1
|
Orav E, Kokinovic B, Teppola H, Siimon M, Lauri SE, Hartung H. Arginine vasopressin activates serotonergic neurons in the dorsal raphe nucleus during neonatal development in vitro and in vivo. Neuropharmacology 2024; 258:110068. [PMID: 38996832 DOI: 10.1016/j.neuropharm.2024.110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Birth stress is a risk factor for psychiatric disorders and associated with exaggerated release of the stress hormone arginine vasopressin (AVP) into circulation and in the brain. In perinatal hippocampus, AVP activates GABAergic interneurons which leads to suppression of spontaneous network events and suggests a protective function of AVP on cortical networks during birth. However, the role of AVP in developing subcortical networks is not known. Here we tested the effect of AVP on the dorsal raphe nucleus (DRN) 5-hydroxytryptamine (5-HT, serotonin) system in male and female neonatal rats, since early 5-HT homeostasis is critical for the development of cortical brain regions and emotional behaviors. We show that AVP is strongly excitatory in neonatal DRN: it increases excitatory synaptic inputs of 5-HT neurons via V1A receptors in vitro and promotes their action potential firing through a combination of its effect on glutamatergic synaptic transmission and a direct effect on the excitability of these neurons. Furthermore, we identified two major firing patterns of neonatal 5-HT neurons in vivo, tonic regular firing and low frequency oscillations of regular spike trains and confirmed that these neurons are also activated by AVP in vivo. Finally, we show that the sparse vasopressinergic innervation in neonatal DRN originates exclusively from cell groups in medial amygdala and bed nucleus of stria terminalis. Hyperactivation of the neonatal 5-HT system by AVP during birth stress may impact its own functional development and affect the maturation of cortical target regions, which may increase the risk for psychiatric conditions later on.
Collapse
Affiliation(s)
- Ester Orav
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.
| | - Bojana Kokinovic
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.
| | - Heidi Teppola
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.
| | - Mari Siimon
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.
| | - Sari E Lauri
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.
| | - Henrike Hartung
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Francesconi W, Olivera-Pasilio V, Berton F, Olson SL, Chudoba R, Monroy LM, Krabichler Q, Grinevich V, Dabrowska J. Like sisters but not twins - vasopressin and oxytocin excite BNST neurons via cell type-specific expression of oxytocin receptor to reduce anxious arousal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611656. [PMID: 39282380 PMCID: PMC11398521 DOI: 10.1101/2024.09.06.611656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Interoceptive signals dynamically interact with the environment to shape appropriate defensive behaviors. Hypothalamic hormones arginine-vasopressin (AVP) and oxytocin (OT) regulate physiological states, including water and electrolyte balance, circadian rhythmicity, and defensive behaviors. Both AVP and OT neurons project to dorsolateral bed nucleus of stria terminalis (BNSTDL), which expresses oxytocin receptors (OTR) and vasopressin receptors and mediates fear responses. However, understanding the integrated role of neurohypophysial hormones is complicated by the cross-reactivity of AVP and OT and their mutual receptor promiscuity. Here, we provide evidence that the effects of neurohypophysial hormones on BNST excitability are driven by input specificity and cell type-specific receptor selectivity. We show that OTR-expressing BNSTDL neurons, excited by hypothalamic OT and AVP inputs via OTR, play a major role in regulating BNSTDL excitability, overcoming threat avoidance, and reducing threat-elicited anxious arousal. Therefore, OTR-BNSTDL neurons are perfectly suited to drive the dynamic interactions balancing external threat risk and physiological needs.
