1
|
Taxier LR, Pillerová M, Branyan TE, Sohrabji F, Frick KM. Astrocytic glutamate transport is essential for the memory-enhancing effects of 17β-estradiol in ovariectomized mice. Horm Behav 2024; 165:105618. [PMID: 39180889 PMCID: PMC11498968 DOI: 10.1016/j.yhbeh.2024.105618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
Infusion of 17β-estradiol (E2) into the dorsal hippocampus (DH) of ovariectomized (OVX) mice enhances memory consolidation, an effect that depends on rapid phosphorylation of extracellular signal-regulated kinase (ERK) and Akt. Astrocytic glutamate transporter 1 (GLT-1) modulates neurotransmission via glutamate uptake from the synaptic cleft. However, little is known about the contribution of DH astrocytes, and astrocytic glutamate transport, to the memory-enhancing effects of E2. This study was designed to test whether DH astrocytes contribute to estrogenic modulation of memory consolidation by determining the extent to which DH GLT-1 is necessary for E2 to enhance memory in object recognition and object placement tasks and trigger rapid phosphorylation events in DH astrocytes. OVX female mice were bilaterally cannulated into the DH or the DH and dorsal third ventricle (ICV). Post-training DH infusion of the GLT-1 inhibitor dihydrokainic acid (DHK) dose-dependently impaired memory consolidation in both tasks. Moreover, the memory-enhancing effects of ICV-infused E2 in each task were blocked by DH DHK infusion. E2 increased p42 ERK and Akt phosphorylation in DH astrocytes, and these effects were blocked by DHK. Results suggest the necessity of DH GLT-1 activity for object and spatial memory consolidation, and for E2 to enhance consolidation of these memories and to rapidly activate cell signaling in DH astrocytes. Findings indicate that astrocytic function in the DH of OVX females is necessary for memory formation and is regulated by E2, and suggest an essential role for DH astrocytic GLT-1 activity in the memory-enhancing effects of E2.
Collapse
Affiliation(s)
- Lisa R Taxier
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA.
| | - Miriam Pillerová
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA; Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic.
| | - Taylor E Branyan
- Texas A&M Institute for Neuroscience and TAMU College of Medicine, Bryan, TX, USA.
| | - Farida Sohrabji
- Texas A&M Institute for Neuroscience and TAMU College of Medicine, Bryan, TX, USA.
| | - Karyn M Frick
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA.
| |
Collapse
|
2
|
Taxier LR, Philippi SM, Fleischer AW, York JM, LaDu MJ, Frick KM. APOE4 homozygote females are resistant to the beneficial effects of 17β-estradiol on memory and CA1 dendritic spine density in the EFAD mouse model of Alzheimer's disease. Neurobiol Aging 2022; 118:13-24. [PMID: 35843109 PMCID: PMC10756028 DOI: 10.1016/j.neurobiolaging.2022.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 10/17/2022]
Abstract
Female APOE4 carriers are at greatest risk of Alzheimer's disease (AD). The potent estrogen 17β-estradiol (E2) may mediate AD risk, as the onset of memory decline coincides with the menopausal transition. Whether APOE genotype mediates E2's effects on memory and neuronal morphology is poorly understood. We used the APOE+/+/5xFAD+/- (EFAD) mouse model to examine how APOE3 homozygote (E3FAD), APOE3/4 heterozygote (E3/4FAD), and APOE4 homozygote (E4FAD) genotypes modulate effects of E2 on object and spatial memory consolidation, dendritic spine density, and dorsal hippocampal estrogen receptor expression in 6-month-old ovariectomized EFAD mice. Dorsal hippocampal E2 infusion enhanced memory consolidation and increased CA1 apical spine density in E3FAD and E3/4FAD, but not E4FAD, mice. CA1 basal mushroom spines were also increased by E2 in E3FADs. E4FAD mice exhibited reduced CA1 and mPFC basal spine density, and increased dorsal hippocampal ERα protein, independent of E2. Overall, E2 benefitted hippocampal memory and structural plasticity in females bearing one or no APOE4 allele, whereas two APOE4 alleles impeded the memory-enhancing and spinogenic effects of E2.
Collapse
Affiliation(s)
- Lisa R Taxier
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee WI, USA
| | - Sarah M Philippi
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee WI, USA; Current affiliation: Department of Neuroscience and Neuroscience Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aaron W Fleischer
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee WI, USA
| | - Jason M York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee WI, USA.
| |
Collapse
|
3
|
Taxier LR, Philippi SM, York JM, LaDu MJ, Frick KM. The detrimental effects of APOE4 on risk for Alzheimer's disease may result from altered dendritic spine density, synaptic proteins, and estrogen receptor alpha. Neurobiol Aging 2022; 112:74-86. [PMID: 35051676 PMCID: PMC8976726 DOI: 10.1016/j.neurobiolaging.2021.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/08/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023]
Abstract
Women carriers of APOE4, the greatest genetic risk factor for late-onset Alzheimer's disease (AD), are at highest risk of developing AD, yet factors underlying interactions between APOE4 and sex are not well characterized. Here, we examined how sex and APOE3 or APOE4 genotypes modulate object and spatial memory, dendritic spine density and branching, and protein expression in 6-month-old male and female E3FAD and E4FAD mice (APOE+/+/5xFAD+/-). APOE4 negatively impacted object recognition and spatial memory, with male E3FADs exhibiting the best memory across 2 object-based tasks. In both sexes, APOE4 reduced basal dendritic spine density in the medial prefrontal cortex and dorsal hippocampus. APOE4 reduced dorsal hippocampal levels of PDS-95, synaptophysin, and phospho-CREB, yet increased levels of ERα. E4FAD females exhibited strikingly increased GFAP levels, in addition to the lowest levels of PSD-95 and pCREB. Overall, our results suggest that APOE4 negatively impacts object memory, dendritic spine density, and levels of hippocampal synaptic proteins and ERα. However, the general lack of sex differences or sex by genotype interactions suggests that the sex-specific effects of APOE4 on AD risk may be related to factors unexplored in the present study.
