1
|
Milnes MR, Robinson CD, Foley AP, Stepp C, Hale MD, John-Alder HB, Cox RM. Effects of testosterone on urogenital tract morphology and androgen receptor expression in immature Eastern Fence lizards (Sceloporus undulatus). Gen Comp Endocrinol 2024; 346:114418. [PMID: 38036014 DOI: 10.1016/j.ygcen.2023.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
In non-avian reptiles, the onset of sexual dimorphism of the major structures of the urogenital tract varies temporally relative to gonadal differentiation, more so than in other amniote lineages. In the current study, we used tonic-release implants to investigate the effects of exogenous testosterone (T) on postnatal development of the urogenital tract in juvenile Eastern Fence Lizards (Sceloporus undulatus) to better understand the mechanisms underlying the ontogeny of sexual differentiation in reptiles. We examined gonads, mesonephric kidneys and ducts (male reproductive tract primordia), paramesonephric ducts (oviduct primordia), sexual segments of the kidneys (SSKs), and hemiphalluses to determine which structures were sexually dimorphic independent of T treatment and which structures exhibited sexually dimorphic responses to T. To better understand tissue-level responsiveness to T treatment, we also characterized androgen receptor (AR) expression by immunohistochemistry. At approximately 4 months after hatching in control animals, gonads were well differentiated but quiescent; paramesonephric ducts had fully degenerated in males; mesonephric kidneys, mesonephric ducts, and SSKs remained sexually undifferentiated; and hemiphalluses could not be everted in either sex. Exogenous T caused enlargement, regionalization, and secretory activity of the mesonephric ducts and SSKs in both sexes; enlargement and regionalization of the oviducts in females; and enlargement of male hemipenes. The most responsive tissues exhibited moderate but diffuse staining for AR in control lizards and intense nuclear staining in T-treated lizards, suggestive of autoregulation of AR. The similarity between sexes in the responsiveness of the mesonephric ducts and SSK to T indicates an absence of sexually dimorphic organizational effects in these structures prior to treatment, which was initiated approximately 2 months after hatching. In contrast, the sex-specific responses in oviducts and hemipenes indicate that significant organization and/or differentiation had taken place prior to treatment.
Collapse
Affiliation(s)
- Matthew R Milnes
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA.
| | | | - Alexis P Foley
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA.
| | - Charleigh Stepp
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA.
| | - Matthew D Hale
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | - Henry B John-Alder
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Robert M Cox
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
2
|
Cox CL, Logan ML, Nicholson DJ, Chung AK, Rosso AA, McMillan WO, Cox RM. Species-Specific Expression of Growth-Regulatory Genes in 2 Anoles with Divergent Patterns of Sexual Size Dimorphism. Integr Org Biol 2022; 4:obac025. [PMID: 35958165 PMCID: PMC9362763 DOI: 10.1093/iob/obac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/20/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Synopsis
Sexual size dimorphism is widespread in nature and often develops through sexual divergence in growth trajectories. In vertebrates, the growth hormone/insulin-like growth factor (GH/IGF) network is an important regulator of growth, and components of this network are often regulated in sex-specific fashion during the development of sexual size dimorphism. However, expression of the GH/IGF network is not well characterized outside of mammalian model systems, and the extent to which species differences in sexual size dimorphism are related to differences in GH/IGF network expression is unclear. To begin bridging this gap, we compared GH/IGF network expression in liver and muscle from 2 lizard congeners, one with extreme male-biased sexual size dimorphism (brown anole, Anolis sagrei), and one that is sexually monomorphic in size (slender anole, A. apletophallus). Specifically, we tested whether GH/IGF network expression in adult slender anoles resembles the highly sex-biased expression observed in adult brown anoles or the relatively unbiased expression observed in juvenile brown anoles. We found that adults of the 2 species differed significantly in the strength of sex-biased expression for several key upstream genes in the GH/IGF network, including insulin-like growth factors 1 and 2. However, species differences in sex-biased expression were minor when comparing adult slender anoles to juvenile brown anoles. Moreover, the multivariate expression of the entire GH/IGF network (as represented by the first two principal components describing network expression) was sex-biased for the liver and muscle of adult brown anoles, but not for either tissue in juvenile brown anoles or adult slender anoles. Our work suggests that species differences in sex-biased expression of genes in the GH/IGF network (particularly in the liver) may contribute to the evolution of species differences in sexual size dimorphism.