Collapse
Affiliation(s)
- Walter Francesconi
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Valentina Olivera-Pasilio
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, 60611, USA
| | - Fulvia Berton
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Susan L. Olson
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Rachel Chudoba
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Lorena M. Monroy
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- Neuroscience Program, Lake Forest College, Lake Forest, IL, 60045, USA
| | - Quirin Krabichler
- Department of Neuropeptide Research in Psychiatry, German Center for Mental Health (DZPG), Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, German Center for Mental Health (DZPG), Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Joanna Dabrowska
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| |
Collapse
|
3
|
Gárate-Pérez MF, Cáceres-Vergara D, Tobar F, Bahamondes C, Bahamonde T, Sanhueza C, Guzmán F, Sotomayor-Zárate R, Renard GM. Effect of lateral septum vasopressin administration on reward system neurochemistry and amphetamine-induced addictive-like behaviors in female rats. Front Pharmacol 2024; 15:1411927. [PMID: 39135790 PMCID: PMC11317434 DOI: 10.3389/fphar.2024.1411927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction: The chronic use of psychostimulants increases the risk of addiction and, there is no specific pharmacologic treatment for psychostimulant addiction. The vasopressin (AVP) system is a possible pharmacological target in drug addiction. Previous results obtained in our laboratory showed that amphetamine (AMPH) treatment decreases lateral septum (LS) AVP levels in male rats, and AVP microinjection in LS decreases addictive-like behavior. The aim of the present work was to investigate the effect of AMPH treatment on LS AVP levels and the effect of LS AVP administration on the expression of AMPH-conditioned place preference (CPP) in female rats. The secondary objectives were to study the effect of LS AVP administration on LS GABA and glutamate release in male and female rats and on nucleus accumbens (NAc) dopamine (DA) release in female rats. Methods: Female rats were conditioned with AMPH (1.5 mg/kg i.p.) or saline for 4 days. Results: Conditioning with AMPH did not change LS AVP content in females. However, AVP microinjection into the LS decreased the expression of conditioned place preference (CPP) to AMPH. Glutamate and GABA extracellular levels in the LS induced by AVP were studied in males and females. NAc GABA and DA extracellular levels induced by LS AVP microinjection in female rats were measured by microdialysis. In males, AVP perfusion produced a significant increase in LS GABA extracellular levels; however, a decrease in GABA extracellular levels was observed in females. Both in males and females, LS AVP perfusion did not produce changes in LS glutamate extracellular levels. Microinjection of AVP into the LS did not change GABA or DA extracellular levels in the NAc of females. Discussion: Therefore, AVP administration into the LS produces different LS-NAc neurochemical responses in females than males but decreases CPP to AMPH in both sexes. The behavioral response in males is due to a decrease in NAc DA levels, but in females, it could be due to a preventive increase in NAc DA levels. It is reasonable to postulate that, in females, the decrease in conditioning produced by AVP microinjection is influenced by other factors inherent to sex, and an effect on anxiety cannot be discarded.
Collapse
Affiliation(s)
- Macarena Francisca Gárate-Pérez
- Universidad de Santiago de Chile (USACH), Facultad de Ciencias Médicas, Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Santiago, Chile
| | - Daniela Cáceres-Vergara
- Universidad de Santiago de Chile (USACH), Facultad de Ciencias Médicas, Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Santiago, Chile
| | - Francisca Tobar
- Universidad de Santiago de Chile (USACH), Facultad de Ciencias Médicas, Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Santiago, Chile
| | - Carolina Bahamondes
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tamara Bahamonde
- Universidad de Santiago de Chile (USACH), Facultad de Ciencias Médicas, Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Santiago, Chile
| | - Claudia Sanhueza
- Universidad de Santiago de Chile (USACH), Facultad de Ciencias Médicas, Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Santiago, Chile
| | - Fanny Guzmán
- Laboratorio de Síntesis de Péptidos, Núcleo de Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Georgina M. Renard
- Universidad de Santiago de Chile (USACH), Facultad de Ciencias Médicas, Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Santiago, Chile
| |
Collapse
|
4
|
Lee JDA, Reppucci CJ, Huez EDM, Bredewold R, Veenema AH. Sex differences in the structure and function of the vasopressin system in the ventral pallidum are associated with the sex-specific regulation of social play behavior in juvenile rats. Horm Behav 2024; 163:105563. [PMID: 38772158 PMCID: PMC11221216 DOI: 10.1016/j.yhbeh.2024.105563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
Vasopressin (AVP) regulates various social behaviors, often in sex-specific ways, including social play behavior, a rewarding behavior displayed primarily by juveniles. Here, we examined whether and how AVP acting in the brain's reward system regulates social play behavior in juvenile rats. Specifically, we focused on AVP signaling in the ventral pallidum (VP), a brain region that is a part of the reward system. First, we examined the organization of the VP-AVP system in juvenile rats and found sex differences, with higher density of both AVP-immunoreactive fibers and AVP V1a receptor (V1aR) binding in males compared to females while females show a greater number of V1aR-expressing cells compared to males. We further found that, in both sexes, V1aR-expressing cells co-express a GABA marker to a much greater extent (approx. 10 times) than a marker for glutamate. Next, we examined the functional involvement of V1aR-expressing VP cells in social play behavior. We found that exposure to social play enhanced the proportion of activated V1aR-expressing VP cells in males only. Finally, we showed that infusion of a specific V1aR antagonist into the VP increased social play behaviors in juvenile male rats while decreasing these behaviors in juvenile female rats. Overall, these findings reveal structural and functional sex differences in the AVP-V1aR system in the VP that are associated with the sex-specific regulation of social play behavior.