Collapse
Affiliation(s)
- Lisa R Taxier
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee WI, USA
| | - Sarah M Philippi
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee WI, USA
| | - Jason M York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee WI, USA.
| |
Collapse
|
4
|
Belayet JB, Beamish S, Rahaman M, Alanani S, Virdi RS, Frick DN, Rahman AFMT, Ulicki JS, Biswas S, Arnold LA, Roni MSR, Cheng EY, Steeber DA, Frick KM, Hossain MM. Development of a Novel, Small-Molecule Brain-Penetrant Histone Deacetylase Inhibitor That Enhances Spatial Memory Formation in Mice. J Med Chem 2022; 65:3388-3403. [PMID: 35133171 DOI: 10.1021/acs.jmedchem.1c01928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Histone acetylation is a prominent epigenetic modification linked to the memory loss symptoms associated with neurodegenerative disease. The use of existing histone deacetylase inhibitor (HDACi) drugs for treatment is precluded by their weak blood-brain barrier (BBB) permeability and undesirable toxicity. Here, we address these shortcomings by developing a new class of disulfide-based compounds, inspired by the scaffold of the FDA-approved HDACi romidepsin (FK288). Our findings indicate that our novel compound MJM-1 increases the overall level of histone 3 (H3) acetylation in a prostate cancer cell line. In mice, MJM-1 injected intraperitoneally (i.p.) crossed the BBB and could be detected in the hippocampus, a brain region that mediates memory. Consistent with this finding, we found that the post-training i.p. administration of MJM-1 enhanced hippocampus-dependent spatial memory consolidation in male mice. Therefore, MJM-1 represents a potential lead for further optimization as a therapeutic strategy for ameliorating cognitive deficits in aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jawad B Belayet
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Sarah Beamish
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Mizzanoor Rahaman
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Samer Alanani
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Rajdeep S Virdi
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - David N Frick
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - A F M Towheedur Rahman
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Joseph S Ulicki
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Sreya Biswas
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - M S Rashid Roni
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Eric Y Cheng
- College of Pharmacy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas 76107, United States
| | - Douglas A Steeber
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - M Mahmun Hossain
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
5
|
Narvaes RF, Furini CRG. Role of Wnt signaling in synaptic plasticity and memory. Neurobiol Learn Mem 2021; 187:107558. [PMID: 34808336 DOI: 10.1016/j.nlm.2021.107558] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Ever since their discoveries, the Wnt pathways have been consistently associated with key features of cellular development, including metabolism, structure and cell fate. The three known pathways (the canonical Wnt/β-catenin and the two non-canonical Wnt/Ca++ and Wnt/JNK/PCP pathways) participate in complex networks of interaction with a wide range of regulators of cell function, such as GSK-3β, AKT, PKC and mTOR, among others. These proteins are known to be involved in the formation and maintenance of memory. Currently, studies with Wnt and memory have shown that the canonical and non-canonical pathways play key roles in different processes associated with memory. So, in this review we briefly summarize the different roles that Wnt signaling can play in neurons and in memory, as well as in Alzheimer's disease, focusing towards animal studies. We start with the molecular characterization of the family and its receptors, as well as the most commonly used drugs for pharmacological manipulations. Next, we describe its role in synaptic plasticity and memory, and how the regulations of these pathways affect crucial features of neuronal function. Furthermore, we succinctly present the current knowledge on how the Wnt pathways are implicated in Alzheimer's disease, and how studies are seeing them as a potential candidate for effective treatments. Lastly, we point toward challenges of Wnt research, and how knowledge on these pathways can lead towards a better understanding of neurobiological and pathological processes.
Collapse
Affiliation(s)
- Rodrigo F Narvaes
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000 Porto Alegre, RS, Brazil.
| | - Cristiane R G Furini
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000 Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Taxier LR, Gross KS, Frick KM. Oestradiol as a neuromodulator of learning and memory. Nat Rev Neurosci 2020; 21:535-550. [PMID: 32879508 PMCID: PMC8302223 DOI: 10.1038/s41583-020-0362-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2020] [Indexed: 12/24/2022]
Abstract
Although hormones such as glucocorticoids have been broadly accepted in recent decades as general neuromodulators of memory processes, sex steroid hormones such as the potent oestrogen 17β-oestradiol have been less well recognized by the scientific community in this capacity. The predominance of females in studies of oestradiol and memory and the general (but erroneous) perception that oestrogens are 'female' hormones have probably prevented oestradiol from being more widely considered as a key memory modulator in both sexes. Indeed, although considerable evidence supports a crucial role for oestradiol in regulating learning and memory in females, a growing body of literature indicates a similar role in males. This Review discusses the mechanisms of oestradiol signalling and provides an overview of the effects of oestradiol on spatial, object recognition, social and fear memories. Although the primary focus is on data collected in females, effects of oestradiol on memory in males will be discussed, as will sex differences in the molecular mechanisms that regulate oestrogenic modulation of memory, which may have important implications for the development of future cognitive therapeutics.
Collapse
Affiliation(s)
- Lisa R Taxier
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Kellie S Gross
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|