1
|
Albers JL, Ivan LN, Clark BW, Nacci DE, Klingler RH, Thrash A, Steibel JP, Vinas NGR, Carvan MJ, Murphy CA. Impacts on Atlantic Killifish from Neurotoxicants: Genes, Behavior, and Population-Relevant Outcomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17235-17246. [PMID: 39287556 PMCID: PMC11447911 DOI: 10.1021/acs.est.4c04207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Molecular, cellular, and organismal alterations are important descriptors of toxic effects, but our ability to extrapolate and predict ecological risks is limited by the availability of studies that link measurable end points to adverse population relevant outcomes such as cohort survival and growth. In this study, we used laboratory gene expression and behavior data from two populations of Atlantic killifish Fundulus heteroclitus [one reference site (SCOKF) and one PCB-contaminated site (NBHKF)] to inform individual-based models simulating cohort growth and survival from embryonic exposures to environmentally relevant concentrations of neurotoxicants. Methylmercury exposed SCOKF exhibited brain gene expression changes in the si:ch211-186j3.6, si:dkey-21c1.4, scamp1, and klhl6 genes, which coincided with changes in feeding and swimming behaviors, but our models simulated no growth or survival effects of exposures. PCB126-exposed SCOKF had lower physical activity levels coinciding with a general upregulation in nucleic and cellular brain gene sets (BGS) and downregulation in signaling, nucleic, and cellular BGS. The NBHKF, known to be tolerant to PCBs, had altered swimming behaviors that coincided with 98% fewer altered BGS. Our models simulated PCB126 decreased growth in SCOKF and survival in SCOKF and NBHKF. Overall, our study provides a unique demonstration linking molecular and behavioral data to develop quantitative, testable predictions of ecological risk.
Collapse
Affiliation(s)
- Janice L Albers
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lori N Ivan
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Bryan W Clark
- Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882, United States
| | - Diane E Nacci
- Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882, United States
| | - Rebekah H Klingler
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53204, United States
| | - Adam Thrash
- Biocomputing and Biotechnology, Institute for Genomics, Mississippi State University, Starkville, Mississippi 39759, United States
| | - Juan P Steibel
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Natalia Garcia-Reyero Vinas
- Environmental Laboratory, US Army Engineer Research and Development Center, U.S. Army Corps of Engineers, Vicksburg, Mississippi 39180, United States
| | - Michael J Carvan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53204, United States
| | - Cheryl A Murphy
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
2
|
Hogan MP, Holding ML, Nystrom GS, Colston TJ, Bartlett DA, Mason AJ, Ellsworth SA, Rautsaw RM, Lawrence KC, Strickland JL, He B, Fraser P, Margres MJ, Gilbert DM, Gibbs HL, Parkinson CL, Rokyta DR. The genetic regulatory architecture and epigenomic basis for age-related changes in rattlesnake venom. Proc Natl Acad Sci U S A 2024; 121:e2313440121. [PMID: 38578985 PMCID: PMC11032440 DOI: 10.1073/pnas.2313440121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/13/2024] [Indexed: 04/07/2024] Open
Abstract
Developmental phenotypic changes can evolve under selection imposed by age- and size-related ecological differences. Many of these changes occur through programmed alterations to gene expression patterns, but the molecular mechanisms and gene-regulatory networks underlying these adaptive changes remain poorly understood. Many venomous snakes, including the eastern diamondback rattlesnake (Crotalus adamanteus), undergo correlated changes in diet and venom expression as snakes grow larger with age, providing models for identifying mechanisms of timed expression changes that underlie adaptive life history traits. By combining a highly contiguous, chromosome-level genome assembly with measures of expression, chromatin accessibility, and histone modifications, we identified cis-regulatory elements and trans-regulatory factors controlling venom ontogeny in the venom glands of C. adamanteus. Ontogenetic expression changes were significantly correlated with epigenomic changes within genes, immediately adjacent to genes (e.g., promoters), and more distant from genes (e.g., enhancers). We identified 37 candidate transcription factors (TFs), with the vast majority being up-regulated in adults. The ontogenetic change is largely driven by an increase in the expression of TFs associated with growth signaling, transcriptional activation, and circadian rhythm/biological timing systems in adults with corresponding epigenomic changes near the differentially expressed venom genes. However, both expression activation and repression contributed to the composition of both adult and juvenile venoms, demonstrating the complexity and potential evolvability of gene regulation for this trait. Overall, given that age-based trait variation is common across the tree of life, we provide a framework for understanding gene-regulatory-network-driven life-history evolution more broadly.