Collapse
Affiliation(s)
- Christian L Cox
- Florida International University , 11200 SW 8th St, Miami, FL 33199 , USA
- Smithsonian Tropical Research Institute , Amador Causeway, Panama City , Panama
- Georgia Southern University , 1332 Southern Dr, Statesboro, GA 30458 , USA
| | - Michael L Logan
- Smithsonian Tropical Research Institute , Amador Causeway, Panama City , Panama
- University of Nevada Reno , 1664 N Virginia St, Reno, NV 89557 , USA
| | - Daniel J Nicholson
- Smithsonian Tropical Research Institute , Amador Causeway, Panama City , Panama
- Queen Mary University , Mile End Rd, Bethnal Green, London E1 4NS , UK
- University of Texas-Arlington , 701 S Nedderman Dr. Arlington, TX 76019 , USA
| | - Albert K Chung
- Smithsonian Tropical Research Institute , Amador Causeway, Panama City , Panama
- Georgia Southern University , 1332 Southern Dr, Statesboro, GA 30458 , USA
- University of Texas-Arlington , 701 S Nedderman Dr. Arlington, TX 76019 , USA
- Princeton University , Princeton, NJ 08544 , USA
| | - Adam A Rosso
- Georgia Southern University , 1332 Southern Dr, Statesboro, GA 30458 , USA
| | - W Owen McMillan
- Smithsonian Tropical Research Institute , Amador Causeway, Panama City , Panama
| | - Robert M Cox
- University of Virginia , Charlottesville, VA 22904 , USA
| |
Collapse
|
3
|
LaDage LD, Yu T, Zani PA. Higher Rate of Male Sexual Displays Correlates with Larger Ventral Posterior Amygdala Volume and Neuron Soma Volume in Wild-Caught Common Side-Blotched Lizards, Uta stansburiana. BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:298-308. [PMID: 35537399 DOI: 10.1159/000524915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Several areas of the vertebrate brain are involved in facilitating and inhibiting the production of sexual behaviors and displays. In the laboratory, a higher rate of sexual displays is correlated with a larger ventral posterior amygdala (VPA), an area of the brain involved in the expression of sexual display behaviors, as well as larger VPA neuronal somas. However, it remains unclear if individuals in the field reflect similar patterns, as there are likely many more selective pressures in the field that may also modulate the VPA architecture. In this study, we examined variation in VPA volume and neuron soma volume in wild-caught common side-blotched lizards (Uta stansburiana) from two different populations. In a population from Nevada, males experience high predation pressure and have decreased sexual display rates during the breeding season, whereas a population in Oregon has lower levels of predation and higher rates of male sexual displays. We found that wild-caught males from the population with lower display rates also exhibited decreased VPA volume and VPA neuron cell soma volume, which may suggest that decreased display rate, possibly due to increased predation rate, covaries with VPA attributes.
Collapse
Affiliation(s)
- Lara D LaDage
- Division of Mathematics & Natural Sciences, Penn State Altoona, Altoona, Pennsylvania, USA
| | - Tracy Yu
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Peter A Zani
- Department of Biology, University of Wisconsin - Stevens Point, Stevens Point, Wisconsin, USA
| |
Collapse
|
4
|
Rosso AA, Nicholson DJ, Logan ML, Chung AK, Curlis JD, Degon ZM, Knell RJ, Garner TWJ, McMillan WO, Cox CL. Sex-biased parasitism and expression of a sexual signal. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Given that sexual signals are often expressed more highly in one sex than the other, they can impose a sex-specific cost of reproduction through parasitism. The two primary paradigms regarding the relationship of parasites to sexual signals are the good genes hypothesis and the immunocompetence handicap hypothesis; however, there are other ecological, morphological and energetic factors that might influence parasite infections in a sex-specific fashion. We tested the relationship between expression of a sexual signal (the dewlap) and ecological, morphological and energetic factors mediating ectoparasite (mite) load between male and female Panamanian slender anoles (Anolis apletophallus). We found that males were more highly parasitized than females because of the preponderance of ectoparasites on the larger dewlap of males. Indeed, ectoparasite infection increased with both body size and dewlap size in males but not in females, and parasite infection was related to energy storage in a sex-specific fashion for the fat bodies, liver and gonads. Our work and previous work on testosterone in anoles suggests that this pattern did not arise solely from immunosuppression by testosterone, but that mites prefer the dewlap as an attachment site. Thus, the expression of this sexual signal could incur a fitness cost that might structure life-history trade-offs.
Collapse
Affiliation(s)
- Adam A Rosso
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
| | - Daniel J Nicholson
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Michael L Logan
- Department of Biology, University of Nevada-Reno, Reno, NV, USA
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Albert K Chung
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
- Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - John David Curlis
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Zachariah M Degon
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
| | - Robert J Knell
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | | | - W Owen McMillan
- Department of Biology, University of Nevada-Reno, Reno, NV, USA
| | - Christian L Cox
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
- Institute of Environment and Department of Biological Sciences, Florida International University, Miami, FL, USA
| |
Collapse
|
5
|
Androgen receptors and muscle: a key mechanism underlying life history trade-offs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:51-60. [DOI: 10.1007/s00359-017-1222-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/05/2017] [Accepted: 10/08/2017] [Indexed: 12/18/2022]
|
6
|
Wade J. Genetic regulation of sex differences in songbirds and lizards. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150112. [PMID: 26833833 DOI: 10.1098/rstb.2015.0112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2015] [Indexed: 01/06/2023] Open
Abstract
Sex differences in the morphology of neural and peripheral structures related to reproduction often parallel the frequency of particular behaviours displayed by males and females. In a variety of model organisms, these sex differences are organized in development by gonadal steroids, which also act in adulthood to modulate behavioural expression and in some cases to generate parallel anatomical changes on a seasonal basis. Data collected from diverse species, however, suggest that changes in hormone availability are not sufficient to explain sex and seasonal differences in structure and function. This paper pulls together some of this literature from songbirds and lizards and considers the information in the broader context of taking a comparative approach to investigating genetic mechanisms associated with behavioural neuroendocrinology.
