1
|
Scarpa GB, Starrett JR, Li GL, Brooks C, Morohashi Y, Yazaki-Sugiyama Y, Remage-Healey L. Estrogens rapidly shape synaptic and intrinsic properties to regulate the temporal precision of songbird auditory neurons. Cereb Cortex 2022; 33:3401-3420. [PMID: 35849820 PMCID: PMC10068288 DOI: 10.1093/cercor/bhac280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 01/14/2023] Open
Abstract
Sensory neurons parse millisecond-variant sound streams like birdsong and speech with exquisite precision. The auditory pallial cortex of vocal learners like humans and songbirds contains an unconventional neuromodulatory system: neuronal expression of the estrogen synthesis enzyme aromatase. Local forebrain neuroestrogens fluctuate when songbirds hear a song, and subsequently modulate bursting, gain, and temporal coding properties of auditory neurons. However, the way neuroestrogens shape intrinsic and synaptic properties of sensory neurons remains unknown. Here, using a combination of whole-cell patch clamp electrophysiology and calcium imaging, we investigate estrogenic neuromodulation of auditory neurons in a region resembling mammalian auditory association cortex. We found that estradiol rapidly enhances the temporal precision of neuronal firing via a membrane-bound G-protein coupled receptor and that estradiol rapidly suppresses inhibitory synaptic currents while sparing excitation. Notably, the rapid suppression of intrinsic excitability by estradiol was predicted by membrane input resistance and was observed in both males and females. These findings were corroborated by analysis of in vivo electrophysiology recordings, in which local estrogen synthesis blockade caused acute disruption of the temporal correlation of song-evoked firing patterns. Therefore, on a modulatory timescale, neuroestrogens alter intrinsic cellular properties and inhibitory neurotransmitter release to regulate the temporal precision of higher-order sensory neurons.
Collapse
Affiliation(s)
- Garrett B Scarpa
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, 639 N. Pleasant St., Amherst, MA 01003, United States
| | - Joseph R Starrett
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, 639 N. Pleasant St., Amherst, MA 01003, United States
| | - Geng-Lin Li
- Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd, Xuhui District, Shanghai 200031, China
| | - Colin Brooks
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, 639 N. Pleasant St., Amherst, MA 01003, United States
| | - Yuichi Morohashi
- Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa, Japan
| | - Yoko Yazaki-Sugiyama
- Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa, Japan
| | - Luke Remage-Healey
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, 639 N. Pleasant St., Amherst, MA 01003, United States
| |
Collapse
|
2
|
Balthazart J. Membrane-initiated actions of sex steroids and reproductive behavior: A historical account. Mol Cell Endocrinol 2021; 538:111463. [PMID: 34582978 DOI: 10.1016/j.mce.2021.111463] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/25/2023]
Abstract
It was assumed for a long time that sex steroids are activating reproductive behaviors by the same mechanisms that produce their morphological and physiological effects in the periphery. However during the last few decades an increasing number of examples were identified where behavioral effects of steroids were just too fast to be mediated via changes in DNA transcription. This progressively forced behavioral neuroendocrinologists to recognize that part of the effects of steroids on behavior are mediated by membrane-initiated events. In this review we present a selection of these early data that changed the conceptual landscape and we provide a summary the different types of membrane-associated receptors (estrogens, androgens and progestagens receptors) that are playing the most important role in the control of reproductive behaviors. Then we finally describe in more detail three separate behavioral systems in which membrane-initiated events have clearly been established to contribute to behavior control.
Collapse
|
3
|
Ambrase A, Lewis CA, Barth C, Derntl B. Influence of ovarian hormones on value-based decision-making systems: Contribution to sexual dimorphisms in mental disorders. Front Neuroendocrinol 2021; 60:100873. [PMID: 32987043 DOI: 10.1016/j.yfrne.2020.100873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/28/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022]
Abstract
Women and men exhibit differences in behavior when making value-based decisions. Various hypotheses have been proposed to explain these findings, stressing differences in functional lateralization of the brain, functional activation, neurotransmitter involvement and more recently, sex hormones. While a significant interaction of neurotransmitter systems and sex hormones has been shown for both sexes, decision-making in women might be particularly affected by variations of ovarian hormones. In this review we have gathered information from animal and human studies on how ovarian hormones affect decision-making processes in females by interacting with neurotransmitter systems at functionally relevant brain locations and thus modify the computation of decision aspects. We also review previous findings on impaired decision-making in animals and clinical populations with substance use disorder and depression, emphasizing how little we know about the role of ovarian hormones in aberrant decision-making.
Collapse
Affiliation(s)
- Aiste Ambrase
- Department of Psychiatry and Psychotherapy, University of Tuebingen, Tübingen, Germany; International Max Planck Research School for Cognitive and Systems Neuroscience, University of Tübingen, Tuebingen, Germany
| | - Carolin A Lewis
- Department of Psychiatry and Psychotherapy, University of Tuebingen, Tübingen, Germany; Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany
| | - Claudia Barth
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, University of Tuebingen, Tübingen, Germany; International Max Planck Research School for Cognitive and Systems Neuroscience, University of Tübingen, Tuebingen, Germany; TübingenNeuroCampus, University of Tübingen, Tübingen, Germany; LEAD Research School and Graduate Network, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Vazquez M, Frazier JH, Reichel CM, Peters J. Acute ovarian hormone treatment in freely cycling female rats regulates distinct aspects of heroin seeking. Learn Mem 2020; 27:6-11. [PMID: 31843977 PMCID: PMC6919190 DOI: 10.1101/lm.050187.119] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/20/2019] [Indexed: 12/15/2022]
Abstract
Females are at higher risk for certain opioid addictive behaviors, but the influence of ovarian hormones is unknown. In our rat model of heroin self-administration, females exhibited higher relapse rates that correlated with rates of heroin seeking on the first extinction session. We administered estradiol alone, or in combination with progesterone, 30 min prior to the first extinction session in freely cycling, heroin-seeking female rats. Although neither treatment produced long-term effects on relapse, each treatment regulated distinct aspects of heroin seeking. Estradiol treatment enhanced extinction memory retention, whereas the combination treatment acutely reduced expression of heroin seeking.
Collapse
Affiliation(s)
- Maribel Vazquez
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Jessica H Frazier
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Carmela M Reichel
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Jamie Peters
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| |
Collapse
|
5
|
Remage-Healey L, Choleris E, Balthazart J. Rapid effects of steroids in the brain: Introduction to special issue. Horm Behav 2018; 104:1-3. [PMID: 29913141 DOI: 10.1016/j.yhbeh.2018.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Luke Remage-Healey
- Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | |
Collapse
|