1
|
Inouye K, Yeganyan S, Kay K, Thankam FG. Programmed spontaneously beating cardiomyocytes in regenerative cardiology. Cytotherapy 2024; 26:790-796. [PMID: 38520412 DOI: 10.1016/j.jcyt.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024]
Abstract
Stem cells have gained attention as a promising therapeutic approach for damaged myocardium, and there have been efforts to develop a protocol for regenerating cardiomyocytes (CMs). Certain cells have showed a greater aptitude for yielding beating CMs, such as induced pluripotent stem cells, embryonic stem cells, adipose-derived stromal vascular fraction cells and extended pluripotent stem cells. The approach for generating CMs from stem cells differs across studies, although there is evidence that Wnt signaling, chemical additives, electrical stimulation, co-culture, biomaterials and transcription factors triggers CM differentiation. Upregulation of Gata4, Mef2c and Tbx5 transcription factors has been correlated with successfully induced CMs, although Mef2c may potentially play a more prominent role in the generation of the beating phenotype, specifically. Regenerative research provides a possible candidate for cardiac repair; however, it is important to identify factors that influence their differentiation. Altogether, the spontaneously beating CMs would be monumental for regenerative research for cardiac repair.
Collapse
Affiliation(s)
- Keiko Inouye
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Stephanie Yeganyan
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Kaelen Kay
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Finosh G Thankam
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA.
| |
Collapse
|
2
|
Stromal Vascular Fraction and Amniotic Epithelial Cells: Preclinical and Clinical Relevance in Musculoskeletal Regenerative Medicine. Stem Cells Int 2021; 2021:6632052. [PMID: 33688354 PMCID: PMC7920739 DOI: 10.1155/2021/6632052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/31/2020] [Accepted: 02/06/2021] [Indexed: 11/29/2022] Open
Abstract
Musculoskeletal regenerative medicine is mainly based on the use of cell therapy to heal damaged tissues such as bone, cartilage, and tendons. Throughout the years, different cell types have been employed for the treatment of musculoskeletal diseases, in particular, mesenchymal stem cells (MSCs) derived from bone marrow (BMSCs) and adipose tissue (ADSCs). Though the results of these literature studies have been encouraging, there are some limitations, especially on long-term results. Recently, some interest has shifted towards new cell types such as the stromal vascular fraction (SVF) and amniotic endothelial cells (AECs). The aim of the present literature review is to evaluate preclinical and clinical studies that used SVF and AECs for musculoskeletal tissue regeneration. Forty-eight preclinical and clinical studies, performed in the last 10 years, were identified. Both SVF and AECs, injected or implanted with or without scaffolds, were shown to be valid alternatives, and in some ways superior, to ADSCs and BMSCs, being able to differentiate towards osteogenic, chondrogenic, and tenogenic lineages, and to promote cell and tissue regenerative potential. The use of SVF and AECs could represent a new regenerative treatment in several musculoskeletal pathologies, solving the problem of cell expansion in vitro.
Collapse
|
3
|
Witman N, Zhou C, Grote Beverborg N, Sahara M, Chien KR. Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration. Semin Cell Dev Biol 2019; 100:29-51. [PMID: 31862220 DOI: 10.1016/j.semcdb.2019.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022]
Abstract
The mammalian hearts have the least regenerative capabilities among tissues and organs. As such, heart regeneration has been and continues to be the ultimate goal in the treatment against acquired and congenital heart diseases. Uncovering such a long-awaited therapy is still extremely challenging in the current settings. On the other hand, this desperate need for effective heart regeneration has developed various forms of modern biotechnologies in recent years. These involve the transplantation of pluripotent stem cell-derived cardiac progenitors or cardiomyocytes generated in vitro and novel biochemical molecules along with tissue engineering platforms. Such newly generated technologies and approaches have been shown to effectively proliferate cardiomyocytes and promote heart repair in the diseased settings, albeit mainly preclinically. These novel tools and medicines give somehow credence to breaking down the barriers associated with re-building heart muscle. However, in order to maximize efficacy and achieve better clinical outcomes through these cell-based and/or cell-free therapies, it is crucial to understand more deeply the developmental cellular hierarchies/paths and molecular mechanisms in normal or pathological cardiogenesis. Indeed, the morphogenetic process of mammalian cardiac development is highly complex and spatiotemporally regulated by various types of cardiac progenitors and their paracrine mediators. Here we discuss the most recent knowledge and findings in cardiac progenitor cell biology and the major cardiogenic paracrine mediators in the settings of cardiogenesis, congenital heart disease, and heart regeneration.
Collapse
Affiliation(s)
- Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Niels Grote Beverborg
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Surgery, Yale University School of Medicine, CT, USA.
