1
|
Clark AC, Edison R, Esvelt K, Kamau S, Dutoit L, Champer J, Champer SE, Messer PW, Alexander A, Gemmell NJ. A framework for identifying fertility gene targets for mammalian pest control. Mol Ecol Resour 2024; 24:e13901. [PMID: 38009398 DOI: 10.1111/1755-0998.13901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/16/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023]
Abstract
Fertility-targeted gene drives have been proposed as an ethical genetic approach for managing wild populations of vertebrate pests for public health and conservation benefit. This manuscript introduces a framework to identify and evaluate target gene suitability based on biological gene function, gene expression and results from mouse knockout models. This framework identified 16 genes essential for male fertility and 12 genes important for female fertility that may be feasible targets for mammalian gene drives and other non-drive genetic pest control technology. Further, a comparative genomics analysis demonstrates the conservation of the identified genes across several globally significant invasive mammals. In addition to providing important considerations for identifying candidate genes, our framework and the genes identified in this study may have utility in developing additional pest control tools such as wildlife contraceptives.
Collapse
Affiliation(s)
- Anna C Clark
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Rey Edison
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kevin Esvelt
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sebastian Kamau
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Samuel E Champer
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Alana Alexander
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Clark AC, Alexander A, Edison R, Esvelt K, Kamau S, Dutoit L, Champer J, Champer SE, Messer PW, Gemmell NJ. A framework for identifying fertility gene targets for mammalian pest control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542751. [PMID: 37398071 PMCID: PMC10312551 DOI: 10.1101/2023.05.30.542751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Fertility-targeted gene drives have been proposed as an ethical genetic approach for managing wild populations of vertebrate pests for public health and conservation benefit.This manuscript introduces a framework to identify and evaluate target gene suitability based on biological gene function, gene expression, and results from mouse knockout models.This framework identified 16 genes essential for male fertility and 12 genes important for female fertility that may be feasible targets for mammalian gene drives and other non-drive genetic pest control technology. Further, a comparative genomics analysis demonstrates the conservation of the identified genes across several globally significant invasive mammals.In addition to providing important considerations for identifying candidate genes, our framework and the genes identified in this study may have utility in developing additional pest control tools such as wildlife contraceptives.
Collapse
Affiliation(s)
- Anna C Clark
- Department of Anatomy, School of Biomedical Sciences, University of Otago, 270 Great King Street, Central Dunedin, Dunedin 9016, New Zealand
- Department of Computational Biology, Cornell University, 102 Tower Rd, Ithaca, NY 14853, United States
| | - Alana Alexander
- Department of Anatomy, School of Biomedical Sciences, University of Otago, 270 Great King Street, Central Dunedin, Dunedin 9016, New Zealand
| | - Rey Edison
- Media Laboratory, Massachusetts Institute of Technology, 75 Amherst St, Cambridge, United States
| | - Kevin Esvelt
- Media Laboratory, Massachusetts Institute of Technology, 75 Amherst St, Cambridge, United States
| | - Sebastian Kamau
- Media Laboratory, Massachusetts Institute of Technology, 75 Amherst St, Cambridge, United States
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Samuel E Champer
- Department of Computational Biology, Cornell University, 102 Tower Rd, Ithaca, NY 14853, United States
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, 102 Tower Rd, Ithaca, NY 14853, United States
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, 270 Great King Street, Central Dunedin, Dunedin 9016, New Zealand
| |
Collapse
|
3
|
Cara AL, Henson EL, Beekly BG, Elias CF. Distribution of androgen receptor mRNA in the prepubertal male and female mouse brain. J Neuroendocrinol 2021; 33:e13063. [PMID: 34866263 PMCID: PMC8711114 DOI: 10.1111/jne.13063] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