Collapse
Affiliation(s)
- Jessica D A Lee
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| | - Christina J Reppucci
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Elie D M Huez
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Remco Bredewold
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Alexa H Veenema
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Rigney N, Campos-Lira E, Kirchner MK, Wei W, Belkasim S, Beaumont R, Singh S, Suarez SG, Hartswick D, Stern JE, de Vries GJ, Petrulis A. A vasopressin circuit that modulates mouse social investigation and anxiety-like behavior in a sex-specific manner. Proc Natl Acad Sci U S A 2024; 121:e2319641121. [PMID: 38709918 PMCID: PMC11098102 DOI: 10.1073/pnas.2319641121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/02/2024] [Indexed: 05/08/2024] Open
Abstract
One of the largest sex differences in brain neurochemistry is the expression of the neuropeptide arginine vasopressin (AVP) within the vertebrate brain, with males having more AVP cells in the bed nucleus of the stria terminalis (BNST) than females. Despite the long-standing implication of AVP in social and anxiety-like behaviors, the circuitry underlying AVP's control of these behaviors is still not well defined. Using optogenetic approaches, we show that inhibiting AVP BNST cells reduces social investigation in males, but not in females, whereas stimulating these cells increases social investigation in both sexes, but more so in males. These cells may facilitate male social investigation through their projections to the lateral septum (LS), an area with the highest density of sexually differentiated AVP innervation in the brain, as optogenetic stimulation of BNST AVP → LS increased social investigation and anxiety-like behavior in males but not in females; the same stimulation also caused a biphasic response of LS cells ex vivo. Blocking the vasopressin 1a receptor (V1aR) in the LS eliminated all these responses. Together, these findings establish a sexually differentiated role for BNST AVP cells in the control of social investigation and anxiety-like behavior, likely mediated by their projections to the LS.
Collapse
Affiliation(s)
- Nicole Rigney
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | - Elba Campos-Lira
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | | | - Wei Wei
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | - Selma Belkasim
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | - Rachael Beaumont
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | - Sumeet Singh
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | | | - Delenn Hartswick
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | - Javier E. Stern
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | | | - Aras Petrulis
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| |
Collapse
|
6
|
Madison FN, Prior NH, Trainor BC. Special Issue: Highlights of SBN 2022. Horm Behav 2024; 160:105490. [PMID: 38320422 DOI: 10.1016/j.yhbeh.2024.105490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
|
7
|
Rigney N, Campos-Lira E, Kirchner MK, Wei W, Belkasim S, Beaumont R, Singh S, de Vries GJ, Petrulis A. A vasopressin circuit that modulates sex-specific social interest and anxiety-like behavior in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.564847. [PMID: 37986987 PMCID: PMC10659331 DOI: 10.1101/2023.11.06.564847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
One of the largest sex differences in brain neurochemistry is the male-biased expression of the neuropeptide arginine vasopressin (AVP) within the vertebrate social brain. Despite the long-standing implication of AVP in social and anxiety-like behavior, the precise circuitry and anatomical substrate underlying its control are still poorly understood. By employing optogenetic manipulation of AVP cells within the bed nucleus of the stria terminalis (BNST), we have unveiled a central role for these cells in promoting social investigation, with a more pronounced role in males relative to females. These cells facilitate male social investigation and anxiety-like behavior through their projections to the lateral septum (LS), an area with the highest density of sexually-dimorphic AVP fibers. Blocking the vasopressin 1a receptor (V1aR) in the LS eliminated stimulation-mediated increases in these behaviors. Together, these findings establish a distinct BNST AVP → LS V1aR circuit that modulates sex-specific social interest and anxiety-like behavior.
Collapse
|