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
4
|
Improved Efficiency of Cardiomyocyte-Like Cell Differentiation from Rat Adipose Tissue-Derived Mesenchymal Stem Cells with a Directed Differentiation Protocol. Stem Cells Int 2019; 2019:8940365. [PMID: 31065283 PMCID: PMC6466858 DOI: 10.1155/2019/8940365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/06/2018] [Accepted: 12/20/2018] [Indexed: 01/29/2023] Open
Abstract
Cell-based therapy has become a resource for the treatment of cardiovascular diseases; however, there are some conundrums to achieve. In vitro cardiomyocyte generation could be a solution for scaling options in clinical applications. Variability on cardiac differentiation in previously reported studies from adipose tissue-derived mesenchymal stem cells (ASCs) and the lack of measuring of the cardiomyocyte differentiation efficiency motivate the present study. Here, we improved the ASC-derived cardiomyocyte-like cell differentiation efficiency with a directed cardiomyocyte differentiation protocol: BMP-4 + VEGF (days 0-4) followed by a methylcellulose-based medium with cytokines (IL-6 and IL-3) (days 5-21). Cultures treated with the directed cardiomyocyte differentiation protocol showed cardiac-like cells and “rosette-like structures” from day 7. The percentage of cardiac troponin T- (cTnT-) positive cells was evaluated by flow cytometry to assess the cardiomyocyte differentiation efficiency in a quantitative manner. ASCs treated with the directed cardiomyocyte differentiation protocol obtained a differentiation efficiency of up to 44.03% (39.96%±3.78) at day 15 without any enrichment step. Also, at day 21 we observed by immunofluorescence the positive expression of early, late, and cardiac maturation differentiation markers (Gata-4, cTnT, cardiac myosin heavy chain (MyH), and the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCa2)) in cultures treated with the directed cardiomyocyte differentiation protocol. Unlike other protocols, the use of critical factors of embryonic cardiomyogenesis coupled with a methylcellulose-based medium containing previously reported cardiogenic cytokines (IL-6 and IL-3) seems to be favorable for in vitro cardiomyocyte generation. This novel efficient culture protocol makes ASC-derived cardiac differentiation more efficient. Further investigation is needed to identify an ASC-derived cardiomyocyte surface marker for cardiac enrichment.
Collapse
|
5
|
Shi B, Wei W, Qin X, Zhao F, Duan Y, Sun W, Li D, Cao Y. Mapping theme trends and knowledge structure on adipose-derived stem cells: a bibliometric analysis from 2003 to 2017. Regen Med 2018; 14:33-48. [PMID: 30547725 DOI: 10.2217/rme-2018-0117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM To investigate the theme trends and knowledge structure of adipose-derived stem cells (ADSCs) related literatures by using bibliometric analysis. MATERIALS & METHODS Co-word analysis, strategic diagram and social network analysis were employed. RESULTS In line with strategic diagrams, ADSC differentiation and transplantation as main undeveloped themes in 2003-2007 were partially replaced by regeneration medicine and ADSCs for myocardial infarction in 2008 to 2012, and then partially replaced by miRNAs in ADSC genetics and nerve regeneration in 2013 to 2017. Based on social network analysis, regenerative medicine/methods, myocardial infarction/therapy, as well as miRNAs/genetics, and nerve regeneration/physiology were considered the emerging hot spots in 2008 to 2012 and 2013 to 2017. CONCLUSION The undeveloped themes and emerging hot spots could be considered as new research topics.
Collapse
Affiliation(s)
- Bei Shi
- Department of Physiology, College of Life Science, China Medical University, Shenyang 110122, PR China.,Functional Laboratory Center, College of Basic Medical Science, China Medical University, Shenyang 110122, PR China
| | - Wenjuan Wei
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China.,Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Xin Qin
- Department of Physiology, College of Life Science, China Medical University, Shenyang 110122, PR China.,Biomedical Technology Cluster, Hong Kong Science and Technology Parks Corporation, 2 Science Park West Avenue, Hong Kong
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110004, PR China
| | - Yucen Duan
- Department of Physiology, College of Life Science, China Medical University, Shenyang 110122, PR China
| | - Weinan Sun
- Department of Physiology, College of Life Science, China Medical University, Shenyang 110122, PR China
| | - Da Li
- Centerof Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Yu Cao
- Department of Physiology, College of Life Science, China Medical University, Shenyang 110122, PR China
| |
Collapse
|
6
|
Chen L, Deng ZJ, Zhou JS, Ji RJ, Zhang X, Zhang CS, Li YQ, Yang XQ. Tbx18-dependent differentiation of brown adipose tissue-derived stem cells toward cardiac pacemaker cells. Mol Cell Biochem 2017; 433:61-77. [PMID: 28382491 DOI: 10.1007/s11010-017-3016-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 03/15/2017] [Indexed: 12/24/2022]
Abstract
A cell-sourced biological pacemaker is a promising therapeutic approach for sick sinus syndrome (SSS) or severe atrial ventricular block (AVB). Adipose tissue-derived stem cells (ATSCs), which are optimal candidate cells for possible use in regenerative therapy for acute or chronic myocardial injury, have the potential to differentiate into spontaneous beating cardiomyocytes. However, the pacemaker characteristics of the beating cells need to be confirmed, and little is known about the underlying differential mechanism. In this study, we found that brown adipose tissue-derived stem cells (BATSCs) in mice could differentiate into spontaneous beating cells in 15% FBS Dulbecco's modified Eagle's medium (DMEM) without additional treatment. Subsequently, we provide additional evidence, including data regarding ultrastructure, protein expression, electrophysiology, and pharmacology, to support the differentiation of BATSCs into a cardiac pacemaker phenotype during the course of early cultivation. Furthermore, we found that silencing Tbx18, a key transcription factor in the development of pacemaker cells, terminated the differentiation of BATSCs into a pacemaker phenotype, suggesting that Tbx18 is required to direct BATSCs toward a cardiac pacemaker fate. The expression of Tbx3 and shox2, the other two important transcription factors in the development of pacemaker cells, was decreased by silencing Tbx18, which suggests that Tbx18 mediates the differentiation of BATSCs into a pacemaker phenotype via these two downstream transcription factors.