Androgens are steroid hormones that play a critical role in brain development and sexual maturation by acting upon both androgen receptors (AR) and estrogen receptors (ERα/β) after aromatization. The contribution of estrogens from aromatized androgens in brain development and the central regulation of metabolism, reproduction, and behavior is well defined, but the role of androgens acting on AR has been unappreciated. Here, we map the sex specific expression of Ar in the adult and developing mouse brain. Postnatal days (PND) 12 and 21 were used to target a critical window of prepubertal development. Consistent with previous literature in adults, sex-specific differences in Ar expression were most profound in the bed nucleus of the stria terminalis (BST), medial amygdala (MEA) and medial preoptic area (MPO). Ar expression was also high in these areas at PND 12 and 21 in both sexes. In addition, we describe extra-hypothalamic and extra-limbic areas that show moderate, consistent and similar Ar expression in both sexes at both prepubertal time points. Briefly, Ar expression was observed in olfactory areas of the cerebral cortex, the hippocampus, several thalamic nuclei, and cranial nerve nuclei involved in autonomic sensory and motor function. To further characterize forebrain populations of Ar expressing neurons and determine whether they also coexpress estrogen receptors, we examined expression of Ar, Esr1 and Esr2 in prepubertal mice in selected nuclei. We found populations of neurons in the BST, MEA and MPO that coexpress Ar, but not Esr1 or Esr2, whereas others express a combination of the three receptors. Our findings indicate that various brain areas express Ar during prepubertal development and may play an important role in female neuronal development and physiology.
Collapse
Affiliation(s)
- Alexandra L. Cara
- Department of Molecular & Integrative PhysiologyUniversity of MichiganAnn ArborMIUSA
| | - Emily L. Henson
- Department of Molecular & Integrative PhysiologyUniversity of MichiganAnn ArborMIUSA
| | | | - Carol F. Elias
- Department of Molecular & Integrative PhysiologyUniversity of MichiganAnn ArborMIUSA
- Neuroscience Graduate ProgramUniversity of MichiganAnn ArborMIUSA
- Department of Obstetrics and GynaecologyUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
4
|
Brain orchestration of pregnancy and maternal behavior in mice: A longitudinal morphometric study. Neuroimage 2021; 230:117776. [PMID: 33516895 DOI: 10.1016/j.neuroimage.2021.117776] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 01/10/2023] Open
Abstract
Reproduction induces changes within the brain to prepare for gestation and motherhood. However, the dynamic of these central changes and their relationships with the development of maternal behavior remain poorly understood. Here, we describe a longitudinal morphometric neuroimaging study in female mice between pre-gestation and weaning, using new magnetic resonance imaging (MRI) resources comprising a high-resolution brain template, its associated tissue priors (60-µm isotropic resolution) and a corresponding mouse brain atlas (1320 regions of interest). Using these tools, we observed transient hypertrophies not only within key regions controlling gestation and maternal behavior (medial preoptic area, bed nucleus of the stria terminalis), but also in the amygdala, caudate nucleus and hippocampus. Additionally, unlike females exhibiting lower levels of maternal care, highly maternal females developed transient hypertrophies in somatosensory, entorhinal and retrosplenial cortices among other regions. Therefore, coordinated and transient brain modifications associated with maternal performance occurred during gestation and lactation.
Collapse
|
5
|
Derouiche L, Keller M, Martini M, Duittoz AH, Pillon D. Developmental Exposure to Ethinylestradiol Affects Reproductive Physiology, the GnRH Neuroendocrine Network and Behaviors in Female Mouse. Front Neurosci 2015; 9:463. [PMID: 26696819 PMCID: PMC4673314 DOI: 10.3389/fnins.2015.00463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/23/2015] [Indexed: 01/10/2023] Open
Abstract
During development, environmental estrogens are able to induce an estrogen mimetic action that may interfere with endocrine and neuroendocrine systems. The present study investigated the effects on the reproductive function in female mice following developmental exposure to pharmaceutical ethinylestradiol (EE2), the most widespread and potent synthetic steroid present in aquatic environments. EE2 was administrated in drinking water at environmentally relevant (ENVIR) or pharmacological (PHARMACO) doses [0.1 and 1 μg/kg (body weight)/day respectively], from embryonic day 10 until postnatal day 40. Our results show that both groups of EE2-exposed females had advanced vaginal opening and shorter estrus cycles, but a normal fertility rate compared to CONTROL females. The hypothalamic population of GnRH neurons was affected by EE2 exposure with a significant increase in the number of perikarya in the preoptic area of the PHARMACO group and a modification in their distribution in the ENVIR group, both associated with a marked decrease in GnRH fibers immunoreactivity in the median eminence. In EE2-exposed females, behavioral tests highlighted a disturbed maternal behavior, a higher lordosis response, a lack of discrimination between gonad-intact and castrated males in sexually experienced females, and an increased anxiety-related behavior. Altogether, these results put emphasis on the high sensitivity of sexually dimorphic behaviors and neuroendocrine circuits to disruptive effects of EDCs.
