1
|
Estradiol-dependent hypocretinergic/orexinergic behaviors throughout the estrous cycle. Psychopharmacology (Berl) 2023; 240:15-25. [PMID: 36571628 PMCID: PMC9816302 DOI: 10.1007/s00213-022-06296-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022]
Abstract
RATIONALE The female menstrual or estrous cycle and its associated fluctuations in circulating estradiol (E2), progesterone, and other gonadal hormones alter orexin or hypocretin peptide production and receptor activity. Depending on the estrous cycle phase, the transcription of prepro-orexin mRNA, post-translational modification of orexin peptide, and abundance of orexin receptors change in a brain region-specific manner. The most dramatic changes occur in the hypothalamus, which is considered the starting point of the hypothalamic-pituitary-gonadal axis as well as the hub of orexin-producing neurons. Thus, hypothalamus-regulated behaviors, including arousal, feeding, reward processing, and the stress response depend on coordinated efforts between E2, progesterone, and the orexin system. Given the rise of orexin therapeutics for various neuropsychiatric conditions including insomnia and affective disorders, it is important to delineate the behavioral outcomes of this drug class in both sexes, as well as within different time points of the female reproductive cycle. OBJECTIVES Summarize how the menstrual or estrous cycle affects orexin system functionality in animal models in order to predict how orexin pharmacotherapies exert varying degrees of behavioral effects across the dynamic hormonal milieu.
Collapse
|
2
|
Hu Y, Liu Y, Li S. Effect of Acute Cold Stress on Neuroethology in Mice and Establishment of Its Model. Animals (Basel) 2022; 12:ani12192671. [PMID: 36230412 PMCID: PMC9559653 DOI: 10.3390/ani12192671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Cold environment is an inevitable stress source for humans and livestock in cold areas, which easily induce a cold stress response and then cause a series of abnormal changes in energy metabolism, neuroendocrine system, behavior and emotion. Homeostasis is maintained by the unified regulation of the autonomic nervous system, endocrine system, metabolism and behavior under cold exposure. Behavior is an indispensable part of the functional regulation of the body to respond to environmental changes. At present, the behavioral changes caused by cold exposure are unclear or even chaotic due to the difficulty of defining cold stress. Therefore, this study aims to systematically observe the changes in spontaneous movement, exploratory behavior and anxiety of mice under different intensity cold exposure and summarize the characteristics and behavior traits combined with relevant blood physiological indexes under corresponding conditions. Mice models of cold stress with different intensities were established (cold exposure gradients were 22 °C, 16 °C, 10 °C and 4 °C, and time gradients of each temperature were 2 h, 4 h, 6 h, 8 h, 10 h and 12 h). After the corresponding cold exposure treatment, mice immediately carried out the open field test(OFT) and elevated plus maze test (PMT) to evaluate their spontaneous movement, exploratory behavior and anxiety. Subsequently, blood samples were collected and used for the determination of corticosterone (Cort), corticotropin-releasing hormone (CRH), epinephrine (E), norepinephrine (NE), dopamine (DA) and 5-hydroxytryptamine (5-HT) by enzyme-linked immunosorbent assay (ELISA). Spontaneous movement of mice increased under 22 °C cold exposure, but their exploration behavior did not significantly change, and their anxiety improved at the initial stage. The spontaneous movement and anxiety of mice increased in the initial stage and decreased in the later stage under cold exposure at 16, 10 and 4 °C and the exploratory behavior was inhibited. The hypothalamic-pituitary-adrenal (HPA) axis and locus coeruleus-noradrenergic (LC/NE) system were activated by cold stress and fluctuated with different intensities of cold exposure. Meanwhile, serum DA increased, and 5-HT was the opposite under different intensities of cold exposure. In conclusion, mild acute cold exposure promoted the spontaneous movement, increased exploratory behavior and improved anxiety. As the intensity of cold exposure increases, cold exposure had a negative effect on spontaneous movement, exploratory behavior and emotion. The physiological basis of these behavioral and emotional changes in mice under different intensity cold stimulation is the fluctuation of Cort, CRH, E, NE, DA and 5-HT.