Collapse
Affiliation(s)
- Juli Wade
- Departments of Psychology and Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Kerver HN, Wade J. Sexually dimorphic expression of CREB binding protein in the green anole brain. Gen Comp Endocrinol 2016; 225:55-60. [PMID: 26363452 DOI: 10.1016/j.ygcen.2015.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/01/2015] [Accepted: 09/08/2015] [Indexed: 01/10/2023]
Abstract
Green anoles are seasonally breeding lizards in which male sexual behavior is primarily regulated by an annual increase in testosterone. This hormone activates stereotyped behaviors, as well as morphological and biochemical changes in the brain, with greater effect in the breeding season than in the non-breeding season. This study is the first description of CREB binding protein (CBP) in the reptilian brain, and investigates the possibility that changes in CBP, an androgen receptor coactivator, may facilitate differences in responsiveness to testosterone across seasons. A portion of this gene was cloned for the green anole, and in situ hybridization was performed to examine the expression of CBP in the brains of gonadally intact male and female green anoles across breeding states. Additionally, hormonal regulation of CBP was evaluated across sex and season in animals that were gonadectomized and treated with testosterone or a control. Similar to other vertebrates, CBP was expressed at relatively high levels in steroid-sensitive brain regions. In the anole ventromedial amygdala, CBP mRNA levels were nearly twice as high in gonadally intact females compared to males. In contrast, CBP expression did not differ across seasons or hormone manipulation in this brain region. No significant effects were detected in the preoptic area or ventromedial hypothalamus. This pattern suggests that CBP might influence female-biased functions controlled by the ventromedial amygdala, but is not consistent with a role in mediating seasonal differences in responsiveness to testosterone in these areas associated with reproductive function.
Collapse
Affiliation(s)
- Halie N Kerver
- Neuroscience Program, Michigan State University, East Lansing, MI 48824-1101, United States.
| | - Juli Wade
- Neuroscience Program, Michigan State University, East Lansing, MI 48824-1101, United States; Department of Psychology, Michigan State University, East Lansing, MI 48824-1101, United States
| |
Collapse
|
8
|
Kerver HN, Wade J. Hormonal regulation of steroid receptor coactivator-1 mRNA in the male and female green anole brain. J Neuroendocrinol 2015; 27:223-33. [PMID: 25557947 DOI: 10.1111/jne.12249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 01/02/2023]
Abstract
Green anole lizards are seasonal breeders, with male sexual behaviour primarily regulated by an annual increase in testosterone. Morphological, biochemical and behavioural changes associated with reproduction are activated by testosterone, generally with a greater effect in the breeding season (BS) than in the nonbreeding season (NBS). The present study investigates the possibility that differences in a steroid receptor coactivator may regulate this seasonal difference in responsiveness to testosterone. In situ hybridisation was used to examine the expression of steroid receptor coactivator-1 (SRC-1) in the brains of gonadally intact male and female green anoles across breeding states. A second experiment examined gonadectomised animals with and without testosterone treatment. Gonadally intact males had more SRC-1 expressing cells in the preoptic area and larger volumes of this region as defined by these cells than females. Main effects of both sex and season (males > females and BS > NBS) were present in cell number and volume of the ventromedial hypothalamus. An interaction between sex and season suggested that high expression in BS males was driving these effects. In hormone-manipulated animals, testosterone treatment increased both the number of SRC-1 expressing cells in and volumes of the preoptic area and amygdala. These results suggest that testosterone selectively regulates SRC-1, and that this coactivator may play a role in facilitating reproductive behaviours across both sexes. However, changes in SRC-1 expression are not likely responsible for the seasonal change in responsiveness to testosterone.
Collapse
Affiliation(s)
- H N Kerver
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
9
|
Cox CL, Hanninen AF, Reedy AM, Cox RM. Female anoles retain responsiveness to testosterone despite the evolution of androgen‐mediated sexual dimorphism. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12383] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Christian L. Cox
- Department of Biology University of Virginia Charlottesville VirginiaUSA
| | - Amanda F. Hanninen
- Department of Biology University of Virginia Charlottesville VirginiaUSA
| | - Aaron M. Reedy
- Department of Biology University of Virginia Charlottesville VirginiaUSA
| | - Robert M. Cox
- Department of Biology University of Virginia Charlottesville VirginiaUSA
| |
Collapse
|
10
|
Kerver HN, Wade J. Relationships among sex, season and testosterone in the expression of androgen receptor mRNA and protein in the green anole forebrain. BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:303-14. [PMID: 25471151 DOI: 10.1159/000368388] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/12/2014] [Indexed: 11/19/2022]
Abstract
Sexual behavior in male green anole lizards is regulated by a seasonal increase in testosterone (T). However, T is much more effective at activating behavioral, morphological and biochemical changes related to reproduction in the breeding season (BS; spring) compared to nonbreeding season (NBS; fall). An increase in androgen receptor (AR) during the BS is one potential mechanism for this differential responsiveness. AR expression has not been investigated in specific brain regions across seasons in anoles. The present studies were designed to determine relative AR expression in areas important for male (preoptic area, ventromedial amygdala) and female (ventromedial hypothalamus) sexual behavior, as well as whether T upregulates AR in the anole brain. In situ hybridization and Western blot analyses were performed in unmanipulated animals across sex and season, as well as in gonadectomized animals with and without T treatment. Among hormone-manipulated animals, more cells expressing AR mRNA were detected in females than males in the amygdala. T treatment increased the volume of the ventromedial hypothalamus of gonadectomized animals in the BS, but not the NBS. AR protein in dissections of the hypothalamus and preoptic area was increased in males compared to females specifically in the BS. Additionally, among females, it was increased in the NBS compared to the BS. Collectively, these results indicate that differences in central AR expression probably do not facilitate a seasonal responsiveness to T. However, they are consistent with a role for AR in regulating some differences between sexes in the display of reproductive behaviors.