Collapse
Affiliation(s)
- Lyes Derouiche
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| | - Matthieu Keller
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| | - Mariangela Martini
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| | - Anne H Duittoz
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| | - Delphine Pillon
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| |
Collapse
|
6
|
Viggiano A, Cacciola G, Widmer DAJ, Viggiano D. Anxiety as a neurodevelopmental disorder in a neuronal subpopulation: Evidence from gene expression data. Psychiatry Res 2015; 228:729-40. [PMID: 26089015 DOI: 10.1016/j.psychres.2015.05.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/14/2015] [Accepted: 05/26/2015] [Indexed: 12/20/2022]
Abstract
The relationship between genes and anxious behavior, is nor linear nor monotonic. To address this problem, we analyzed with a meta-analytic method the literature data of the behavior of knockout mice, retrieving 33 genes whose deletion was accompanied by increased anxious behavior, 34 genes related to decreased anxious behavior and 48 genes not involved in anxiety. We correlated the anxious behavior resulting from the deletion of these genes to their brain expression, using the Allen Brain Atlas and Gene Expression Omnibus (GEO) database. The main finding is that the genes accompanied, after deletion, by a modification of the anxious behavior, have lower expression in the cerebral cortex, the amygdala and the ventral striatum. The lower expression level was putatively due to their selective presence in a neuronal subpopulation. This difference was replicated also using a database of human gene expression, further showing that the differential expression pertained, in humans, a temporal window of young postnatal age (4 months up to 4 years) but was not evident at fetal or adult human stages. Finally, using gene enrichment analysis we also show that presynaptic genes are involved in the emergence of anxiety and postsynaptic genes in the reduction of anxiety after gene deletion.
Collapse
Affiliation(s)
- Adela Viggiano
- Department of Health Sciences, University of Molise, Campobasso 86100, Italy
| | - Giovanna Cacciola
- Department of Health Sciences, University of Molise, Campobasso 86100, Italy
| | | | - Davide Viggiano
- Department of Health Sciences, University of Molise, Campobasso 86100, Italy; Department of Cardio-Thoracic and Respiratory Science, Second University of Naples, Naples, Italy.
| |
Collapse
|
7
|
Orikasa C, Nagaoka K, Katsumata H, Sato M, Kondo Y, Minami S, Sakuma Y. Social isolation prompts maternal behavior in sexually naïve male ddN mice. Physiol Behav 2015; 151:9-15. [PMID: 26166155 DOI: 10.1016/j.physbeh.2015.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 10/23/2022]
Abstract
Maternal behavior in mice is considered to be sexually dimorphic; that is, females show maternal care for their offspring, whereas this behavior is rarely shown in males. Here, we examined how social isolation affects the interaction of adult male mice with pups. Three weeks of isolation during puberty (5-8 weeks old) induced retrieving and crouching when exposed to pups, while males with 1 week isolation (7-8 weeks old) also showed such maternal care, but were less responsive to pups. We also examined the effect of isolation during young adulthood (8-11 weeks old), and found an induction of maternal behavior comparable to that in younger male mice. This effect was blocked by exposure to chemosensory and auditory social signals derived from males in an attached compartment separated by doubled opaque barriers. These results demonstrate that social isolation in both puberty and postpuberty facilitates male maternal behavior in sexually naïve mice. The results also indicate that air-borne chemicals and/or sounds of male conspecifics, including ultrasonic vocalization and noise by their movement may be sufficient to interfere with the isolation effect on induction of maternal behavior in male mice.
