1
|
de Bournonville C, Lemoine P, Foidart JM, Arnal JF, Lenfant F, Cornil CA. Role of membrane estrogen receptor alpha (ERα) in the rapid regulation of male sexual behavior. J Neuroendocrinol 2023; 35:e13341. [PMID: 37806316 DOI: 10.1111/jne.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 10/10/2023]
Abstract
The activation of male sexual behavior depends on brain estrogen synthesis. Estrogens act through nuclear and membrane receptors producing effects within hours/days or seconds/minutes, respectively. In mice, estrogen receptor alpha (ERα) is the main estrogen receptor (ER) controlling the activation of male sexual behavior. Although neuroestrogens rapidly modulate mouse sexual behavior, it is not known whether these effects involve membrane ERα (mERα). This study combines two complementary approaches to address this question. C451A-ERα mice carry an ERα that cannot signal at the membrane, while estetrol (E4) is a natural estrogen acting as an agonist on nuclear ERα but as an antagonist on membrane ERα. In wild-type males, E4 decreased the number of mounts and intromissions after 10 min. In C451A-ERα males, E4 also altered sexual performance but after 30 min. E4 did not affect time spent near the female in both wild-type and C451A-ERα mice. However, regardless of genotype, the aromatase inhibitor 1,4,6-Androstatriene-3,17-dione (ATD) decreased both sexual performance and the time spent near the female after 10 and 30 min, confirming the key role of aromatization in the rapid control of sexual behavior and motivation. In conclusion, the shift in timing at which the effect of E4 is observed in mice lacking mERα suggests a role for mERα in the regulation of rapid effects of neuroestrogens on sexual performance, thus providing the first demonstration that E4 acts as an antagonist of a mER in the brain. The persisting effect of ATD on behavior in C451A-ERα mice also suggests the implication of another ER.
Collapse
Affiliation(s)
| | - Philippine Lemoine
- Laboratory of Neuroendocrinology, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Jean-Michel Foidart
- Department of Obstetrics and Gynecology, University of Liège, Liège, Belgium
- Estetra SRL, an affiliate company of Mithra Pharmaceuticals, Liège, Belgium
| | - Jean-François Arnal
- Institute of Metabolic and Cardiovascular Diseases (I2MC) Equipe 4, Inserm U1297-UPS, CHU, Toulouse, France
| | - Françoise Lenfant
- Institute of Metabolic and Cardiovascular Diseases (I2MC) Equipe 4, Inserm U1297-UPS, CHU, Toulouse, France
| | - Charlotte A Cornil
- Laboratory of Neuroendocrinology, GIGA Neurosciences, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Heimovics S, Rubin N, Ford M. Dehydroepiandrosterone (DHEA) increases undirected singing behavior and alters dopaminergic regulation of undirected song in non-breeding male European starlings ( Sturnus vulgaris). Front Endocrinol (Lausanne) 2023; 14:1153085. [PMID: 37234810 PMCID: PMC10206333 DOI: 10.3389/fendo.2023.1153085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction It has been proposed that in species that defend territories across multiple life history stages, brain metabolism of adrenal dehydroepiandrosterone (DHEA) regulates aggressive behavior at times when gonadal androgen synthesis is low (i.e. the non-breeding season). To date, a role for DHEA in the regulation of other forms of social behavior that are expressed outside of the context of breeding remains unknown. Methods In this experiment, we used the European starling (Sturnus vulgaris) model system to investigate a role for DHEA in the neuroendocrine regulation of singing behavior by males in non-breeding condition. Starling song in a non-breeding context is spontaneous, not directed towards conspecifics, and functions to maintain cohesion of overwintering flocks. Results Using within-subjects design, we found that DHEA implants significantly increase undirected singing behavior by non-breeding condition male starlings. Given that DHEA is known to modulate multiple neurotransmitter systems including dopamine (DA) and DA regulates undirected song, we subsequently used immunohistochemistry for phosphorylated tyrosine hydroxylase (pTH, the active form of the rate-limiting enzyme in DA synthesis) to investigate the effect of DHEA on dopaminergic regulation of singing behavior in a non-breeding context. Pearson correlation analysis revealed a positive linear association between undirected singing behavior and pTH immunoreactivity in the ventral tegmental area and midbrain central gray of DHEA-implanted, but not control-implanted, males. Discussion Taken together, these data suggest that undirected singing behavior by non-breeding starlings is modulated by effects of DHEA on dopaminergic neurotransmission. More broadly, these data expand the social behavior functions of DHEA beyond territorial aggression to include undirected, affiliative social communication.