Collapse
Affiliation(s)
- Halie N Kerver
- Neuroscience Program, Michigan State University, East Lansing, Mich., USA
| | | |
Collapse
|
11
|
Gredler ML, Sanger TJ, Cohn MJ. Development of the Cloaca, Hemipenes, and Hemiclitores in the Green Anole, Anolis carolinensis. Sex Dev 2014; 9:21-33. [DOI: 10.1159/000363757] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Kerver HN, Wade J. Seasonal and sexual dimorphisms in expression of androgen receptor and its coactivators in brain and peripheral copulatory tissues of the green anole. Gen Comp Endocrinol 2013; 193:56-67. [PMID: 23892016 DOI: 10.1016/j.ygcen.2013.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/14/2013] [Accepted: 07/08/2013] [Indexed: 12/22/2022]
Abstract
Green anoles are seasonally breeding lizards, with an annual rise in testosterone (T) being the primary activator of male sexual behaviors. Responsiveness to T is decreased in the non-breeding season (NBS) compared to breeding season (BS) on a variety of levels, including displays of reproductive behavior and the morphology and biochemistry of associated tissues. To evaluate the possibility that seasonal changes in responsiveness to T are regulated by androgen receptors (AR) and/or two of its coactivators, CREB binding protein (CBP) and steroid receptor coactivator-1 (SRC-1), we tested whether they differ in expression across season in brains of both sexes and in peripheral copulatory tissues of males (hemipenis and retractor penis magnus muscle). AR mRNA was increased in the brains of males compared to females and in copulatory muscle in the BS compared to NBS. In the hemipenis, transcriptional activity appeared generally diminished in the NBS. T-treatment increased AR mRNA in the copulatory muscle and AR protein in the hemipenis, the latter to a greater extent in the BS than the NBS. T also decreased SRC-1 protein in hemipenis. Interpretations are complicated, in part because levels of mRNA and protein expression were not correlated and multiple sizes of the AR and CBP proteins were detected, with some tissue specificity. However, the results are consistent with the idea that differences in receptor and coactivator expression at central and peripheral levels may play roles in regulating sex and seasonal differences in the motivation or physical ability to engage in sexual behavior.
Collapse
Affiliation(s)
- Halie N Kerver
- Neuroscience Program, Michigan State University, East Lansing, MI 48824-1101, United States.
| | | |
Collapse
|
13
|
Sun XQ, Xu C, Leclerc P, Giuliano F, Benoît G, Droupy S. Distribution of androgen and oestrogen receptors-α in the seminal vesicle-related spinal neurones in male rats. J Neuroendocrinol 2013; 25:547-59. [PMID: 23414238 DOI: 10.1111/jne.12031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/15/2013] [Accepted: 01/30/2013] [Indexed: 11/29/2022]
Abstract
The seminal vesicles are male accessory sex glands that contribute much of the seminal fluid volume. Previous studies have suggested that the majority of autonomic innervations to the rat seminal vesicles originate from the bilateral major pelvic ganglia. Many preganglionic autonomic neurones innervating the pelvic ganglion were expressed androgen receptors (AR) or oestrogen receptor (ER)-α immunoreactivity. However, direct neuroanatomic data regarding the distribution of AR and ER-α in seminal vesicle related-spinal neurones are lacking. In the present study, a nonvirulent pseudorabies virus (PRV-152 strain) was used in a retrograde tracing experiment. Four days after PRV injection into the seminal vesicles of male rats, spinal cord sections were prepared. Double- and triple-fluorescence techniques using AR and ER-α with choline acetyltransferase (ChAT) and PRV were used to investigate the AR and ER-α distribution in the seminal vesicles related spinal neurones in male rats. In lamina X, 14% of the PRV-labelled neurones in the L1-L4 segments and 43% in the L5-S1 segments were double-labelled with AR. In the L1-L4 segments, 6% of PRV-labelled neurones and 26% in the L5-S1 segments were double-labelled with ER-α. In the intermedial cell column area, 10% of PRV-labelled neurones in the L1-L4 segments and 47% of PRV-labelled neurones in the L5-S1 segments were double-labelled with AR. Up to 16% of PRV-labelled neurones in the L5-S1 segments were double-labelled with ER-α. No PRV-labelled neurones in the L1-L4 segments were double-labelled with ER-α. However, for the AR and ER-α/PRV/ChAT triple-fluorescence experiments, very few seminal vesicle preganglionic neurones expressed AR or ER-α. Our data suggests that many spinal interneurones but not preganglionic neurones involved in the seminal vesicle control in male rats were double-labelled with AR or ER-α, and they were mainly located at the parasympathetic level in the spinal cord.