Collapse
Affiliation(s)
- Lei Chen
- Research Center of Regenerative Medicine, Second Military Medical University, Shanghai, China
| | - Zi-Jun Deng
- Research Center of Regenerative Medicine, Second Military Medical University, Shanghai, China
| | - Jian-Sheng Zhou
- Biochemistry and Molecular Biology Department, Second Military Medical University, Shanghai, China
| | - Rui-Juan Ji
- Research Center of Regenerative Medicine, Second Military Medical University, Shanghai, China
| | - Xi Zhang
- Research Center of Regenerative Medicine, Second Military Medical University, Shanghai, China
| | - Chuan-Sen Zhang
- Research Center of Regenerative Medicine, Second Military Medical University, Shanghai, China
| | - Yu-Quan Li
- Research Center of Regenerative Medicine, Second Military Medical University, Shanghai, China.
- Department of Anatomy, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, China.
| | - Xiang-Qun Yang
- Research Center of Regenerative Medicine, Second Military Medical University, Shanghai, China.
- Department of Anatomy, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, China.
| |
Collapse
|
7
|
Obtaining spontaneously beating cardiomyocyte-like cells from adipose-derived stromal vascular fractions cultured on enzyme-crosslinked gelatin hydrogels. Sci Rep 2017; 7:41781. [PMID: 28155919 PMCID: PMC5290532 DOI: 10.1038/srep41781] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 12/29/2016] [Indexed: 02/05/2023] Open
Abstract
Heart failure often develops after acute myocardial infarction because the injured myocardial tissue fails to recover or regenerate. Stem cell transplantation using adult cell sources, such as adipose-derived stromal vascular fraction (SVF), draws extensive attention. In this study, SVF cells were isolated from rat adipose tissue and cultivated on enzyme-crosslinked gelatin hydrogels. Morphological features of cell development and spontaneous beating behavior from these cells were observed and recorded. Cardiac phenotypes were characterized via immunofluorescence staining, and the expression of cardiac-specific genes was measured via RT-PCR. The functional assessment of SVF-derived cardiomyocyte-like cells (SVF-CMs) was performed by detecting cellular calcium transient activities and pharmacological responses. Results showed that most SVF-CMs exhibited elongated myotubule shapes and expressed cardiac troponin I strongly. SVF-CMs expressed cardiac-specific RNA (including transcription factors GATA binding protein 4) and myocyte enhancer factor 2c, as well as the structural proteins, namely, sarcomere actinin alpha 2, cardiac troponin I type 3, cardiac troponin T type 2, and cardiac gap junction protein alpha 1. Their beating mode, calcium activities, and pharmacological responses were similar to those of native CMs. Spontaneously beating SVF-CMs can be derived from adipose tissue-derived SVFs, and enzyme-crosslinked gelatin hydrogel promoted the cardiac differentiation of SVF cells.
