLL (hazard ratio=3.75, bias-corrected and accelerated 95% confidence interval=1.43-24.36, bootstrap p<0.001), independent of other established prognostic factors, including CD38 expression, the mutational status of the immunoglobulin heavy chain variable region (IGHV), and the clinical stage (Binet or Rai stage) or risk group (p<0.001 in all cases). Interestingly, HIF1A mRNA positivity retains its unfavorable prognostic value in distinct subgroups of patients, stratified according to established prognostic factors. Thus, HIF1A mRNA overexpression can be regarded as a promising, independent molecular biomarker of unfavorable prognosis in CLL.
Collapse
Affiliation(s)
- Christos K Kontos
- Second Department of Internal Medicine and Research Unit, University General Hospital "Attikon", 1 Rimini St., Haidari, 12462 Athens, Greece; Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Sotirios G Papageorgiou
- Second Department of Internal Medicine and Research Unit, University General Hospital "Attikon", 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Efthimia Bazani
- Second Department of Internal Medicine and Research Unit, University General Hospital "Attikon", 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Diamantina Vasilatou
- Second Department of Internal Medicine and Research Unit, University General Hospital "Attikon", 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Konstantinos Gkontopoulos
- Second Department of Internal Medicine and Research Unit, University General Hospital "Attikon", 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Eirini Glezou
- Second Department of Internal Medicine and Research Unit, University General Hospital "Attikon", 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Georgia Stavroulaki
- Second Department of Internal Medicine and Research Unit, University General Hospital "Attikon", 1 Rimini St., Haidari, 12462 Athens, Greece
| | - George Dimitriadis
- Second Department of Internal Medicine and Research Unit, University General Hospital "Attikon", 1 Rimini St., Haidari, 12462 Athens, Greece
| | - Vasiliki Pappa
- Second Department of Internal Medicine and Research Unit, University General Hospital "Attikon", 1 Rimini St., Haidari, 12462 Athens, Greece.
| |
Collapse
|
17
|
Klemmt PAB, Resch E, Smyrek I, Engels K, Stelzer EHK, Starzinski-Powitz A. Alternative exon usage creates novel transcript variants of tumor suppressor SHREW-1 gene with differential tissue expression profile. Biol Open 2016; 5:1607-1619. [PMID: 27870635 PMCID: PMC5155531 DOI: 10.1242/bio.019463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Shrew-1, also called AJAP1, is a transmembrane protein associated with E-cadherin-mediated adherence junctions and a putative tumor suppressor. Apart from its interaction with β-catenin and involvement in E-cadherin internalization, little structure or function information exists. Here we explored shrew-1 expression during postnatal differentiation of mammary gland as a model system. Immunohistological analyses with antibodies against either the extracellular or the cytoplasmic domains of shrew-1 consistently revealed the expression of full-length shrew-1 in myoepithelial cells, but only part of it in luminal cells. While shrew-1 localization remained unaltered in myoepithelial cells, nuclear localization occurred in luminal cells during lactation. Based on these observations, we identified two unknown shrew-1 transcript variants encoding N-terminally truncated proteins. The smallest shrew-1 protein lacks the extracellular domain and is most likely the only variant present in luminal cells. RNA analyses of human tissues confirmed that the novel transcript variants of shrew-1 exist in vivo and exhibit a differential tissue expression profile. We conclude that our findings are essential for the understanding and interpretation of future functional and interactome analyses of shrew-1 variants. Summary: Transcripts of the tumor suppressor gene SHREW-1 exist in various splice variants in human and mouse encoding proteins with a differential expression and intracellular localization profile.