Collapse
Affiliation(s)
- Michael P. Hogan
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Matthew L. Holding
- Department of Biological Science, Florida State University, Tallahassee, FL32306
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
| | - Gunnar S. Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Timothy J. Colston
- Department of Biological Science, Florida State University, Tallahassee, FL32306
- Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, PR00681
| | - Daniel A. Bartlett
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Andrew J. Mason
- Department of Biological Sciences, Clemson University, Clemson, SC29634
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH43210
| | - Schyler A. Ellsworth
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Rhett M. Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC29634
- Department of Integrative Biology, University of South Florida, Tampa, FL33620
- School of Biological Sciences, Washington State University, Pullman, WA99164
| | - Kylie C. Lawrence
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Jason L. Strickland
- Department of Biological Sciences, Clemson University, Clemson, SC29634
- Department of Biology, University of South Alabama, Mobile, AL36688
| | - Bing He
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Peter Fraser
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Mark J. Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL33620
| | - David M. Gilbert
- Laboratory of Chromosome Replication and Epigenome Regulation, San Diego Biomedical Research Institute, San Diego, CA92121
| | - H. Lisle Gibbs
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH43210
| | - Christopher L. Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC29634
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC29634
| | - Darin R. Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| |
Collapse
|
3
|
Pyenson BC, Rehan SM. Gene regulation supporting sociality shared across lineages and variation in complexity. Genome 2024; 67:99-108. [PMID: 38096504 DOI: 10.1139/gen-2023-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Across evolutionary lineages, insects vary in social complexity, from those that exhibit extended parental care to those with elaborate divisions of labor. Here, we synthesize the sociogenomic resources from hundreds of species to describe common gene regulatory mechanisms in insects that regulate social organization across phylogeny and levels of social complexity. Different social phenotypes expressed by insects can be linked to the organization of co-expressing gene networks and features of the epigenetic landscape. Insect sociality also stems from processes like the emergence of parental care and the decoupling of ancestral genetic programs. One underexplored avenue is how variation in a group's social environment affects the gene expression of individuals. Additionally, an experimental reduction of gene expression would demonstrate how the activity of specific genes contributes to insect social phenotypes. While tissue specificity provides greater localization of the gene expression underlying social complexity, emerging transcriptomic analysis of insect brains at the cellular level provides even greater resolution to understand the molecular basis of social insect evolution.
Collapse
Affiliation(s)
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
4
|
Su G, Yu C, Liang S, Wang W, Wang H. Multi-omics in food safety and authenticity in terms of food components. Food Chem 2024; 437:137943. [PMID: 37948800 DOI: 10.1016/j.foodchem.2023.137943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
One of the main goals of food science is to ensure the high quality and safety of food. The inspection technology for known hazards has matured, and the identification of unknown and potential food safety hazards, as well as the identification of their composition and origin, is a challenge faced by food safety. Food safety and authenticity require multi-omics methods to support the implementation of qualitative discrimination to precise quantitative analysis, from targeted screening to non-target detection, and from multi component to full component analysis to address these challenges. The present review aims to provide characterizations, advantages, the latest progress, and prospects of using omics (including genomics, proteomics, and metabonomics) in food safety and authenticity. Multi omics strategies used to detect and verify different standard biomarkers of food will contribute to understanding the basic relationship between raw materials, processing, foods, nutrition, food safety, and human health.
Collapse
Affiliation(s)
- Guangyue Su
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR of China
| | - Chong Yu
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Shuwen Liang
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Wei Wang
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Haifeng Wang
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
5
|
San-Jose LM, Bestion E, Pellerin F, Richard M, Di Gesu L, Salmona J, Winandy L, Legrand D, Bonneaud C, Guillaume O, Calvez O, Elmer KR, Yurchenko AA, Recknagel H, Clobert J, Cote J. Investigating the genetic basis of vertebrate dispersal combining RNA-seq, RAD-seq and quantitative genetics. Mol Ecol 2023. [PMID: 36872057 DOI: 10.1111/mec.16916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/17/2023] [Accepted: 02/06/2023] [Indexed: 03/07/2023]
Abstract
Although animal dispersal is known to play key roles in ecological and evolutionary processes such as colonization, population extinction and local adaptation, little is known about its genetic basis, particularly in vertebrates. Untapping the genetic basis of dispersal should deepen our understanding of how dispersal behaviour evolves, the molecular mechanisms that regulate it and link it to other phenotypic aspects in order to form the so-called dispersal syndromes. Here, we comprehensively combined quantitative genetics, genome-wide sequencing and transcriptome sequencing to investigate the genetic basis of natal dispersal in a known ecological and evolutionary model of vertebrate dispersal: the common lizard, Zootoca vivipara. Our study supports the heritability of dispersal in semi-natural populations, with less variation attributable to maternal and natal environment effects. In addition, we found an association between natal dispersal and both variation in the carbonic anhydrase (CA10) gene, and in the expression of several genes (TGFB2, SLC6A4, NOS1) involved in central nervous system functioning. These findings suggest that neurotransmitters (serotonin and nitric oxide) are involved in the regulation of dispersal and shaping dispersal syndromes. Several genes from the circadian clock (CRY2, KCTD21) were also differentially expressed between disperser and resident lizards, supporting that the circadian rhythm, known to be involved in long-distance migration in other taxa, might affect dispersal as well. Since neuronal and circadian pathways are relatively well conserved across vertebrates, our results are likely to be generalisable, and we therefore encourage future studies to further investigate the role of these pathways in shaping dispersal in vertebrates.