Collapse
|
8
|
Park E, Takimoto K. A long-lasting cardiomyogenic gene expression by PEI-based transfection induces endogenous cardiac mRNAs in human adipose-derived stem cells. Biochem Biophys Res Commun 2016; 479:12-6. [PMID: 27553283 DOI: 10.1016/j.bbrc.2016.08.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
Abstract
Our previous work revealed that a polyethyleneimine (PEI)-based gene delivery causes robust and sustained expression of exogenous genes in human adipose-derived stem cells (hADSCs). Here we use this method to test whether a single introduction of cDNAs for the three cardiomyogenic reprogramming genes (GATA4, MEF2C, and TBX5) might be sufficient to induce transdifferentiation of hADSCs towards the cardiomyogenic lineage. A single transfection results in sustained expression of the introduced genes for more than two weeks. hADSCs exhibit undetectable or very low levels of mRNAs for endogenous GATA4, MEF2C and TBX5. However, mRNAs for these endogenous factors become apparent at ∼2 weeks after transfection and keep increasing until the end of experimental period at the fifth week. Concordant with these cardiomyogenic genes, Nkx2.5 mRNA becomes significant at ∼2 weeks and gradually increases until the end of experimental period. Several other cardiomyogenic mRNAs were also significant at 5 weeks. Thus, a single transfection of cDNAs for the cardiomyogenic reprogramming genes using a PEI-based method induces transdifferentiation of ADSCs.
Collapse
Affiliation(s)
- Eulsoon Park
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Koichi Takimoto
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan.
| |
Collapse
|
9
|
Yang M, Zhang GG, Wang T, Wang X, Tang YH, Huang H, Barajas-Martinez H, Hu D, Huang CX. TBX18 gene induces adipose-derived stem cells to differentiate into pacemaker-like cells in the myocardial microenvironment. Int J Mol Med 2016; 38:1403-1410. [PMID: 27632938 PMCID: PMC5065308 DOI: 10.3892/ijmm.2016.2736] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 08/31/2016] [Indexed: 12/22/2022] Open
Abstract
T-box 18 (TBX18) plays a crucial role in the formation and development of the head of the sinoatrial node. The objective of this study was to induce adipose-derived stem cells (ADSCs) to produce pacemaker-like cells by transfection with the TBX18 gene. A recombinant adenovirus vector carrying the human TBX18 gene was constructed to transfect ADSCs. The ADSCs transfected with TBX18 were considered the TBX18-ADSCs. The control group was the GFP-ADSCs. The transfected cells were co-cultured with neonatal rat ventricular cardiomyocytes (NRVMs). The results showed that the mRNA expression of TBX18 in TBX18-ADSCs was significantly higher than in the control group after 48 h and 7 days. After 7 days of co-culturing with NRVMs, there was no significant difference in the expression of the myocardial marker cardiac troponin I (cTnI) between the two groups. RT-qPCR and western blot analysis showed that the expression of HCN4 was higher in the TBX18-ADSCs than in the GFP-ADSCs. The If current was detected using the whole cell patch clamp technique and was blocked by the specific blocker CsCl. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSCMs) showed approximately twice the current density compared with the ADSCs. Our study indicated that the TBX18 gene induces ADSCs to differentiate into pacemaker-like cells in the cardiac microenvironment. Although further experiments are required in order to assess safety and efficacy prior to implementation in clinical practice, this technique may provide new avenues for the clinical therapy of bradycardia.
Collapse
Affiliation(s)
- Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ge-Ge Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Teng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan-Hong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | | | - Dan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
10
|
Rieger ME, Zhou B, Solomon N, Sunohara M, Li C, Nguyen C, Liu Y, Pan JH, Minoo P, Crandall ED, Brody SL, Kahn M, Borok Z. p300/β-Catenin Interactions Regulate Adult Progenitor Cell Differentiation Downstream of WNT5a/Protein Kinase C (PKC). J Biol Chem 2016; 291:6569-82. [PMID: 26833564 DOI: 10.1074/jbc.m115.706416] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Indexed: 12/31/2022] Open
Abstract
Maintenance of stem/progenitor cell-progeny relationships is required for tissue homeostasis during normal turnover and repair. Wnt signaling is implicated in both maintenance and differentiation of adult stem/progenitor cells, yet how this pathway serves these dichotomous roles remains enigmatic. We previously proposed a model suggesting that specific interaction of β-catenin with either of the homologous Kat3 co-activators, p300 or CREB-binding protein, differentially regulates maintenance versus differentiation of embryonic stem cells. Limited knowledge of endogenous mechanisms driving differential β-catenin/co-activator interactions and their role in adult somatic stem/progenitor cell maintenance versus differentiation led us to explore this process in defined models of adult progenitor cell differentiation. We focused primarily on alveolar epithelial type II (AT2) cells, progenitors of distal lung epithelium, and identified a novel axis whereby WNT5a/protein kinase C (PKC) signaling regulates specific β-catenin/co-activator interactions to promote adult progenitor cell differentiation. p300/β-catenin but not CBP/β-catenin interaction increases as AT2 cells differentiate to a type I (AT1) cell-like phenotype. Additionally, p300 transcriptionally activates AT1 cell-specific gene Aqp-5. IQ-1, a specific inhibitor of p300/β-catenin interaction, prevents differentiation of not only primary AT2 cells, but also tracheal epithelial cells, and C2C12 myoblasts. p300 phosphorylation at Ser-89 enhances p300/β-catenin interaction, concurrent with alveolar epithelial cell differentiation. WNT5a, a traditionally non-canonical WNT ligand regulates Ser-89 phosphorylation and p300/β-catenin interactions in a PKC-dependent manner, likely involving PKCζ. These studies identify a novel intersection of canonical and non-canonical Wnt signaling in adult progenitor cell differentiation that has important implications for targeting β-catenin to modulate adult progenitor cell behavior in disease.