Collapse
Affiliation(s)
- Petra A B Klemmt
- Institute of Cell Biology and Neuroscience, Department of Molecular Cell Biology and Human Genetics, Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 13, Frankfurt am Main D-60438, Germany
| | - Eduard Resch
- Institute of Cell Biology and Neuroscience, Department of Molecular Cell Biology and Human Genetics, Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 13, Frankfurt am Main D-60438, Germany
| | - Isabell Smyrek
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 15, Frankfurt am Main D-60438, Germany
| | - Knut Engels
- Center for Pathology, Cytology and Molecular Pathology, Neuss D-41462, Germany
| | - Ernst H K Stelzer
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 15, Frankfurt am Main D-60438, Germany
| | - Anna Starzinski-Powitz
- Institute of Cell Biology and Neuroscience, Department of Molecular Cell Biology and Human Genetics, Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 13, Frankfurt am Main D-60438, Germany
| |
Collapse
|
18
|
Quantitative DNA methylation analysis of selected genes in endometrial carcinogenesis. Taiwan J Obstet Gynecol 2016; 54:572-9. [PMID: 26522113 DOI: 10.1016/j.tjog.2015.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 06/09/2015] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Most endometrial carcinomas appear to develop from precursors (e.g., endometrial hyperplasia) that progress for several years. Patients who are ultimately diagnosed with carcinoma often present clinically with complaints of abnormal vaginal bleeding years before diagnosis, which offers an opportunity for early diagnosis and curative treatment. The analysis of DNA methylation may be used as a method for detecting endometrial cancer (EC). To test the potential clinical application of this method, we used quantitative methylation analysis of five genes in a full spectrum of endometrial lesions. MATERIALS AND METHODS This hospital-based, prospective, case-controlled study was conducted on 68 patients, which included patients who had a normal endometrium (n = 18), hyperplasia of the endometrium (n = 24), and EC (n = 26). Methylation levels of the following genes were determined by using real-time methylation-specific polymerase chain reaction (PCR) amplification: zinc finger protein 177 (ZNF177), collagen type XIV α1 (COL14A1), dihydropyrimidinase-like 4 (DPYSL4), homeobox A9 (HOXA9), transmembrane protein with epidermal growth factor-like and two follistatin-like domains 2 (TMEFF2). The methylation index (MI) cutoff values for the different diagnoses were determined to test the sensitivity and specificity of the method and to generate the receiver operating characteristic (ROC) curves. The Mann-Whitney U test was used to test between-group differences in the MI. RESULTS The MI of the five genes was significantly higher in EC than the MIs in specimens of hyperplasia of endometrium and normal appearance (p < 0.001). The ROC analysis demonstrated that the sensitivity, specificity, and accuracy for detecting EC were 92.3%, 94.4%, and 95.1%, respectively, for ZNF177; 92.3%, 94.4%, and 95.7%, respectively, for COL14A1; 80.8%, 94.4%, and 81.4%, respectively, for HOXA9; 65.4%, 94.4%, and 89.5%, respectively, for TMEFF2; and 61.5%, 94.4%, and 63.3%, respectively, for DPYSL4. The combined testing of ZNF177 and COL14A1 had the best specificity (100%), but compromised sensitivity (88.5%). CONCLUSION Promoter methylation of ZNF177, COL14A1, HOXA9, DPYSL4, and TMEFF2 genes is a frequent epigenetic event in EC. Furthermore, the epigenetic hypermethylation of TMEFF2 may be a valuable marker for identifying undetected EC within endometrial hyperplasia.
Collapse
|
19
|
Stearns V, Fackler MJ, Hafeez S, Bujanda ZL, Chatterton RT, Jacobs LK, Khouri NF, Ivancic D, Kenney K, Shehata C, Jeter SC, Wolfman JA, Zalles CM, Huang P, Khan SA, Sukumar S. Gene Methylation and Cytological Atypia in Random Fine-Needle Aspirates for Assessment of Breast Cancer Risk. Cancer Prev Res (Phila) 2016; 9:673-682. [PMID: 27261491 DOI: 10.1158/1940-6207.capr-15-0377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 05/23/2016] [Indexed: 11/16/2022]
Abstract
Methods to determine individualized breast cancer risk lack sufficient sensitivity to select women most likely to benefit from preventive strategies. Alterations in DNA methylation occur early in breast cancer. We hypothesized that cancer-specific methylation markers could enhance breast cancer risk assessment. We evaluated 380 women without a history of breast cancer. We determined their menopausal status or menstrual cycle phase, risk of developing breast cancer (Gail model), and breast density and obtained random fine-needle aspiration (rFNA) samples for assessment of cytopathology and cumulative methylation index (CMI). Eight methylated gene markers were identified through whole-genome methylation analysis and included novel and previously established breast cancer detection genes. We performed correlative and multivariate linear regression analyses to evaluate DNA methylation of a gene panel as a function of clinical factors associated with breast cancer risk. CMI and individual gene methylation were independent of age, menopausal status or menstrual phase, lifetime Gail risk score, and breast density. CMI and individual gene methylation for the eight genes increased significantly (P < 0.001) with increasing cytological atypia. The findings were verified with multivariate analyses correcting for age, log (Gail), log (percent density), rFNA cell number, and body mass index. Our results demonstrate a significant association between cytological atypia and high CMI, which does not vary with menstrual phase or menopause and is independent of Gail risk and mammographic density. Thus, CMI is an excellent candidate breast cancer risk biomarker, warranting larger prospective studies to establish its utility for cancer risk assessment. Cancer Prev Res; 9(8); 673-82. ©2016 AACR.