Collapse
Affiliation(s)
- Luis M San-Jose
- Laboratoire Évolution and Diversité Biologique, UMR 5174, CNRS, Université Toulouse III Paul Sabatier, IRD, Toulouse, France
| | - Elvire Bestion
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS, Moulis, France
| | - Félix Pellerin
- Laboratoire Évolution and Diversité Biologique, UMR 5174, CNRS, Université Toulouse III Paul Sabatier, IRD, Toulouse, France
| | - Murielle Richard
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS, Moulis, France
| | - Lucie Di Gesu
- Laboratoire Évolution and Diversité Biologique, UMR 5174, CNRS, Université Toulouse III Paul Sabatier, IRD, Toulouse, France
| | - Jordi Salmona
- Laboratoire Évolution and Diversité Biologique, UMR 5174, CNRS, Université Toulouse III Paul Sabatier, IRD, Toulouse, France
| | - Laurane Winandy
- Laboratoire Évolution and Diversité Biologique, UMR 5174, CNRS, Université Toulouse III Paul Sabatier, IRD, Toulouse, France
| | - Delphine Legrand
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS, Moulis, France
| | - Camille Bonneaud
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn, Cornwall, UK
| | - Olivier Guillaume
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS, Moulis, France
| | - Olivier Calvez
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS, Moulis, France
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Andrey A Yurchenko
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Hans Recknagel
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS, Moulis, France
| | - Julien Cote
- Laboratoire Évolution and Diversité Biologique, UMR 5174, CNRS, Université Toulouse III Paul Sabatier, IRD, Toulouse, France
| |
Collapse
|
6
|
Heckwolf MJ, Meyer BS. The time is ripe for functional genomics: Can epigenetic changes mediate reproductive timing? Mol Ecol 2021; 30:3641-3644. [PMID: 34228848 DOI: 10.1111/mec.16063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/17/2021] [Indexed: 11/30/2022]
Abstract
Populations are under strong selection to match reproductive timing with favourable environmental conditions. This becomes particularly important and challenging with increasing interannual environmental variability. Adjusting reproductive timing requires the ability to sense and interpret relevant environmental cues, while responding flexibly to their interannual variation. For instance, in seasonal species, reproductive timing is often dependent on photoperiod and temperature. Although many genes influencing the timing of reproduction have been identified, far less attention has been paid to the gene-regulatory cascades orchestrating these complex gene-environment interactions. In a From the Cover article in this issue of Molecular Ecology, Lindner, Laine, et al. (2021) addressed this knowledge gap by investigating the role of DNA methylation in mediating reproductive timing in the seasonally breeding great tit (Parus major). Using a clever blood sampling design, they investigated genome-wide DNA methylation changes following individual female birds across multiple reproductive stages. This approach revealed 10 candidate genes with a strong correlation between promoter methylation and reproductive status. Some of these genes are known to be involved in reproductive timing (e.g., MYLK-like or NR5A1), yet for others this function was previously unknown (Figure 1). Interestingly, NR5A1 is a key transcription factor, which may affect other genes that are part of the same regulatory network. The findings of Lindner, Laine, et al. (2021) provide a strong case for studying DNA methylation to uncover how gene-environment interactions influence important life-history traits, such as reproductive timing.
Collapse
Affiliation(s)
| | - Britta S Meyer
- Max Planck Research Group Behavioural Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
7
|
Lucas C, Ben-Shahar Y. The foraging gene as a modulator of division of labour in social insects. J Neurogenet 2021; 35:168-178. [PMID: 34151702 DOI: 10.1080/01677063.2021.1940173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The social ants, bees, wasps, and termites include some of the most ecologically-successful groups of animal species. Their dominance in most terrestrial environments is attributed to their social lifestyle, which enable their colonies to exploit environmental resources with remarkable efficiency. One key attribute of social insect colonies is the division of labour that emerges among the sterile workers, which represent the majority of colony members. Studies of the mechanisms that drive division of labour systems across diverse social species have provided fundamental insights into the developmental, physiological, molecular, and genomic processes that regulate sociality, and the possible genetic routes that may have led to its evolution from a solitary ancestor. Here we specifically discuss the conserved role of the foraging gene, which encodes a cGMP-dependent protein kinase (PKG). Originally identified as a behaviourally polymorphic gene that drives alternative foraging strategies in the fruit fly Drosophila melanogaster, changes in foraging expression and kinase activity were later shown to play a key role in the division of labour in diverse social insect species as well. In particular, foraging appears to regulate worker transitions between behavioural tasks and specific behavioural traits associated with morphological castes. Although the specific neuroethological role of foraging in the insect brain remains mostly unknown, studies in genetically tractable insect species indicate that PKG signalling plays a conserved role in the neuronal plasticity of sensory, cognitive and motor functions, which underlie behaviours relevant to division of labour, including appetitive learning, aggression, stress response, phototaxis, and the response to pheromones.
Collapse
Affiliation(s)
- Christophe Lucas
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261), CNRS - University of Tours, Tours, France
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|