1
|
Jiang H, Zhang Z, Yu Y, Chu HY, Yu S, Yao S, Zhang G, Zhang BT. Drug Discovery of DKK1 Inhibitors. Front Pharmacol 2022; 13:847387. [PMID: 35355709 PMCID: PMC8959454 DOI: 10.3389/fphar.2022.847387] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
Dickkopf-1 (DKK1) is a well-characterized Wnt inhibitor and component of the Wnt/β-catenin signaling pathway, whose dysregulation is associated with multiple abnormal pathologies including osteoporosis, Alzheimer's disease, diabetes, and various cancers. The Wnt signaling pathway has fundamental roles in cell fate determination, cell proliferation, and survival; thus, its mis-regulation can lead to disease. Although DKK1 is involved in other signaling pathways, including the β-catenin-independent Wnt pathway and the DKK1/CKAP4 pathway, the inhibition of DKK1 to propagate Wnt/β-catenin signals has been validated as an effective way to treat related diseases. In fact, strategies for developing DKK1 inhibitors have produced encouraging clinical results in different pathological models, and many publications provide detailed information about these inhibitors, which include small molecules, antibodies, and nucleic acids, and may function at the protein or mRNA level. However, no systematic review has yet provided an overview of the various aspects of their development and prospects. Therefore, we review the DKK1 inhibitors currently available or under study and provide an outlook on future studies involving DKK1 and drug discovery.
Collapse
Affiliation(s)
- Hewen Jiang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Zongkang Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Yuanyuan Yu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.,Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hang Yin Chu
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Sifan Yu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.,Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Shanshan Yao
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Ge Zhang
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.,Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| |
Collapse
|
2
|
Zhang R, Puzzoni M, Mariani S, Zheng Y, Liscia N, Guo Y, Donisi C, Liu Y, Impera V, Fang W, Scartozzi M. Emerging treatment evolutions and integrated molecular characteristics of biliary tract cancers. Cancer Sci 2021; 112:4819-4833. [PMID: 34534382 PMCID: PMC8645726 DOI: 10.1111/cas.15139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/05/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Biliary tract cancers (BTCs) consist of a group of highly heterogeneous malignancies that are characterized by genomic differences among tumors from different anatomic sites. The current treatment for BTC includes surgery, chemotherapy, target therapy, and immunotherapy. Although surgery remains the primary option for localized disease, representing the only potential curative treatment, a high risk of recurrence cannot be neglected. Chemotherapy has been considered the standard of care for both advanced and metastatic disease and in adjuvant settings. However, drug resistance is a major obstacle associated with chemotherapy. The development of genetic testing technologies, including next-generation sequencing, has opened the door for the identification of drug targets and candidate molecules. A series of preclinical studies has demonstrated the role of gene mutations, abnormal signaling pathways, and immunosuppression in the pathogenesis of BTC, laying the foundation for the application of targeted therapy and immunotherapy. A variety of molecularly targeted agents, including pemigatinib, have shown promising survival benefits in patients with advanced disease. The rapidly evolving role of multimodal therapy represents the subject of this review.
Collapse
Affiliation(s)
- Ruyi Zhang
- Department of Medical OncologySchool of MedicineThe First Affiliated HospitalZhejiang UniversityHangzhouChina
| | - Marco Puzzoni
- Department of Medical OncologyMedical OncologyUniversity Hospital of CagliariUniversity of CagliariCagliariItaly
| | - Stefano Mariani
- Department of Medical OncologyMedical OncologyUniversity Hospital of CagliariUniversity of CagliariCagliariItaly
| | - Yi Zheng
- Department of Medical OncologySchool of MedicineThe First Affiliated HospitalZhejiang UniversityHangzhouChina
| | - Nicole Liscia
- Medical Oncology UnitSapienza University of RomeRomeItaly
| | - Yixuan Guo
- Department of Medical OncologySchool of MedicineThe First Affiliated HospitalZhejiang UniversityHangzhouChina
| | - Clelia Donisi
- Department of Medical OncologyMedical OncologyUniversity Hospital of CagliariUniversity of CagliariCagliariItaly
| | - Yu Liu
- Department of Medical OncologySchool of MedicineThe First Affiliated HospitalZhejiang UniversityHangzhouChina
| | | | - Weijia Fang
- Department of Medical OncologySchool of MedicineThe First Affiliated HospitalZhejiang UniversityHangzhouChina
| | - Mario Scartozzi
- Department of Medical OncologyMedical OncologyUniversity Hospital of CagliariUniversity of CagliariCagliariItaly