Collapse
Affiliation(s)
- Vered Stearns
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Mary Jo Fackler
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Sidra Hafeez
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Zoila Lopez Bujanda
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Robert T Chatterton
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| | - Lisa K Jacobs
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Nagi F Khouri
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - David Ivancic
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| | - Kara Kenney
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| | - Christina Shehata
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Stacie C Jeter
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Judith A Wolfman
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| | | | - Peng Huang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Seema A Khan
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| | - Saraswati Sukumar
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
20
|
Liu LC, Lai HC, Chou YC, Huang RL, Yu MH, Lin CP, Tsai WC, Chiang KJ, Wang YC, Chao TK. Paired boxed gene 1 expression: A single potential biomarker for differentiating endometrial lesions associated with favorable outcomes in patients with endometrial carcinoma. J Obstet Gynaecol Res 2016; 42:1159-67. [DOI: 10.1111/jog.13040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 04/05/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Li-Chun Liu
- Division of Obstetrics and Gynecology, Tri-Service General Hospital Songshan Branch; National Defense Medical Center; Taipei Taiwan
- Department of Obstetrics and Gynecology, Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
- Department of Medical Sciences, Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
| | - Hung-Cheng Lai
- Department of Medical Sciences, Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
- Department of Obstetrics and Gynecology, Shuang Ho Hospital; Taipei Medical University; New Taipei City Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine; Taipei Medical University; Taipei Taiwan
- Department of Life Sciences, Department and Graduate Institute of Biochemistry, Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
| | - Yu-Ching Chou
- School of Public Health; National Defense Medical Center; Taipei Taiwan
| | - Rui-Lan Huang
- Department of Obstetrics and Gynecology, Shuang Ho Hospital; Taipei Medical University; New Taipei City Taiwan
| | - Mu-Hsien Yu
- Department of Obstetrics and Gynecology, Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
| | - Chi-Pin Lin
- Department of Pathology, Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
| | - Kai-Jo Chiang
- Department of Nursing, Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
| | - Yu-Chi Wang
- Department of Obstetrics and Gynecology, Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
- Department of Medical Sciences, Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
| | - Tai-Kuang Chao
- Department of Pathology, Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
| |
Collapse
|
21
|
Sheng Y, Wang H, Liu D, Zhang C, Deng Y, Yang F, Zhang T, Zhang C. Methylation of tumor suppressor gene CDH13 and SHP1 promoters and their epigenetic regulation by the UHRF1/PRMT5 complex in endometrial carcinoma. Gynecol Oncol 2015; 140:145-51. [PMID: 26597461 DOI: 10.1016/j.ygyno.2015.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/24/2015] [Accepted: 11/17/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Epigenetic changes in cancer and precancerous lesions could be utilized as biomarkers for cancer early detection. This study aims to investigate the novel biomarkers in endometrial carcinoma, and explore their epigenetic regulation. METHODS Methylation of six tumor suppressor genes (CDH13, SHP1, HIN1, DKK3, CTNNA1 and PCDH8) was evaluated in 155 endometrium samples. Changes of methylation and mRNA expression after treatment with 5-Aza-2'-deoxycytidine (5-Aza-CdR) or/and trichostatin A (TSA) were investigated by MSP and qRT-PCR respectively. Co-immunoprecipitation was used to detect the interactions between UHRF1 and PRMT5 proteins. RESULTS CDH13 and SHP1 promoters were highly methylated (81.36% and 86.44%, respectively) in endometrial carcinoma, while CDH13 promoter methylation was also present in complex hyperplasia and atypical hyperplasia (51.72% and 50.00%, respectively). Methylation of CDH13 and SHP1 promoters was associated with age and tumor differentiation or muscular infiltration depth. CDH13 and SHP1 promoters were completely methylated in endometrial carcinoma cell lines and were partially reversed by 5-Aza-CdR or TSA to induce mRNA levels (P<0.01). After combined treatment with these two agents, methylation of CDH13 and SHP1 promoters was completely reversed and expression of their mRNA was significantly increased (P<0.01). Moreover, PRMT5 could bind to UHRF1 and down-regulated by 5-Aza-CdR and/or TSA treatment (P<0.05). CONCLUSIONS Our data demonstrate for the first time that SHP1 methylation has high specificity for diagnosis of endometrial carcinoma, while CDH13 promoter methylation plays a role in the earlier stage. Furthermore, UHRF1 could form a complex with PRMT5 to contribute to the endometrial carcinogenesis.