Collapse
Affiliation(s)
- Chitose Orikasa
- Institute for Advanced Medical Science, Nippon Medical School, Kanagawa 211-8533, Japan.
| | - Kentaro Nagaoka
- Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-0054, Japan
| | - Harumi Katsumata
- Institute for Advanced Medical Science, Nippon Medical School, Kanagawa 211-8533, Japan
| | - Manami Sato
- Department of Animal Sciences, Teikyo University of Science, Tokyo 120-0045, Japan
| | - Yasuhiko Kondo
- Department of Animal Sciences, Teikyo University of Science, Tokyo 120-0045, Japan
| | - Shiro Minami
- Institute for Advanced Medical Science, Nippon Medical School, Kanagawa 211-8533, Japan
| | - Yasuo Sakuma
- University of Tokyo Health Science, Tokyo 206-0033, Japan
| |
Collapse
|
8
|
Kercmar J, Snoj T, Tobet SA, Majdic G. Gonadectomy prior to puberty decreases normal parental behavior in adult mice. Horm Behav 2014; 66:667-73. [PMID: 25245159 PMCID: PMC4252646 DOI: 10.1016/j.yhbeh.2014.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 01/29/2023]
Abstract
Sex steroid hormones secreted by gonads influence development and expression of many behaviors including parental behaviors. The capacity to display many behaviors develops under the influence of sex steroid hormones; it begins with gonadal differentiation and lasts through puberty. The timing of gonadectomy may have important and long lasting effects on the organization and activation of neural circuits regulating the expression of different behaviors. The present study investigated the importance of exposure to endogenous gonadal steroid hormones during pubertal period/adolescence on parental behavior in adult mice. Male and female WT mice were gonadectomized either before puberty (25 days of age) or after puberty (60 days of age) and tested for parental behavior with and without estradiol benzoate (EB) replacement in adulthood. Additional groups of mice were gonadectomized at P25 and supplemented with estradiol (females) or testosterone (males) during puberty. Female mice gonadectomized after puberty or gonadectomized before puberty and supplemented with estradiol during puberty, displayed better pup directed parental behaviors in comparison to mice gonadectomized at 25 days of age regardless of treatment with estradiol in adulthood. However, mice treated with EB in adulthood displayed better non-pup directed nest building behavior than when they were tested without EB treatment regardless of sex and time of gonadectomy. To examine whether the sensitivity to sex steroid hormones was altered due to differences in time without gonads prior to the testing, mice were also tested for female sex behavior and there were no differences between mice gonadectomized at P25 or P60, although this could not completely rule out the possibility that parental behavior is more sensitive to prolonged absence of steroid hormones than female sex behavior. These results suggest that the absence of gonads and thereby the absence of appropriate gonadal steroid hormones during puberty/adolescence may have a profound effect on pup directed parental behaviors in adult mice.
Collapse
Affiliation(s)
- Jasmina Kercmar
- Center for Animal Genomics, Veterinary Faculty, University of Ljubljana, Slovenia
| | - Tomaz Snoj
- Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Slovenia
| | - Stuart A Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gregor Majdic
- Center for Animal Genomics, Veterinary Faculty, University of Ljubljana, Slovenia; Institute of Physiology, Medical School, University of Maribor, Maribor, Slovenia.