Collapse
Affiliation(s)
- Megan E Rieger
- From the Department of Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine
| | - Beiyun Zhou
- From the Department of Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Nicola Solomon
- From the Department of Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine
| | - Mitsuhiro Sunohara
- From the Department of Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine
| | - Changgong Li
- the Departments of Pediatrics, Division of Neonatology
| | - Cu Nguyen
- Biochemistry and Molecular Biology, and
| | - Yixin Liu
- From the Department of Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine
| | - Jie-hong Pan
- the Department of Medicine, School of Medicine, Washington University, St. Louis, Missouri 63110, and
| | - Parviz Minoo
- the Departments of Pediatrics, Division of Neonatology
| | - Edward D Crandall
- From the Department of Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Pathology, the Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089
| | - Steven L Brody
- the Department of Medicine, School of Medicine, Washington University, St. Louis, Missouri 63110, and
| | - Michael Kahn
- Biochemistry and Molecular Biology, and the Center for Molecular Pathways and Drug Discovery, and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Zea Borok
- From the Department of Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Biochemistry and Molecular Biology, and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033,
| |
Collapse
|
11
|
Nakano A, Nakano H, Smith KA, Palpant NJ. The developmental origins and lineage contributions of endocardial endothelium. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1937-47. [PMID: 26828773 DOI: 10.1016/j.bbamcr.2016.01.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/21/2015] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
Abstract
Endocardial development involves a complex orchestration of cell fate decisions that coordinate with endoderm formation and other mesodermal cell lineages. Historically, investigations into the contribution of endocardium in the developing embryo was constrained to the heart where these cells give rise to the inner lining of the myocardium and are a major contributor to valve formation. In recent years, studies have continued to elucidate the complexities of endocardial fate commitment revealing a much broader scope of lineage potential from developing endocardium. These studies cover a wide range of species and model systems and show direct contribution or fate potential of endocardium giving rise to cardiac vasculature, blood, fibroblast, and cardiomyocyte lineages. This review focuses on the marked expansion of knowledge in the area of endocardial fate potential. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Atsushi Nakano
- Department of Molecular Cell and Developmental Biology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Haruko Nakano
- Department of Molecular Cell and Developmental Biology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Kelly A Smith
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
12
|
Cutts J, Nikkhah M, Brafman DA. Biomaterial Approaches for Stem Cell-Based Myocardial Tissue Engineering. Biomark Insights 2015; 10:77-90. [PMID: 26052226 PMCID: PMC4451817 DOI: 10.4137/bmi.s20313] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022] Open
Abstract
Adult and pluripotent stem cells represent a ready supply of cellular raw materials that can be used to generate the functionally mature cells needed to replace damaged or diseased heart tissue. However, the use of stem cells for cardiac regenerative therapies is limited by the low efficiency by which stem cells are differentiated in vitro to cardiac lineages as well as the inability to effectively deliver stem cells and their derivatives to regions of damaged myocardium. In this review, we discuss the various biomaterial-based approaches that are being implemented to direct stem cell fate both in vitro and in vivo. First, we discuss the stem cell types available for cardiac repair and the engineering of naturally and synthetically derived biomaterials to direct their in vitro differentiation to the cell types that comprise heart tissue. Next, we describe biomaterial-based approaches that are being implemented to enhance the in vivo integration and differentiation of stem cells delivered to areas of cardiac damage. Finally, we present emerging trends of using stem cell-based biomaterial approaches to deliver pro-survival factors and fully vascularized tissue to the damaged and diseased cardiac tissue.
Collapse
Affiliation(s)
- Josh Cutts
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
13
|
Abstract
The latest discoveries and advanced knowledge in the fields of stem cell biology and developmental cardiology hold great promise for cardiac regenerative medicine, enabling researchers to design novel therapeutic tools and approaches to regenerate cardiac muscle for diseased hearts. However, progress in this arena has been hampered by a lack of reproducible and convincing evidence, which at best has yielded modest outcomes and is still far from clinical practice. To address current controversies and move cardiac regenerative therapeutics forward, it is crucial to gain a deeper understanding of the key cellular and molecular programs involved in human cardiogenesis and cardiac regeneration. In this review, we consider the fundamental principles that govern the "programming" and "reprogramming" of a human heart cell and discuss updated therapeutic strategies to regenerate a damaged heart.