Collapse
|
3
|
Court L, Balthazart J, Ball GF, Cornil CA. Role of aromatase in distinct brain nuclei of the social behaviour network in the expression of sexual behaviour in male Japanese quail. J Neuroendocrinol 2022; 34:e13127. [PMID: 35394094 PMCID: PMC9250618 DOI: 10.1111/jne.13127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/15/2022] [Accepted: 03/09/2022] [Indexed: 11/29/2022]
Abstract
In male Japanese quail, brain aromatase is crucial for the hormonal activation of sexual behaviour, but the sites producing neuro-oestrogens that are critical for these behaviours have not been completely identified. This study examined the function of aromatase expressed in several nuclei of the social behaviour network on a measure of sexual motivation known as the frequency of rhythmic cloacal sphincter movements (RCSM) and on copulatory behaviour. Sexually experienced castrated males chronically treated with testosterone were stereotaxically implanted with the aromatase inhibitor vorozole (VOR), or cholesterol as control, and tested for sexual behaviour. In experiment 1, males were implanted in the medial preoptic nucleus (POM) with VOR, a manipulation known to reduce the expression of copulatory behaviour. This experiment served as positive control, but also showed that VOR implanted in the dorsomedial or lateral portions of the POM similarly inhibits male copulatory behaviour compared to control implants. In experiments 2 to 4, males received stereotaxic implants of VOR in the periaqueductal gray (PAG), the nucleus taeniae of the amygdala (TnA) and the ventromedial nucleus of the hypothalamus (VMN), respectively. Sexual behaviour was affected only in individuals where VOR was implanted in the PAG: these males displayed significantly lower frequencies of cloacal contact movements, the last step of the copulatory sequence. Inhibition of aromatase in the TnA and VMN did not alter copulatory ability. Overall, RCSM frequency remained unaffected by VOR regardless of implantation site. Together, these results suggest that neuro-oestrogens produced in the POM contribute the most to the control of male copulatory behaviour, while aromatase expressed in the PAG might also participate to premotor aspects of male copulatory behaviour.
Collapse
Affiliation(s)
- Lucas Court
- GIGA Neurosciences, University of Liège, B-4000 Liège, Belgium
| | | | - Gregory F. Ball
- Department of Psychology, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
4
|
Dickinson SY, Kelly DA, Padilla SL, Bergan JF. From Reductionism Toward Integration: Understanding How Social Behavior Emerges From Integrated Circuits. Front Integr Neurosci 2022; 16:862437. [PMID: 35431824 PMCID: PMC9010670 DOI: 10.3389/fnint.2022.862437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Complex social behaviors are emergent properties of the brain's interconnected and overlapping neural networks. Questions aimed at understanding how brain circuits produce specific and appropriate behaviors have changed over the past half century, shifting from studies of gross anatomical and behavioral associations, to manipulating and monitoring precisely targeted cell types. This technical progression has enabled increasingly deep insights into the regulation of perception and behavior with remarkable precision. The capacity of reductionist approaches to identify the function of isolated circuits is undeniable but many behaviors require rapid integration of diverse inputs. This review examines progress toward understanding integrative social circuits and focuses on specific nodes of the social behavior network including the medial amygdala, ventromedial hypothalamus (VMH) and medial preoptic area of the hypothalamus (MPOA) as examples of broad integration between multiple interwoven brain circuits. Our understanding of mechanisms for producing social behavior has deepened in conjunction with advances in technologies for visualizing and manipulating specific neurons and, here, we consider emerging strategies to address brain circuit function in the context of integrative anatomy.
Collapse
Affiliation(s)
- Sarah Y. Dickinson
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Diane A. Kelly
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Stephanie L. Padilla
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Joseph F. Bergan
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
5
|
Balthazart J. Membrane-initiated actions of sex steroids and reproductive behavior: A historical account. Mol Cell Endocrinol 2021; 538:111463. [PMID: 34582978 DOI: 10.1016/j.mce.2021.111463] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/25/2023]
Abstract
It was assumed for a long time that sex steroids are activating reproductive behaviors by the same mechanisms that produce their morphological and physiological effects in the periphery. However during the last few decades an increasing number of examples were identified where behavioral effects of steroids were just too fast to be mediated via changes in DNA transcription. This progressively forced behavioral neuroendocrinologists to recognize that part of the effects of steroids on behavior are mediated by membrane-initiated events. In this review we present a selection of these early data that changed the conceptual landscape and we provide a summary the different types of membrane-associated receptors (estrogens, androgens and progestagens receptors) that are playing the most important role in the control of reproductive behaviors. Then we finally describe in more detail three separate behavioral systems in which membrane-initiated events have clearly been established to contribute to behavior control.