Collapse
Affiliation(s)
- Yan Sheng
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China; Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongtao Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research for Cancer, The Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Dongchen Liu
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China
| | - Cheng Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China
| | - Yupeng Deng
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China
| | - Fan Yang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China
| | - Tingguo Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China.
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China.
| |
Collapse
|
22
|
Brany D, Dvorska D, Nachajova M, Slavik P, Burjanivova T. Malignant tumors of the uterine corpus: molecular background of their origin. Tumour Biol 2015; 36:6615-21. [DOI: 10.1007/s13277-015-3824-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/20/2015] [Indexed: 12/21/2022] Open
|
23
|
Bakkum-Gamez JN, Wentzensen N, Maurer MJ, Hawthorne KM, Voss JS, Kroneman TN, Famuyide AO, Clayton AC, Halling KC, Kerr SE, Cliby WA, Dowdy SC, Kipp BR, Mariani A, Oberg AL, Podratz KC, Shridhar V, Sherman ME. Detection of endometrial cancer via molecular analysis of DNA collected with vaginal tampons. Gynecol Oncol 2015; 137:14-22. [PMID: 25677060 DOI: 10.1016/j.ygyno.2015.01.552] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/31/2015] [Indexed: 01/05/2023]
Abstract
OBJECTIVE We demonstrate the feasibility of detecting EC by combining minimally-invasive specimen collection techniques with sensitive molecular testing. METHODS Prior to hysterectomy for EC or benign indications, women collected vaginal pool samples with intravaginal tampons and underwent endometrial brushing. Specimens underwent pyrosequencing for DNA methylation of genes reported to be hypermethylated in gynecologic cancers and recently identified markers discovered by profiling over 200 ECs. Methylation was evaluated individually across CpGs and averaged across genes. Differences between EC and benign endometrium (BE) were assessed using two-sample t-tests and area under the curve (AUC). RESULTS Thirty-eight ECs and 28 BEs were included. We evaluated 97 CpGs within 12 genes, including previously reported markers (RASSF1, HSP2A, HOXA9, CDH13, HAAO, and GTF2A1) and those identified in discovery work (ASCL2, HTR1B, NPY, HS3ST2, MME, ADCYAP1, and additional CDH13 CpG sites). Mean methylation was higher in tampon specimens from EC v. BE for 9 of 12 genes (ADCYAP1, ASCL2, CDH13, HS3ST2, HTR1B, MME, HAAO, HOXA9, and RASSF1) (all p<0.05). Among these genes, relative hypermethylation was observed in EC v. BE across CpGs. Endometrial brush and tampon results were similar. Within tampon specimens, AUC was highest for HTR1B (0.82), RASSF1 (0.75), and HOXA9 (0.74). This is the first report of HOXA9 hypermethylation in EC. CONCLUSION DNA hypermethylation in EC tissues can also be identified in vaginal pool DNA collected via intravaginal tampon. Identification of additional EC biomarkers and refined collection methods are needed to develop an early detection tool for EC.
Collapse
Affiliation(s)
- Jamie N Bakkum-Gamez
- Department of Obstetrics and Gynecology, Division of Gynecologic Surgery, Mayo Clinic, Rochester, MN, USA.
| | - Nicolas Wentzensen
- Hormonal and Reproductive Branch (HREB), Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), USA
| | - Matthew J Maurer
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Kieran M Hawthorne
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Jesse S Voss
- Department of Laboratory Medicine and Pathology, Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Trynda N Kroneman
- Department of Laboratory Medicine and Pathology, Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Abimbola O Famuyide
- Department of Obstetrics and Gynecology, Division of Gynecologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Amy C Clayton
- Department of Laboratory Medicine and Pathology, Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kevin C Halling
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, MN, USA
| | - Sarah E Kerr
- Department of Laboratory Medicine and Pathology, Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - William A Cliby
- Department of Obstetrics and Gynecology, Division of Gynecologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Sean C Dowdy
- Department of Obstetrics and Gynecology, Division of Gynecologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Benjamin R Kipp
- Department of Laboratory Medicine and Pathology, Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Andrea Mariani
- Department of Obstetrics and Gynecology, Division of Gynecologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Ann L Oberg
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Karl C Podratz
- Department of Obstetrics and Gynecology, Division of Gynecologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Viji Shridhar
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic, Rochester, MN, USA
| | - Mark E Sherman
- Hormonal and Reproductive Branch (HREB), Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), USA
| |
Collapse
|