Collapse
Affiliation(s)
- Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden Department of Medicine-Cardiology, Karolinska Institute, Stockholm, Sweden
| | - Federica Santoro
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden Department of Medicine-Cardiology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
14
|
Pagliari S, Jelinek J, Grassi G, Forte G. Targeting pleiotropic signaling pathways to control adult cardiac stem cell fate and function. Front Physiol 2014; 5:219. [PMID: 25071583 PMCID: PMC4076671 DOI: 10.3389/fphys.2014.00219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/26/2014] [Indexed: 11/13/2022] Open
Abstract
The identification of different pools of cardiac progenitor cells resident in the adult mammalian heart opened a new era in heart regeneration as a means to restore the loss of functional cardiac tissue and overcome the limited availability of donor organs. Indeed, resident stem cells are believed to participate to tissue homeostasis and renewal in healthy and damaged myocardium although their actual contribution to these processes remain unclear. The poor outcome in terms of cardiac regeneration following tissue damage point out at the need for a deeper understanding of the molecular mechanisms controlling CPC behavior and fate determination before new therapeutic strategies can be developed. The regulation of cardiac resident stem cell fate and function is likely to result from the interplay between pleiotropic signaling pathways as well as tissue- and cell-specific regulators. Such a modular interaction—which has already been described in the nucleus of a number of different cells where transcriptional complexes form to activate specific gene programs—would account for the unique responses of cardiac progenitors to general and tissue-specific stimuli. The study of the molecular determinants involved in cardiac stem/progenitor cell regulatory mechanisms may shed light on the processes of cardiac homeostasis in health and disease and thus provide clues on the actual feasibility of cardiac cell therapy through tissue-specific progenitors.
Collapse
Affiliation(s)
- Stefania Pagliari
- Integrated Center for Cell Therapy and Regenerative Medicine (ICCT), International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic
| | - Jakub Jelinek
- Integrated Center for Cell Therapy and Regenerative Medicine (ICCT), International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste Trieste, Italy
| | - Giancarlo Forte
- Integrated Center for Cell Therapy and Regenerative Medicine (ICCT), International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic
| |
Collapse
|
15
|
Rana MS, Christoffels VM, Moorman AFM. A molecular and genetic outline of cardiac morphogenesis. Acta Physiol (Oxf) 2013; 207:588-615. [PMID: 23297764 DOI: 10.1111/apha.12061] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 10/26/2012] [Accepted: 01/02/2013] [Indexed: 12/15/2022]
Abstract
Perturbations in cardiac development result in congenital heart disease, the leading cause of birth defect-related infant morbidity and mortality. Advances in cardiac developmental biology have significantly augmented our understanding of signalling pathways and transcriptional networks underlying heart formation. Cardiogenesis is initiated with the formation of mesodermal multipotent cardiac progenitor cells and is governed by cross-talk between developmental cues emanating from endodermal, mesodermal and ectodermal cells. The molecular and transcriptional machineries that direct the specification and differentiation of these cardiac precursors are part of an evolutionarily conserved programme that includes the Nkx-, Gata-, Hand-, T-box- and Mef2 family of transcription factors. Unravelling the hierarchical networks governing the fate and differentiation of cardiac precursors is crucial for our understanding of congenital heart disease and future stem cell-based and gene therapies. Recent molecular and genetic lineage analyses have revealed that subpopulations of cardiac progenitor cells follow distinctive specification and differentiation paths, which determine their final contribution to the heart. In the last decade, progenitor cells that contribute to the arterial pole and right ventricle have received much attention, as abnormal development of these cells frequently results in congenital defects of the aortic and pulmonary outlets, representing the most commonly occurring congenital cardiac defects. In this review, we provide an overview of the building plan of the vertebrate four-chambered heart, with a special focus on cardiac progenitor cell specification, differentiation and deployment during arterial pole development.