| |
Collapse
|
9
|
Martini M, Calandreau L, Jouhanneau M, Mhaouty-Kodja S, Keller M. Perinatal exposure to methoxychlor enhances adult cognitive responses and hippocampal neurogenesis in mice. Front Behav Neurosci 2014; 8:202. [PMID: 24982620 PMCID: PMC4059339 DOI: 10.3389/fnbeh.2014.00202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/19/2014] [Indexed: 02/02/2023] Open
Abstract
During perinatal life, sex steroids, such as estradiol, have marked effects on the development and function of the nervous system. Environmental estrogens or xenoestrogens are man-made chemicals, which animal and human population encounter in the environment and which are able to disrupt the functioning of the endocrine system. Scientific interest in the effects of exposure to xenoestrogens has focused more on fertility and reproductive behaviors, while the effects on cognitive behaviors have received less attention. Therefore, the present study explored whether the organochlorine insecticide Methoxychlor (MXC), with known xenoestrogens properties, administered during the perinatal period (from gestational day 11 to postnatal day 8) to pregnant-lactating females, at an environmentally relevant dose (20 µg/kg (body weight)/day), would also affect learning and memory functions depending on the hippocampus of male and female offspring mice in adulthood. When tested in adulthood, MXC perinatal exposure led to an increase in anxiety-like behavior and in short-term spatial working memory in both sexes. Emotional learning was also assessed using a contextual fear paradigm and MXC treated male and female mice showed an enhanced freezing behavior compared to controls. These results were correlated with an increased survival of adult generated cells in the adult hippocampus. In conclusion, our results show that perinatal exposure to an environmentally relevant dose of MXC has an organizational effect on hippocampus-dependent memory and emotional behaviors.
Collapse
Affiliation(s)
- Mariangela Martini
- Physiologie de la Reproduction et des Comportements, UMR 7247 INRA/CNRS/Université Francois Rabelais Nouzilly, France
| | - Ludovic Calandreau
- Physiologie de la Reproduction et des Comportements, UMR 7247 INRA/CNRS/Université Francois Rabelais Nouzilly, France
| | - Mélanie Jouhanneau
- Physiologie de la Reproduction et des Comportements, UMR 7247 INRA/CNRS/Université Francois Rabelais Nouzilly, France
| | - Sakina Mhaouty-Kodja
- Physiopathologie des Maladies du Système Nerveux Central, UMR 7224 CNRS/INSERM U 952/Université Pierre et Marie Curie Paris, France
| | - Matthieu Keller
- Physiologie de la Reproduction et des Comportements, UMR 7247 INRA/CNRS/Université Francois Rabelais Nouzilly, France
| |
Collapse
|
10
|
Zubkova ES, Semenkova LN, Dudich IV, Dudich EI, Khromykh LM, Makarevich PI, Parfenova EV, Men'shikov MI. [Recombinant human alpha-fetoprotein as a regulator of adipose tissue stromal cell activity]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2013; 38:524-34. [PMID: 23342486 DOI: 10.1134/s1068162012050147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recombinant human alpha-fetoprotein (rhAFP) expressed in yeast system as a glycoprotein, was isolated and purified to 98% by multistep method. The testing of the rhAFP in the culture of adipose tissue stromal cells (hASC) has revealed its ability to enhance hASC proliferation and migration as well as vascular endothelial growth factor production, with no significant influence on cell invasion and matrix metalloproteinase-2 and -9 secretion. It has been also estimated that rhAFP is internalized in hASC via clathrin-dependent mechanism. A study in the murine experimental model of hindlimb ischemia has shown the capability of rhAFP to enhance blood flow recovery. These data suggest that rhAFP is a promising agent for enhancement of the hASC regenerative ability.