| |
Collapse
|
3
|
Chu HY, Chen Z, Wang L, Zhang ZK, Tan X, Liu S, Zhang BT, Lu A, Yu Y, Zhang G. Dickkopf-1: A Promising Target for Cancer Immunotherapy. Front Immunol 2021; 12:658097. [PMID: 34093545 PMCID: PMC8174842 DOI: 10.3389/fimmu.2021.658097] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/04/2021] [Indexed: 01/15/2023] Open
Abstract
Clinical studies in a range of cancers have detected elevated levels of the Wnt antagonist Dickkopf-1 (DKK1) in the serum or tumors of patients, and this was frequently associated with a poor prognosis. Our analysis of DKK1 gene profile using data from TCGA also proves the high expression of DKK1 in 14 types of cancers. Numerous preclinical studies have demonstrated the cancer-promoting effects of DKK1 in both in vitro cell models and in vivo animal models. Furthermore, DKK1 showed the ability to modulate immune cell activities as well as the immunosuppressive cancer microenvironment. Expression level of DKK1 is positively correlated with infiltrating levels of myeloid-derived suppressor cells (MDSCs) in 20 types of cancers, while negatively associated with CD8+ T cells in 4 of these 20 cancer types. Emerging experimental evidence indicates that DKK1 has been involved in T cell differentiation and induction of cancer evasion of immune surveillance by accumulating MDSCs. Consequently, DKK1 has become a promising target for cancer immunotherapy, and the mechanisms of DKK1 affecting cancers and immune cells have received great attention. This review introduces the rapidly growing body of literature revealing the cancer-promoting and immune regulatory activities of DKK1. In addition, this review also predicts that by understanding the interaction between different domains of DKK1 through computational modeling and functional studies, the underlying functional mechanism of DKK1 could be further elucidated, thus facilitating the development of anti-DKK1 drugs with more promising efficacy in cancer immunotherapy.
Collapse
Affiliation(s)
- Hang Yin Chu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Zihao Chen
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China.,School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Zong-Kang Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China.,School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xinhuan Tan
- Department of Microsurgery (II), Wendeng Hospital of Traditional Chinese Orthopedics and Traumatology of Shandong Province, Wendeng, China
| | - Shuangshuang Liu
- Department of Microsurgery (II), Wendeng Hospital of Traditional Chinese Orthopedics and Traumatology of Shandong Province, Wendeng, China
| | - Bao-Ting Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China.,School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China
| |
Collapse
|
4
|
Wall JA, Klempner SJ, Arend RC. The anti-DKK1 antibody DKN-01 as an immunomodulatory combination partner for the treatment of cancer. Expert Opin Investig Drugs 2020; 29:639-644. [PMID: 32408777 DOI: 10.1080/13543784.2020.1769065] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The Wnt/beta-catenin pathway is a complex signaling pathway known to be dysregulated in several cancers; Dickkopf-1 (Dkk1) is an inhibitor of canonical Wnt signaling via negative feedback. Elevated Dkk1 is associated with a poor prognosis in several cancers, including gynecologic and gastroesophageal malignancies. This review focuses on the potential therapeutic benefit of targeting Dkk1 with the IgG4 monoclonal antibody, DKN-01. AREAS COVERED We highlight current treatment approaches for advanced gynecologic and esophageal malignancies highlighting the need for more effective therapies, specifically improved immune-modulating agents and combinations. Our discussion of DKN-01 addresses the rationale for targeting Dkk1, available safety, pharmacokinetic and efficacy data. EXPERT OPINION DKN-01 presents an interesting therapeutic consideration in advanced gynecologic and gastroesophageal malignancies. It has been especially promising in patients with high-Dkk1-expressing tumors or known Wnt mutations. We postulate that the complementary mechanisms, limited adverse effects and emerging biomarker data position DKN-01 as a promising agent for combination therapy in patients with advanced malignancies. Specifically, we believe this occurs through an immuno-modulatory effect, primarily acting through the innate arm of the immune system. This highlights the possibility for addressing innate immune resistance and expanding the portion of patients who may benefit, possibly in a biomarker-selected manner.
Collapse
Affiliation(s)
- Jaclyn A Wall
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Alabama , Birmingham, AL, USA
| | - Samuel J Klempner
- Division of Hematology-Oncology, Massachusetts General Hospital Cancer Center , Boston, MA, USA.,Department of Internal Medicine, Division of Hematology-Oncology, Harvard Medical School , Boston, MA, USA
| | - Rebecca C Arend
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Alabama , Birmingham, AL, USA
| |
Collapse
|