Collapse
Affiliation(s)
- M. S. Rana
- Heart Failure Research Center; Department of Anatomy, Embryology & Physiology; Academic Medical Center; University of Amsterdam; Amsterdam; the Netherlands
| | - V. M. Christoffels
- Heart Failure Research Center; Department of Anatomy, Embryology & Physiology; Academic Medical Center; University of Amsterdam; Amsterdam; the Netherlands
| | - A. F. M. Moorman
- Heart Failure Research Center; Department of Anatomy, Embryology & Physiology; Academic Medical Center; University of Amsterdam; Amsterdam; the Netherlands
| |
Collapse
|
16
|
Yaniz-Galende E, Chen J, Chemaly E, Liang L, Hulot JS, McCollum L, Arias T, Fuster V, Zsebo KM, Hajjar RJ. Stem cell factor gene transfer promotes cardiac repair after myocardial infarction via in situ recruitment and expansion of c-kit+ cells. Circ Res 2012; 111:1434-45. [PMID: 22931954 DOI: 10.1161/circresaha.111.263830] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RATIONALE There is growing evidence that the myocardium responds to injury by recruiting c-kit(+) cardiac progenitor cells to the damage tissue. Even though the ability of exogenously introducing c-kit(+) cells to injured myocardium has been established, the capability of recruiting these cells through modulation of local signaling pathways by gene transfer has not been tested. OBJECTIVE To determine whether stem cell factor gene transfer mediates cardiac regeneration in a rat myocardial infarction model, through survival and recruitment of c-kit(+) progenitors and cell-cycle activation in cardiomyocytes, and explore the mechanisms involved. METHODS AND RESULTS Infarct size, cardiac function, cardiac progenitor cells recruitment, fibrosis, and cardiomyocyte cell-cycle activation were measured at different time points in controls (n=10) and upon stem cell factor gene transfer (n=13) after myocardial infarction. We found a regenerative response because of stem cell factor overexpression characterized by an enhancement in cardiac hemodynamic function: an improvement in survival; a reduction in fibrosis, infarct size and apoptosis; an increase in cardiac c-kit(+) progenitor cells recruitment to the injured area; an increase in cardiomyocyte cell-cycle activation; and Wnt/β-catenin pathway induction. CONCLUSIONS Stem cell factor gene transfer induces c-kit(+) stem/progenitor cell expansion in situ and cardiomyocyte proliferation, which may represent a new therapeutic strategy to reverse adverse remodeling after myocardial infarction.
Collapse
Affiliation(s)
- Elisa Yaniz-Galende
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mazo M, Cemborain A, Gavira JJ, Abizanda G, Araña M, Casado M, Soriano M, Hernández S, Moreno C, Ecay M, Albiasu E, Belzunce M, Orbe J, Páramo JA, Merino J, Peñuelas I, Verdugo JMG, Pelacho B, Prosper F. Adipose stromal vascular fraction improves cardiac function in chronic myocardial infarction through differentiation and paracrine activity. Cell Transplant 2012; 21:1023-37. [PMID: 22305117 DOI: 10.3727/096368911x623862] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fresh adipose-derived cells have been shown to be effective in the treatment of acute myocardial infarction (MI), but their role in the chronic setting is unknown. We sought to determine the long-term effect of the adipose derived-stromal vascular fraction (SVF) cell transplantation in a rat model of chronic MI. MI was induced in 82 rats by permanent coronary artery ligation and 5 weeks later rats were allocated to receive an intramyocardial injection of 10(7) GFP-expressing fresh SVF cells or culture media as control. Heart function and tissue metabolism were determined by echocardiography and (18)F-FDG-microPET, respectively, and histological studies were performed for up to 3 months after transplantation. SVF induced a statistically significant long-lasting (3 months) improvement in cardiac function and tissue metabolism that was associated with increased revascularization and positive heart remodeling, with a significantly smaller infarct size, thicker infarct wall, lower scar fibrosis, and lower cardiac hypertrophy. Importantly, injected cells engrafted and were detected in the treated hearts for at least 3 months, directly contributing to the vasculature and myofibroblasts and at negligible levels to cardiomyocytes. Furthermore, SVF release of angiogenic (VEGF and HGF) and proinflammatory (MCP-1) cytokines, as well as TIMP1 and TIMP4, was demonstrated in vitro and in vivo, strongly suggesting that they have a trophic effect. These results show the potential of SVF to contribute to the regeneration of ischemic tissue and to provide a long-term functional benefit in a rat model of chronic MI, by both direct and indirect mechanisms.
Collapse
Affiliation(s)
- Manuel Mazo
- Hematology and Cell Therapy and Foundation for Applied Medical Research, Division of Cancer, Clínica Universitaria, University of Navarra, Navarra, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cawthorn WP, Scheller EL, MacDougald OA. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J Lipid Res 2012; 53:227-46. [PMID: 22140268 PMCID: PMC3269153 DOI: 10.1194/jlr.r021089] [Citation(s) in RCA: 539] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
White adipose tissue (WAT) is perhaps the most plastic organ in the body, capable of regeneration following surgical removal and massive expansion or contraction in response to altered energy balance. Research conducted for over 70 years has investigated adipose tissue plasticity on a cellular level, spurred on by the increasing burden that obesity and associated diseases are placing on public health globally. This work has identified committed preadipocytes in the stromal vascular fraction of adipose tissue and led to our current understanding that adipogenesis is important not only for WAT expansion, but also for maintenance of adipocyte numbers under normal metabolic states. At the turn of the millenium, studies investigating preadipocyte differentiation collided with developments in stem cell research, leading to the discovery of multipotent stem cells within WAT. Such adipose tissue-derived stem cells (ASCs) are capable of differentiating into numerous cell types of both mesodermal and nonmesodermal origin, leading to their extensive investigation from a therapeutic and tissue engineering perspective. However, the insights gained through studying ASCs have also contributed to more-recent progress in attempts to better characterize committed preadipocytes in adipose tissue. Thus, ASC research has gone back to its roots, thereby expanding our knowledge of preadipocyte commitment and adipose tissue biology.