Collapse
|
6
|
de Bournonville MP, de Bournonville C, Vandries LM, Nys G, Fillet M, Ball GF, Balthazart J, Cornil CA. Rapid changes in brain estrogen concentration during male sexual behavior are site and stimulus specific. Sci Rep 2021; 11:20130. [PMID: 34635715 PMCID: PMC8505645 DOI: 10.1038/s41598-021-99497-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Classically, estrogens regulate male sexual behavior through effects initiated in the nucleus. However, neuroestrogens, i.e., estrogens locally produced in the brain, can act within minutes via membrane-initiated events. In male quail, rapid changes in brain aromatase activity occur after exposure to sexual stimuli. We report here that local extracellular estrogen concentrations measured by in vivo microdialysis increase during sexual interactions in a brain site- and stimulus-specific manner. Indeed, estrogen concentrations rose within 10 min of the initiation of sexual interaction with a female in the medial preoptic nucleus only, while visual access to a female led to an increase in estrogen concentrations only in the bed nucleus of the stria terminalis. These are the fastest fluctuations in local estrogen concentrations ever observed in the vertebrate brain. Their site and stimulus specificity strongly confirm the neuromodulatory function of neuroestrogens on behavior.
Collapse
Affiliation(s)
| | | | - Laura M Vandries
- GIGA Neurosciences, University of Liège, 15 Avenue Hippocrate, 4000, Liège, Belgium
| | - Gwenaël Nys
- Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
| | - Marianne Fillet
- Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Jacques Balthazart
- GIGA Neurosciences, University of Liège, 15 Avenue Hippocrate, 4000, Liège, Belgium
| | - Charlotte A Cornil
- GIGA Neurosciences, University of Liège, 15 Avenue Hippocrate, 4000, Liège, Belgium.
| |
Collapse
|
7
|
Sex differences and similarities in the neural circuit regulating song and other reproductive behaviors in songbirds. Neurosci Biobehav Rev 2020; 118:258-269. [PMID: 32735803 DOI: 10.1016/j.neubiorev.2020.07.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/14/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
In the 1970s, Nottebohm and Arnold reported marked male-biased sex differences in the volume of three song control nuclei in songbirds. Subsequently a series of studies on several songbird species suggested that there is a positive correlation between the degree to which there is a sex difference in the volume of these song control nuclei and in song behavior. This correlation has been questioned in recent years. Furthermore, it has become clear that the song circuit is fully integrated into a more comprehensive neural circuit that regulates multiple courtship and reproductive behaviors including song. Sex differences in songbirds should be evaluated in the context of the full complement of behaviors produced by both sexes in relation to reproduction and based on the entire circuit in order to understand the functional significance of variation between males and females in brain and behavior. Variation in brain and behavior exhibited among living songbird species provides an excellent opportunity to understand the functional significance of sex differences related to social behaviors.
Collapse
|
8
|
Balthazart J. New concepts in the study of the sexual differentiation and activation of reproductive behavior, a personal view. Front Neuroendocrinol 2019; 55:100785. [PMID: 31430485 PMCID: PMC6858558 DOI: 10.1016/j.yfrne.2019.100785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 01/09/2023]
Abstract
Since the beginning of this century, research methods in neuroendocrinology enjoyed extensive refinements and innovation. These advances allowed collection of huge amounts of new data and the development of new ideas but have not led to this point, with a few exceptions, to the development of new conceptual advances. Conceptual advances that took place largely resulted from the ingenious insights of several investigators. I summarize here some of these new ideas as they relate to the sexual differentiation and activation by sex steroids of reproductive behaviors and I discuss how our research contributed to the general picture. This selective review clearly demonstrates the importance of conceptual changes that have taken place in this field since beginning of the 21st century. The recent technological advances suggest that our understanding of hormones, brain and behavior relationships will continue to improve in a very fundamental manner over the coming years.