Collapse
|
11
|
Nuño-Ayala M, Guillén N, Arnal C, Lou-Bonafonte JM, de Martino A, García-de-Jalón JA, Gascón S, Osaba L, Osada J, Navarro MA. Cystathionine β-synthase deficiency causes infertility by impairing decidualization and gene expression networks in uterus implantation sites. Physiol Genomics 2012; 44:702-16. [DOI: 10.1152/physiolgenomics.00189.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperhomocysteinemia has been reported in human reproduction as a risk factor for early pregnancy loss, preeclampsia, and congenital birth defects like spina bifida. Female infertility was also observed in cystathionine beta synthase-deficient mice ( Cbs-KO) as an animal model for severe hyperhomocysteinemia. The aim for the present research was to elucidate the time-point of pregnancy loss and to pinpoint gene and cellular changes involved in the underlying pathological mechanism. By mating 90-day-old wild-type and Cbs-KO female mice with their homologous male partners, we found that pregnancy loss in Cbs-KO occurred between the 8th and 12th gestation day during placenta formation. DNA microarrays were carried out on uterus from implantation and interimplantation samples obtained on day 8. The results allowed us to select genes potentially involved in embryo death; these were individually confirmed by RT-qPCR, and their expressions were also followed throughout pregnancy. We found that changes in expression of Calb1, Ttr, Expi, Inmt, Spink3, Rpgrip1, Krt15, Mt-4, Gzmc, Gzmb, Tdo2, and Afp were important for pregnancy success, since a different regulation in Cbs-KO mice was found. Also, differences in relationships among selected genes were observed, indicating a dysregulation of these genes in Cbs-KO females. In conclusion, our data provide more information on the gene expression cascade and its timely regulated process required for a successful pregnancy. In addition, we unveil new potential avenues to explore further investigations in pregnancy loss.
Collapse
Affiliation(s)
- Mario Nuño-Ayala
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Natalia Guillén
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Arnal
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - José M. Lou-Bonafonte
- Departamento de Fisiología y Farmacología, Facultad de Ciencias de la Salud y del Deporte, Universidad de Zaragoza, Huesca, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Alba de Martino
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
- Unidad de Anatomía Patológica, Instituto Aragonés de Ciencias de la Salud, IIS Aragón, Zaragoza, Spain
| | | | - Sonia Gascón
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - María-Angeles Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Female mice deficient in alpha-fetoprotein show female-typical neural responses to conspecific-derived pheromones. PLoS One 2012; 7:e39204. [PMID: 22720075 PMCID: PMC3376129 DOI: 10.1371/journal.pone.0039204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 05/21/2012] [Indexed: 02/03/2023] Open
Abstract
The neural mechanisms controlling sexual behavior are sexually differentiated by the perinatal actions of sex steroid hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO) and which lack the protective actions of AFP against maternal estradiol, that exposure to prenatal estradiol completely defeminized the potential to show lordosis behavior in adulthood. Furthermore, AFP-KO females failed to show any male-directed mate preferences following treatment with estradiol and progesterone, indicating a reduced sexual motivation to seek out the male. In the present study, we asked whether neural responses to male- and female-derived odors are also affected in AFP-KO female mice. Therefore, we compared patterns of Fos, the protein product of the immediate early gene, c-fos, commonly used as a marker of neuronal activation, between wild-type (WT) and AFP-KO female mice following exposure to male or estrous female urine. We also tested WT males to confirm the previously observed sex differences in neural responses to male urinary odors. Interestingly, AFP-KO females showed normal, female-like Fos responses, i.e. exposure to urinary odors from male but not estrous female mice induced equivalent levels of Fos protein in the accessory olfactory pathways (e.g. the medial part of the preoptic nucleus, the bed nucleus of the stria terminalis, the amygdala, and the lateral part of the ventromedial hypothalamic nucleus) as well as in the main olfactory pathways (e.g. the piriform cortex and the anterior cortical amygdaloid nucleus), as WT females. By contrast, WT males did not show any significant induction of Fos protein in these brain areas upon exposure to either male or estrous female urinary odors. These results thus suggest that prenatal estradiol is not involved in the sexual differentiation of neural Fos responses to male-derived odors.