Collapse
Affiliation(s)
- X Q Sun
- Department of Biochemistry and Molecular and Cell Biology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
14
|
Wade J. Sculpting reproductive circuits: relationships among hormones, morphology and behavior in anole lizards. Gen Comp Endocrinol 2012; 176:456-60. [PMID: 22202602 DOI: 10.1016/j.ygcen.2011.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/09/2011] [Accepted: 12/11/2011] [Indexed: 11/15/2022]
Abstract
Morphology parallels function on a variety of levels in reproductive circuits in anole lizards, as in many vertebrate groups. For example, across species within the anole genus the muscle fibers regulating extension of a throat fan used in courtship are larger in males than females. Endocrine factors controlling behavior and morphology have been studied in detail in one species, the green anole (Anolis carolinensis). This review briefly describes the results that have been obtained and highlights key areas for future investigation that will provide insights on mechanisms from a comparative perspective.
Collapse
Affiliation(s)
- Juli Wade
- Department of Psychology, Program in Neuroscience, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824-1101, USA.
| |
Collapse
|
15
|
Parker MR, Mason RT. How to make a sexy snake: estrogen activation of female sex pheromone in male red-sided garter snakes. J Exp Biol 2012; 215:723-30. [DOI: 10.1242/jeb.064923] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Vertebrates indicate their genetic sex to conspecifics using secondary sexual signals, and signal expression is often activated by sex hormones. Among vertebrate signaling modalities, the least is known about how hormones influence chemical signaling. Our study species, the red-sided garter snake (Thamnophis sirtalis parietalis), is a model vertebrate for studying hormonal control of chemical signals because males completely rely on the female sex pheromone to identify potential mates among thousands of individuals. How sex hormones can influence the expression of this crucial sexual signal is largely unknown. We created two groups of experimental males for the first experiment: Sham (blank implants) and E2 (17β-estradiol implants). E2 males were vigorously courted by wild males in outdoor bioassays, and in a Y-maze E2 pheromone trails were chosen by wild males over those of small females and were indistinguishable from large female trails. Biochemically, the E2 pheromone blend was similar to that of large females, and it differed significantly from Shams. For the second experiment, we implanted males with 17β-estradiol in 2007 but removed the implants the following year (2008; Removal). That same year, we implanted a new group of males with estrogen implants (Implant). Removal males were courted by wild males in 2008 (implant intact) but not in 2009 (removed). Total pheromone quantity and quality increased following estrogen treatment, and estrogen removal re-established male-typical pheromone blends. Thus, we have shown that estrogen activates the production of female pheromone in adult red-sided garter snakes. This is the first known study to quantify both behavioral and biochemical responses in chemical signaling following sex steroid treatment of reptiles in the activation/organization context. We propose that the homogametic sex (ZZ, male) may possess the same targets for activation of sexual signal production, and the absence of the activator (17β-estradiol in this case) underlies expression of the male phenotype.
Collapse
Affiliation(s)
- M. Rockwell Parker
- Department of Zoology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
| | - Robert T. Mason
- Department of Zoology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
| |
Collapse
|
16
|
Johnson MA, Cohen RE, Vandecar JR, Wade J. Relationships among reproductive morphology, behavior, and testosterone in a natural population of green anole lizards. Physiol Behav 2011; 104:437-45. [DOI: 10.1016/j.physbeh.2011.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/11/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
|
17
|
Wade J. Relationships among hormones, brain and motivated behaviors in lizards. Horm Behav 2011; 59:637-44. [PMID: 20816970 DOI: 10.1016/j.yhbeh.2010.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 08/25/2010] [Indexed: 11/22/2022]
Abstract
Lizards provide a rich opportunity for investigating the mechanisms associated with arousal and the display of motivated behaviors. They exhibit diverse mating strategies and modes of conspecific communication. This review focuses on anole lizards, of which green anoles (Anolis carolinensis) have been most extensively studied. Research from other species is discussed in that context. By considering mechanisms collectively, we can begin to piece together neural and endocrine factors mediating the stimulation of sexual and aggressive behaviors in this group of vertebrates.