Collapse
|
9
|
James LS, Fan R, Sakata JT. Behavioural responses to video and live presentations of females reveal a dissociation between performance and motivational aspects of birdsong. ACTA ACUST UNITED AC 2019; 222:jeb.206318. [PMID: 31331939 DOI: 10.1242/jeb.206318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
Abstract
Understanding the regulation of social behavioural expression requires insight into motivational and performance aspects. While a number of studies have independently assessed these aspects of social behaviours, few have examined how they relate to each other. By comparing behavioural variation in response to live or video presentations of conspecific females, we analysed how variation in the motivation to produce courtship song covaries with variation in performance aspects of courtship song in male zebra finches (Taeniopygia guttata). In agreement with previous reports, we observed that male zebra finches were less motivated to produce courtship songs to videos of females than to live presentations of females. However, we found that acoustic features that reflect song performance were not significantly different between songs produced in response to videos of females, and those produced in response to live females. For example, songs directed at video presentations of females were just as fast and stereotyped as songs directed at live females. These experimental manipulations and correlational analyses reveal a dissociation between motivational and performance aspects of birdsong and suggest a refinement of neural models of song production and control. In addition, they support the efficacy of videos to study both motivational and performance aspects of social behaviours.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Raina Fan
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
10
|
de Bournonville C, Schmit M, Telle M, Court L, Ball GF, Balthazart J, Cornil CA. Effects of a novel partner and sexual satiety on the expression of male sexual behavior and brain aromatase activity in quail. Behav Brain Res 2019; 359:502-515. [PMID: 30462988 DOI: 10.1016/j.bbr.2018.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 11/30/2022]
Abstract
This study was designed to determine whether changes in sexual motivation acutely regulate brain estrogen synthesis by aromatase. Five experiments (Exp.1-5) were first conducted to determine the effect of recent mating and of the presentation of a new female (Coolidge effect) on sexual motivation. Exp.1-2 showed that 10 min or overnight access to copulation decreases measures of male sexual motivation when male subjects were visually exposed to the female they had copulated with and this effect is not counteracted by the view of a new female. Exp.3 showed that sexual motivation is revived by the view of a new female in previously unmated males only allowed to see another female for 10 min. After mating for 10 min (Exp.4) or overnight (Exp.5) with a female, males showed a decrease in copulatory behavior that was not reversed by access to a new female. Exp.6 and 7 confirmed that overnight copulation (Exp.6) and view of a novel female (Exp.7) respectively decreases and increases sexual behavior and motivation. Yet, these manipulations did not affect brain aromatase activity except in the tuberal hypothalamus. Together these data confirm that copulation or prolonged view of a female decrease sexual motivation but a reactivation of sexual motivation by a new female can only be obtained if males had only seen another female but not copulated with her, which is different in some degree from the Coolidge effect described in rodents. Moreover changes in brain aromatase do not simply reflect changes in motivation and more complex mechanisms must be considered.
Collapse
Affiliation(s)
| | - Mélanie Schmit
- Neuroendocrinology unit, GIGA Neurosciences, University of Liège, Belgium
| | - Maxim Telle
- Neuroendocrinology unit, GIGA Neurosciences, University of Liège, Belgium
| | - Lucas Court
- Neuroendocrinology unit, GIGA Neurosciences, University of Liège, Belgium
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD, 20742, United States
| | - Jacques Balthazart
- Neuroendocrinology unit, GIGA Neurosciences, University of Liège, Belgium
| | - Charlotte A Cornil
- Neuroendocrinology unit, GIGA Neurosciences, University of Liège, Belgium.
| |
Collapse
|
11
|
Spool JA, Merullo DP, Zhao C, Riters LV. Co-localization of mu-opioid and dopamine D1 receptors in the medial preoptic area and bed nucleus of the stria terminalis across seasonal states in male European starlings. Horm Behav 2019; 107:1-10. [PMID: 30423316 PMCID: PMC6348025 DOI: 10.1016/j.yhbeh.2018.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 01/06/2023]
Abstract
In seasonally breeding animals, changes in photoperiod and sex-steroid hormones may modify sexual behavior in part by altering the activity of neuromodulators, including opioids and dopamine. In rats and birds, activation of mu-opioid receptors (MOR) and dopamine D1 receptors in the medial preoptic area (mPOA) often have opposing effects on sexual behavior, yet mechanisms by which the mPOA integrates these opposing effects to modulate behavior remain unknown. Here, we used male European starlings (Sturnus vulgaris) to provide insight into the hypothesis that MOR and D1 receptors modify sexual behavior seasonally by altering activity in the same neurons in the mPOA. To do this, using fluorescent immunohistochemistry, we examined the extent to which MOR and D1 receptors co-localize in mPOA neurons and the degree to which photoperiod and the sex-steroid hormone testosterone alter co-localization. We found that MOR and D1 receptors co-localize throughout the mPOA and the bed nucleus of the stria terminalis, a region also implicated in the control of sexual behavior. Numbers of single and co-labeled MOR and D1 receptor labeled cells were higher in the rostral mPOA in photosensitive males (a condition observed just prior to the breeding season) compared to photosensitive males treated with testosterone (breeding season condition). In the caudal mPOA co-localization of MOR and D1 receptors was highest in photosensitive males compared to photorefractory males (a post-breeding season condition). Seasonal shifts in the degree to which neurons in the mPOA integrate signaling from opioids and dopamine may underlie seasonal changes in the production of sexual behavior.
Collapse
Affiliation(s)
- Jeremy A Spool
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA.
| | - Devin P Merullo
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA.
| | - Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA.
| | - Lauren V Riters
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
12
|
Remage-Healey L, Choleris E, Balthazart J. Rapid effects of steroids in the brain: Introduction to special issue. Horm Behav 2018; 104:1-3. [PMID: 29913141 DOI: 10.1016/j.yhbeh.2018.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Luke Remage-Healey
- Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | |
Collapse
|