Collapse
|
13
|
Dudich E, Dudich I, Semenkova L, Benevolensky S, Morozkina E, Marchenko A, Zatcepin S, Dudich D, Soboleva G, Khromikh L, Roslovtceva O, Tatulov E. Engineering of the Saccharomyces cerevisiae yeast strain with multiple chromosome-integrated genes of human alpha-fetoprotein and its high-yield secretory production, purification, structural and functional characterization. Protein Expr Purif 2012; 84:94-107. [PMID: 22561245 DOI: 10.1016/j.pep.2012.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 04/11/2012] [Accepted: 04/14/2012] [Indexed: 11/20/2022]
Abstract
Alpha-fetoprotein (AFP) is a biological drug candidate of high medicinal potential in the treatment of autoimmune diseases, cancer, and regenerative medicine. Large-scale production of recombinant human alpha-fetoprotein (rhAFP) is desirable for structural and functional studies and applied research. In this study we cloned and expressed in the secreted form wild-type glycosylated human rhAFP and non-glycosylated mutant rhAFP(0) (N233S) in the yeast strain Saccharomyces cerevisiae with multiple chromosome-integrated synthetic human AFP genes. RhAFP and rhAFP(0) were successfully produced and purified from the culture liquids active naturally folded proteins. Elimination of the glycosylation by mutation reduced rhAFP(0) secretion about threefold as compared to the wild-type protein showing critical role of the N-linked glycan for heterologous protein folding and secretion. Structural similarity of rhAFP and rhAFP(0) with natural embryonic eAFP was confirmed by circular dichroism technique. Functional tests demonstrated similar type of tumor suppressive and immunosuppressive activity for both recombinant species rhAFP and rhAFP(0) as compared to natural eAFP. It was documented that both types of biological activities attributed to rhAFP and rhAFP(0) are due to the fast induction of apoptosis in tumor cells and mitogen-activated lymphocytes. Despite the fact that rhAFP and rhAFP(0) demonstrated slightly less effective tumor suppressive activity as compared to eAFP but rhAFP(0) had produced statistically notable increase in its ability to induce inhibition of in vitro lymphocyte proliferation as compared to the glycosylated rhAFP and eAFP. We conclude that N-linked glycosylation of rhAFP is required for efficient folding and secretion. However the presence of N-linked sugar moiety was shown to be unimportant for tumor suppressive activity but was critically important for its immunoregulative activity which demonstrates that different molecular mechanisms are involved in these two types of biological functional activities attributed to AFP.
Collapse
Affiliation(s)
- Elena Dudich
- Institute of Immunological Engineering, Lyubuchany, Moscow Region, Chekhov District 142380, Russia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mita L, Baldi A, Diano N, Viggiano E, Portaccio M, Nicolucci C, Grumiro L, Menale C, Mita DG, Spugnini EP, Viceconte R, Citro G, Pierantoni R, Sica V, Marino M, Signorile PG, Bianco M. Differential accumulation of BPA in some tissues of offspring of Balb-C mice exposed to different BPA doses. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 33:9-15. [PMID: 22047638 DOI: 10.1016/j.etap.2011.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 09/15/2011] [Accepted: 09/23/2011] [Indexed: 05/31/2023]
Abstract
Pregnant adult Balb-C mice were exposed daily to two different doses of Bisphenol A (BPA) by subcutaneous injection beginning on gestational day 1 through the seventh day after delivery. The mothers were sacrificed on postpartum day 21, and the offspring were sacrificed at 3 months of age. Control mice were subjected to the same experimental protocol but received saline injections. The liver, muscles, hindbrain and forebrain of the offspring were dissected and processed using HPLC to assess the level of BPA in the tissues and to determine its dependence on the exposure dose and gender. For comparison, the same tissues were dissected from the mothers and analysed. We report the following results: (1) the level of BPA that accumulated in a given tissue was dependent on the exposure dose; (2) the rank order of BPA accumulation in the various tissues was dependent on the gender of the offspring; (3) the average BPA concentrations in the liver and muscle of the female offspring were higher than in the males; and (4) the average BPA concentration in the central nervous system (i.e., the hindbrain and forebrain) of the male offspring was higher than in the females.