Collapse
Affiliation(s)
- Juli Wade
- Michigan State University, Department of Psychology, East Lansing, MI 48824, USA.
| |
Collapse
|
18
|
Cox R, Stenquist D, Henningsen J, Calsbeek R. Manipulating Testosterone to Assess Links between Behavior, Morphology, and Performance in the Brown Anole Anolis sagrei. Physiol Biochem Zool 2009; 82:686-98. [DOI: 10.1086/605391] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Sampedro C, Font E, Desfilis E. Size variation and cell proliferation in chemosensory brain areas of a lizard (Podarcis hispanica): effects of sex and season. Eur J Neurosci 2008; 28:87-98. [PMID: 18662337 DOI: 10.1111/j.1460-9568.2008.06287.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many lizards rely on chemoreception for crucial aspects of their biology, including exploration, prey and predator detection, and intraspecific communication. Here we investigate sex and seasonal variation in size and proliferative activity in chemosensory areas of the lizard brain. We captured adult Iberian wall lizards (Podarcis hispanica) of either sex in the breeding (April) and non-breeding (November) season, injected them with 5-bromo-2'-deoxyuridine (BrdU) and killed them 3 weeks later. We removed the brains, measured the length of the olfactory bulbs, and counted BrdU-labelled cells in the main and accessory olfactory bulbs (MOB, AOB), lateral cortex (LC) and nucleus sphericus (NS). Our results show that, relative to body size, males have larger MOBs and AOBs than females; however, relative to brain size, males have larger AOBs, but not larger MOBs than females. Additionally, males produce more new cells than females in the olfactory bulbs, LC and NS. We failed to detect significant seasonal changes or sex x season interaction in size or proliferative activity in these areas. Sex differences in the addition of newly generated cells--mainly neurons--may be partly responsible for the size differences in chemosensory brain areas. The presence of sexual dimorphism in AOB is expected given the available behavioural evidence, which suggests that males of P. hispanica are more responsive than females to socially relevant chemical stimuli. This is the first demonstration of sexual dimorphism in size and proliferative activity in chemosensory areas of a non-mammalian species.
Collapse
Affiliation(s)
- Carlos Sampedro
- Unidad de Etología, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Paterna, Spain.
| | | | | |
Collapse
|
20
|
Beck LA, Wade J. Steroid receptor expression in the developing copulatory system of the green anole lizard (Anolis carolinensis). Gen Comp Endocrinol 2008; 157:70-4. [PMID: 18448105 DOI: 10.1016/j.ygcen.2008.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 02/20/2008] [Accepted: 03/25/2008] [Indexed: 11/23/2022]
Abstract
In adulthood, the copulatory system in male green anole lizards is characterized by the presence of two hemipenes, each controlled by ipsilateral muscles. These structures are present in both sexes early in development, but prior to hatching regress completely in females. Embryonic treatment with steroid hormones alters the morphology of the copulatory system, suggesting active roles for both androgens and estrogens in sexual differentiation. To elucidate the timing and sites of steroid hormone action in the embryonic copulatory system, the distributions of androgen receptor (AR) and estrogen receptor-alpha (ER alpha) mRNA expression were examined. In situ hybridization was conducted on the rostral tail of anoles at three stages spanning differentiation of the copulatory structures: embryonic days (E) 13, 18, and 24 (hatching occurs at approximately E34). At E13, males expressed significantly higher levels of AR mRNA in both hemipenes and muscles than did females, while females at the same age tended to express higher levels of ER alpha mRNA in these structures. By E18, hemipenes and copulatory muscles were regressed in most females, and were not present in any females at E24. In males, no effect of age was detected on the expression of either AR or ER alpha. These data suggest that peripheral copulatory structures in the embryonic anole are direct targets for the actions of both androgens and estrogens in sexual differentiation, consistent with the idea that estradiol facilitates regression in females and androgen promotes survival in males. However, the issue of whether or not a critical period exists remains open.
Collapse
Affiliation(s)
- Laurel A Beck
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA.
| | | |
Collapse
|
21
|
Korzan WJ, Summers CH. Behavioral diversity and neurochemical plasticity: selection of stress coping strategies that define social status. BRAIN, BEHAVIOR AND EVOLUTION 2007; 70:257-66. [PMID: 17914257 DOI: 10.1159/000105489] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Social interactions include a variety of stimulating but challenging factors that are the basis for strategies that allow individuals to cope with novel or familiar stressful situations. Evolutionarily conserved strategies have been identified that reflect specific behavioral and physiological identities. In this review we discuss a unique model for social stress in the lizard Anolis carolinensis, which has characteristics amenable to an investigation of individual differences in behavioral responses via central and sympathetic neurochemical adaptation. Profiles of proactive and reactive phenotypes of male A. carolinensis are relatively stable, yet retain limited flexibility that allows for the development of the social system over time. For male A. carolinensis, the celerity of social signal expression and response translate into future social standing. In addition, proactive aggressive, courtship, and feeding behaviors also predict social rank, but are not as important as prior interactions and memories of previous opponents to modify behavioral output and affect social status. The central neurotransmitters dopamine and serotonin, and the endocrine stress axis (HPA) appear to be the fundamental link to adaptive stress coping strategies during social interactions. Only small adaptations to these neural and endocrine systems are necessary to produce the variability measured in behavioral responses to stressful social interactions. These neuroendocrine factors are also manifest in responses to other stimuli and form the basis of heritable strategies for coping with stress.