Collapse
Affiliation(s)
- Yajie Hu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yang Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shize Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
3
|
Burroughs S, Schwindinger WF, Venditti JJ, Trautwein T, Dalsania A, Klingerman CM. Prokineticin-2 and ghrelin robustly influence the sexual and ingestive behaviors of female Syrian hamsters. Horm Behav 2018; 106:135-143. [PMID: 30189212 DOI: 10.1016/j.yhbeh.2018.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/20/2018] [Accepted: 08/31/2018] [Indexed: 12/20/2022]
Abstract
Prokineticins are involved in many physiological processes including circadian rhythms, neurogenesis, angiogenesis, and cancer. Recently, they have been found to play a role in regulating food intake. Historically, proteins that increase feeding behavior in mammals decrease reproductive behavior to prevent pregnancy and lactation when food is scarce. In the current study, prokineticin-2 (PK2) had pronounced effects on reproductive and ingestive behaviors when given to female Syrian hamsters. Administration of PK2 prevented ingestive behaviors induced by food restriction, such as the amount of time spent with food and eating. Hamsters given PK2 preferred to engage in reproductive behaviors, including spending time with a male and lordosis. Furthermore, analysis of blood plasma revealed that changes to behavior persisted despite similar levels of des-acyl ghrelin (DAG) and reduced glucose concentrations in the blood. Additionally, administering 10 mg/kg of acyl ghrelin (AG) to a different cohort of animals significantly decreased the amount of time females spent with a potential mating partner, increased the amount of time females spent with food, decreased the duration of lordosis, and increased the duration of eating. Results from the current study support the need for further research investigating the reproductive and ingestive roles of PK2 and ghrelin.
Collapse
Affiliation(s)
- S Burroughs
- Department of Biological and Allied Health Sciences, Bloomsburg University of Pennsylvania, 400 E. Second St. Bloomsburg, PA 17815, United States of America
| | - W F Schwindinger
- Department of Biological and Allied Health Sciences, Bloomsburg University of Pennsylvania, 400 E. Second St. Bloomsburg, PA 17815, United States of America
| | - J J Venditti
- Department of Biological and Allied Health Sciences, Bloomsburg University of Pennsylvania, 400 E. Second St. Bloomsburg, PA 17815, United States of America
| | - T Trautwein
- Department of Biological and Allied Health Sciences, Bloomsburg University of Pennsylvania, 400 E. Second St. Bloomsburg, PA 17815, United States of America
| | - A Dalsania
- Department of Biological and Allied Health Sciences, Bloomsburg University of Pennsylvania, 400 E. Second St. Bloomsburg, PA 17815, United States of America
| | - C M Klingerman
- Department of Biological and Allied Health Sciences, Bloomsburg University of Pennsylvania, 400 E. Second St. Bloomsburg, PA 17815, United States of America.
| |
Collapse
|
4
|
Schneider JE, Benton NA, Russo KA, Klingerman CM, Williams WP, Simberlund J, Abdulhay A, Brozek JM, Kriegsfeld LJ. RFamide-related Peptide-3 and the Trade-off between Reproductive and Ingestive Behavior. Integr Comp Biol 2017; 57:1225-1239. [PMID: 28985338 PMCID: PMC5886337 DOI: 10.1093/icb/icx097] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ingestive and sex behaviors are important for individual survival and reproductive success, but when environmental energy availability is limited, individuals of many different species make a trade-off, forfeiting sex for ingestive behavior. For example, food-deprived female Syrian hamsters (Mesocricetus auratus) forego vaginal scent marking and lordosis (sex behaviors) in favor of foraging, hoarding, and eating food (ingestive behavior). Reproductive processes tend to be energetically costly, and individual survival requires homeostasis in metabolic energy. Thus, during energetic challenges, the chances of survival are enhanced by decreasing the energy expended on reproductive processes. The entire hypothalamic-pituitary-gonadal (HPG) system is inhibited by severe energetic challenges, but comparatively little is known about the effects of mild energetic challenges. We hypothesized that (1) a trade-off is made between sex and ingestive behavior even when the level of food restriction is insufficient to inhibit the HPG system; (2) mild energetic challenges force a trade-off between appetitive ingestive and sex behaviors, but not consummatory versions of the same behaviors; and (3) the trade-off is orchestrated by ovarian steroid modulation of RFamide-related peptide 3 (RFRP-3). In other species, RFRP-3, an ortholog of avian gonadotropin-inhibitory hormone, is implicated in control of behavior in response to energetic challenges and stressful stimuli. In support of our three hypotheses, there is a "dose-response" effect of food restriction and re-feeding on the activation of RFRP-3-immunoreactive cells in the dorsomedial hypothalamus and on appetitive behaviors (food hoarding and sexual motivation), but not on consummatory behaviors (food intake and lordosis), with no significant effect on circulating levels of estradiol or progesterone. The effect of food restriction on the activation of RFRP-3 cells is modulated at the time of estrus in gonadally-intact females and in ovariectomized females treated with progesterone alone or with estradiol plus progesterone. Intracerebral treatment with RFRP-3 results in significant decreases in sexual motivation and results in significant but small increases in food hoarding in hamsters fed ad libitum. These and other results are consistent with the idea that ovarian steroids and RFRP-3 are part of a system that orchestrates trade-offs in appetitive behaviors in environments where energy availability fluctuates.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Noah A Benton
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Kim A Russo
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Candice M Klingerman
- Department of Biological and Allied Health Sciences, Bloomsburg University, Bloomsburg, PA 17815, USA
| | - Wilbur P Williams
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Jessica Simberlund
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Amir Abdulhay
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Jeremy M Brozek
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Lance J Kriegsfeld
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Benton NA, Russo KA, Brozek JM, Andrews RJ, Kim VJ, Kriegsfeld LJ, Schneider JE. Food restriction-induced changes in motivation differ with stages of the estrous cycle and are closely linked to RFamide-related peptide-3 but not kisspeptin in Syrian hamsters. Physiol Behav 2017. [PMID: 28624479 DOI: 10.1016/j.physbeh.2017.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We tested the hypothesis that the effects of food restriction on behavioral motivation are mediated by one or both of the RFamide peptides, RFamide-related peptide-3 (RFRP-3) and kisspeptin (Kp) in female Syrian hamsters (Mesocricetus auratus). Female hamsters fed ad libitum and given a choice between food and adult male hamsters are highly motivated to visit males instead of food on all four days of the estrous cycle, but after 8days of mild food restriction (75% of ad libitum intake) they shift their preference toward food every day of the estrous cycle until the day of estrus, when they shift their preference back toward the males. In support of a role for RFRP-3 in these behavioral changes, the preference for food and the activation of RFRP-3-immunoreactive (Ir) cells in the dorsomedial hypothalamus (DMH) showed the same estrous cycle pattern in food-restricted females, but no association was observed between behavior and the activation of Kp cells in the hypothalamic arcuate nucleus or preoptic area. Next, we tested the hypothesis that food-restriction-induced activation of RFRP-3-Ir cells is modulated by high levels of ovarian steroids at the time of estrus. In support of this idea, on nonestrous days, mild food restriction increased activation of RFRP-3-Ir cells, but failed to do so on the day of estrus even though this level of food restriction did not significantly decrease circulating concentrations of estradiol or progesterone. Furthermore, in ovariectomized females, food-restriction-induced increases in activation of RFRP-3-Ir cells were blocked by systemic treatment with progesterone alone, estradiol plus progesterone, but not estradiol alone. Central infusion with RFRP-3 in ad libitum-fed females significantly decreased sexual motivation and produced significant increases in 90-minute food hoarding, in support of the hypothesis that elevated central levels of RFRP-3 are sufficient to create the shift in behavioral motivation in females fed ad libitum. Together, these results are consistent with the hypothesis that high levels of ingestive motivation are promoted during the nonfertile phase of the estrous cycle by elevated activation of RFRP-3-Ir cells, and RFRP-3-Ir cellular activation is modulated by ovarian steroids around the time of estrus, thereby diverting attention away from food and increasing sexual motivation.
Collapse
Affiliation(s)
- Noah A Benton
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, United States
| | - Kim A Russo
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Jeremy M Brozek
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, United States
| | - Ryan J Andrews
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Veronica J Kim
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Lance J Kriegsfeld
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Jill E Schneider
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, United States.
| |
Collapse
|