Collapse
Affiliation(s)
- L Mita
- National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Sex hormone-binding globulin (SHBG) transports androgens and estrogens in blood and regulates their access to target tissues. Hepatic production of SHBG fluctuates throughout the life cycle and is influenced primarily by metabolic and hormonal factors. Genetic differences also contribute to interindividual variations in plasma SHBG levels. In addition to controlling the plasma distribution, metabolic clearance, and bioavailability of sex steroids, SHBG accumulates in the extravascular compartments of some tissues and in the cytoplasm of specific epithelial cells, where it exerts novel effects on androgen and estrogen action. In mammals, the gene-encoding SHBG is expressed primarily in the liver but also at low levels in other tissues, including the testis. In subprimate species, Shbg expression in Sertoli cells is under the control of follicle-stimulating hormone and produces the androgen-binding protein that influences androgen actions in the seminiferous tubules and epididymis. In humans, the SHBG gene is not expressed in Sertoli cells, but its expression in germ cells produces an SHBG isoform that accumulates in the acrosome. In fish, Shbg is produced by the liver but has a unique function in the gill as a portal for natural steroids and xenobiotics, including synthetic steroids. However, salmon have retained a second, poorly conserved Shbg gene that is expressed only in ovary, muscle, and gill and that likely exerts specialized functions in these tissues. The present review compares the production and functions of SHBG in different species and its diverse effects on reproduction.
Collapse
Affiliation(s)
- Geoffrey L Hammond
- Child & Family Research Institute and Department of Obstetrics & Gynecology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
16
|
Majdic G, Tobet S. Cooperation of sex chromosomal genes and endocrine influences for hypothalamic sexual differentiation. Front Neuroendocrinol 2011; 32:137-45. [PMID: 21338619 PMCID: PMC3085655 DOI: 10.1016/j.yfrne.2011.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 02/11/2011] [Accepted: 02/15/2011] [Indexed: 02/04/2023]
Abstract
There is little debate that mammalian sexual differentiation starts from the perspective of two primary sexes that correspond to differential sex chromosomes (X versus Y) that lead to individuals with sex typical characteristics. Sex steroid hormones account for most aspects of brain sexual differentiation, however, a growing literature has raised important questions about the role of sex chromosomal genes separate from sex steroid actions. Several important model animals are being used to address these issues and, in particular, they are taking advantage of molecular genetic approaches using different mouse strains. The current review examines the cooperation of genetic and endocrine influences from the perspective of behavioral and morphological hypothalamic sexual differentiation, first in adults and then in development. In the final analysis, there is an ongoing need to account for the influence of hormones in the context of underlying genetic circumstances and null hormone conditions.
Collapse
Affiliation(s)
- Gregor Majdic
- Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia and Medical Faculty, University of Maribor, Maribor, Slovenia
| | | |
Collapse
|
17
|
Macbeth AH, Stepp JE, Lee HJ, Young WS, Caldwell HK. Normal maternal behavior, but increased pup mortality, in conditional oxytocin receptor knockout females. Behav Neurosci 2011; 124:677-85. [PMID: 20939667 DOI: 10.1037/a0020799] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oxytocin (Oxt) and the Oxt receptor (Oxtr) are implicated in the onset of maternal behavior in a variety of species. Recently, we developed two Oxtr knockout lines: a total body knockout (Oxtr-/-) and a conditional Oxtr knockout (OxtrFB/FB) in which the Oxtr is lacking only in regions of the forebrain, allowing knockout females to potentially nurse and care for their biological offspring. In the current study, we assessed maternal behavior of postpartum OxtrFB/FB females toward their own pups and maternal behavior of virgin Oxtr-/- females toward foster pups and compared knockouts of both lines to wildtype (Oxtr+/+) littermates. We found that both Oxtr-/- and OxtrFB/FB females appear to have largely normal maternal behaviors. However, with first litters, approximately 40% of the OxtrFB/FB knockout dams experienced high pup mortality, compared to fewer than 10% of the Oxtr+/+ dams. We then went on to test whether or not this phenotype occurred in subsequent litters or when the dams were exposed to an environmental disturbance. We found that regardless of the degree of external disturbance, OxtrFB/FB females lost more pups on their first and second litters compared to wildtype females. Possible reasons for higher pup mortality in OxtrFB/FB females are discussed.
Collapse
Affiliation(s)
- Abbe H Macbeth
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|