Collapse
Affiliation(s)
- Wayne J Korzan
- Department of Biological Sciences, Neuroscience Program, Stanford University, Stanford, CA 94305-5020, USA.
| | | |
Collapse
|
22
|
Husak JF, Irschick DJ, Meyers JJ, Lailvaux SP, Moore IT. Hormones, sexual signals, and performance of green anole lizards (Anolis carolinensis). Horm Behav 2007; 52:360-7. [PMID: 17612540 DOI: 10.1016/j.yhbeh.2007.05.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/24/2007] [Accepted: 05/25/2007] [Indexed: 11/16/2022]
Abstract
The evolutionary processes that result in reliable links between male signals and fighting capacity have received a great deal of attention, but the proximate mechanisms underlying such connections remain understudied. We studied a large sample of male green anole lizards (Anolis carolinensis) to determine whether testosterone or corticosterone predicted dewlap size and/or bite-force capacity, as dewlap size is known to be a reliable predictor of bite-force capacity in territorial males. We also examined whether these relationships were consistent between previously described body size classes ("lightweights" and "heavyweights"). Heavyweights had 50% higher testosterone concentrations than lightweights during the breeding season, suggesting a mechanism for the disproportionately larger heads and dewlaps and higher bite-forces of heavyweights. Plasma testosterone concentrations were positively correlated with dewlap size and bite-force performance in lightweights (but not heavyweights) but only because of mutual intercorrelation of all three variables with body size. We suggest two possibilities for the relationship between testosterone levels and body size: (1) testosterone promotes growth in this species or (2) smaller sexually mature males are unable to compete with larger males such that the benefits of elevated testosterone do not outweigh the costs. Corticosterone levels did not differ between the male morphs, and lightweights, but not heavyweights, showed an inverse relationship between testosterone levels and corticosterone levels. Our results suggest that testosterone is important for traits related to dominance in adult male green anoles and may influence the ability to compete with rivals via fighting ability or through the use of signals.
Collapse
Affiliation(s)
- Jerry F Husak
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | | | |
Collapse
|
23
|
Wade J. Current research on the behavioral neuroendocrinology of reptiles. Horm Behav 2005; 48:451-60. [PMID: 16239163 DOI: 10.1016/j.yhbeh.2005.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 02/21/2005] [Accepted: 02/24/2005] [Indexed: 10/25/2022]
Abstract
Selected reptilian species have been the targets of investigations in behavioral neuroendocrinology for many years. Reptiles offer a particularly powerful set of traits that facilitate comparisons at multiple levels, including those within and between individuals of a particular species, between different environmental and social contexts, as well as across species. These types of studies, particularly as they are considered within the framework of results from other vertebrates, will enhance our understanding of the genetic and hormonal influences regulating changes in the structure and function of the nervous system. Work on the hormonal and environmental factors influencing courtship and copulatory behaviors in green anoles, including the development and maintenance of the neuromuscular structures critical for their display, is highlighted. Some very recent work on other model systems is also discussed to provide a context for suggested future research directions.
Collapse
Affiliation(s)
- Juli Wade
- Department of Psychology, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824-1101, USA.
| |
Collapse
|
24
|
Holmes MM, Wade J. Testosterone regulates androgen receptor immunoreactivity in the copulatory, but not courtship, neuromuscular system in adult male green anoles. J Neuroendocrinol 2005; 17:560-9. [PMID: 16101894 DOI: 10.1111/j.1365-2826.2005.01339.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Androgens regulate the expression of male reproductive behaviour in diverse vertebrate species, often acting on androgen receptors (AR) to induce structural or functional changes in the nervous system and periphery. Male green anoles possess two sexually dimorphic neuromuscular systems, one controlling throat fan (dewlap) extension, which occurs during courtship, and the other mediating copulatory organ function. Although androgens are required for behavioural activation in both systems, testosterone has differential effects on the neuromuscular morphology. It increases the size of copulatory muscle fibres during the breeding season, but significant effects on dewlap muscle fibre size and motoneurone soma size in either system have not been detected. Corresponding to the lack of testosterone-induced morphological effects in the courtship system, relatively low levels of AR are expressed in the associated motoneurones. The present experiment had two goals, aiming to determine whether: (i) the other courtship and copulatory neuromuscular tissues express AR and (ii) testosterone and/or seasonal environmental changes regulate AR expression. The percentage of AR+ nuclei was evaluated in both the breeding and nonbreeding seasons in gonadally intact adult males (Experiment 1) and in castrated males treated with either testosterone or vehicle (Experiment 2). AR was extensively expressed in the dewlap and copulatory muscles, and in a high percentage of the copulatory motoneurones, but immunoreactivity did not vary across season. Testosterone increased the percentage of AR+ nuclei in the copulatory muscles of both breeding and nonbreeding males but not in the dewlap muscle or copulatory motoneurones. Finally, the target structures for both systems (cartilages and hemipenes) expressed AR in all animals. Therefore, the effects of testosterone on AR immunoreactivity suggest that up-regulation of the receptors may be important for morphological change. However, because all structures investigated in the present experiment expressed AR, the data also indicate that the receptors are involved with other functions.
Collapse
Affiliation(s)
- M M Holmes
- Neuroscience Program, Michigan State University, East Lansing, MI 48824-1101, USA.
| | | |
Collapse
|
25
|
Holmes MM, Wade J. Sexual differentiation of the copulatory neuromuscular system in green anoles (Anolis carolinensis): Normal ontogeny and manipulation of steroid hormones. J Comp Neurol 2005; 489:480-90. [PMID: 16025462 DOI: 10.1002/cne.20645] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The copulatory neuromuscular system of green anoles is sexually dimorphic and differentiates during embryonic development, although details of the process were unknown. In Experiment 1, we determined the time course of normal ontogeny. Both male and female embryos possessed bilateral copulatory organs (hemipenes) and associated muscles until incubation day 13; the structures completely regressed in female embryos by incubation day 19 (total incubation 34 days). In Experiment 2, we treated eggs with testosterone, dihydrotestosterone, estradiol, or vehicle on both incubation days 10 and 13 to determine whether these steroid hormones mediate sexual differentiation. These time points fall between gonadal differentiation, which was determined in Experiment 1 to complete before day 10, and regression of the peripheral copulatory system in females. Tissue was collected on the day of hatching. Gonads were classified as testes or ovaries; presence versus absence of hemipenes and muscles, and the number and size of copulatory motoneurons were determined. Copulatory system morphology of vehicle-treated animals matched their gonadal sex. Hemipenes and muscles were absent in estradiol-treated animals, and androgens rescued the hemipenes and muscles in most females. Both testosterone and dihydrotestosterone treatment also caused hypertrophy of the hemipenes, which were everted in animals treated with these steroids. Copulatory motoneurons, assessed on the day of hatching in both experiments, were not dimorphic in size or number. Steroid treatment significantly increased motoneuron size and number overall, but no significant differences were detected in pairwise comparisons. These data demonstrate that differentiation of peripheral copulatory neuromuscular structures occurs during embryonic development and is influenced by gonadal steroids (regression by estradiol and enhancement by androgens), but associated motoneurons do not differentiate until later in life.
Collapse
MESH Headings
- Animals
- Cell Shape/drug effects
- Cell Shape/physiology
- Cell Size/drug effects
- Copulation/physiology
- Embryo, Nonmammalian
- Estradiol/metabolism
- Estradiol/pharmacology
- Female
- Genitalia, Female/drug effects
- Genitalia, Female/embryology
- Genitalia, Female/growth & development
- Genitalia, Male/drug effects
- Genitalia, Male/embryology
- Genitalia, Male/growth & development
- Gonadal Steroid Hormones/metabolism
- Gonadal Steroid Hormones/pharmacology
- Lizards/embryology
- Lizards/growth & development
- Male
- Motor Neurons/drug effects
- Motor Neurons/physiology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/embryology
- Muscle, Skeletal/growth & development
- Ovary/drug effects
- Ovary/embryology
- Ovary/growth & development
- Penis/drug effects
- Penis/embryology
- Penis/growth & development
- Sex Characteristics
- Sex Differentiation/drug effects
- Sex Differentiation/physiology
- Spinal Cord/drug effects
- Spinal Cord/embryology
- Spinal Cord/growth & development
- Testis/drug effects
- Testis/embryology
- Testis/growth & development
- Testosterone/metabolism
- Testosterone/pharmacology
Collapse
Affiliation(s)
- Melissa M Holmes
- Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
26
|
Veney SL, Wade J. Steroid receptors in the adult zebra finch syrinx: a sex difference in androgen receptor mRNA, minimal expression of estrogen receptor alpha and aromatase. Gen Comp Endocrinol 2004; 136:192-9. [PMID: 15028522 DOI: 10.1016/j.ygcen.2003.12.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Revised: 12/18/2003] [Accepted: 12/23/2003] [Indexed: 11/19/2022]
Abstract
The zebra finch syrinx (sound production organ) is a sexually dimorphic component of the song system. Only male zebra finches sing, and in parallel, the overall mass and size of fibers in the two largest syrinx muscles are greater in males than females. Despite these obvious sexual dimorphisms, little is known about the role of steroid hormones in the maintenance of the structure and/or function of the syrinx. In this report, we used in situ hybridization to assess the expression of androgen receptor (AR), estrogen receptor alpha (ERalpha), and aromatase (AROM) mRNAs in the syrinx of adult male and female zebra finches. Increased AR mRNA expression was noted in males compared to females in two regions, over the ventralis muscle and in a band of connective tissue neighboring cartilage (perichondria). In contrast, we did not detect specific ERalpha or AROM mRNA expression within the syrinx. However, substantial ERalpha mRNA was present in oviduct, and aromatase mRNA was expressed at high levels in ovary. In parallel, an assay for AROM detected activity in ovary, but not in syrinx tissue from males or females. Taken together, these data suggest that the adult syrinx is sensitive to androgens; that sex differences in function and morphology of the syrinx may in part be due to increased expression of AR in males compared to females. In contrast, estrogen receptor alpha and AROM appear to have limited roles.
Collapse
Affiliation(s)
- Sean L Veney
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|