Collapse
Affiliation(s)
- William P Cawthorn
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
19
|
Amos PJ, Mulvey CL, Seaman SA, Walpole J, Degen KE, Shang H, Katz AJ, Peirce SM. Hypoxic culture and in vivo inflammatory environments affect the assumption of pericyte characteristics by human adipose and bone marrow progenitor cells. Am J Physiol Cell Physiol 2011; 301:C1378-88. [PMID: 21865587 DOI: 10.1152/ajpcell.00460.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Previous studies have shown that exposure to a hypoxic in vitro environment increases the secretion of pro-angiogenic growth factors by human adipose-derived stromal cells (hASCs) [Cao Y, et al., Biochem Biophys Res Commun 332: 370-379, 2005; Kokai LE, et al., Plast Reconstr Surg 116: 1453-1460, 2005; Park BS, et al., Biomed Res (Tokyo) 31: 27-34, 2010; Rasmussen JG, et al., Cytotherapy 13: 318-328, 2010; Rehman J, et al., Circulation 109: 1292-1298, 2004]. Previously, it has been demonstrated that hASCs can differentiate into pericytes and promote microvascular stability and maintenance during angiogenesis in vivo (Amos PJ, et al., Stem Cells 26: 2682-2690, 2008; Traktuev DO, et al., Circ Res 102: 77-85, 2008). In this study, we tested the hypotheses that angiogenic induction can be increased and pericyte differentiation decreased by pretreatment of hASCs with hypoxic culture and that hASCs are similar to human bone marrow-derived stromal cells (hBMSCs) in these regards. Our data confirms previous studies showing that hASCs: 1) secrete pro-angiogenic proteins, which are upregulated following culture in hypoxia, and 2) migrate up gradients of PDGF-BB in vitro, while showing for the first time that a rat mesenteric model of angiogenesis induced by 48/80 increases the propensity of both hASCs and hBMSCs to assume perivascular phenotypes following injection. Moreover, culture of both cell types in hypoxia before injection results in a biphasic vascular length density response in this model of inflammation-induced angiogenesis. The effects of hypoxia and inflammation on the phenotype of adult progenitor cells impacts both the therapeutic and the basic science applications of the cell types, as hypoxia and inflammation are common features of natural and pathological vascular compartments in vivo.
Collapse
Affiliation(s)
- Peter J Amos
- Dept. of Biomedical Engineering, University of Virginia, 415 Lane Rd., Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Stromal vascular fraction transplantation as an alternative therapy for ischemic heart failure: anti-inflammatory role. J Cardiothorac Surg 2011; 6:43. [PMID: 21453457 PMCID: PMC3079611 DOI: 10.1186/1749-8090-6-43] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 03/31/2011] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The aims of this study were: (1) to show the feasibility of using adipose-derived stromal vascular fraction (SVF) as an alternative to bone marrow mono nuclear cell (BM-MNC) for cell transplantation into chronic ischemic myocardium; and (2) to explore underlying mechanisms with focus on anti-inflammation role of engrafted SVF and BM-MNC post chronic myocardial infarction (MI) against left ventricular (LV) remodelling and cardiac dysfunction. METHODS Four weeks after left anterior descending coronary artery ligation, 32 Male Lewis rats with moderate MI were divided into 3 groups. SVF group (n = 12) had SVF cell transplantation (6 × 10(6) cells). BM-MNC group (n = 12) received BM-MNCs (6 × 10(6)) and the control (n = 10) had culture medium. At 4 weeks, after the final echocardiography, histological sections were stained with Styrus red and immunohistochemical staining was performed for α-smooth muscle actin, von Willebrand factor, CD3, CD8 and CD20. RESULTS At 4 weeks, in SVF and BM-MNC groups, LV diastolic dimension and LV systolic dimension were smaller and fractional shortening was increased in echocardiography, compared to control group. Histology revealed highest vascular density, CD3+ and CD20+ cells in SVF transplanted group. SVF transplantation decreased myocardial mRNA expression of inflammatory cytokines TNF-α, IL-6, MMP-1, TIMP-1 and inhibited collagen deposition. CONCLUSIONS Transplantation of adipose derived SVF cells might be a useful therapeutic option for angiogenesis in chronic ischemic heart disease. Anti-inflammation role for SVF and BM transplantation might partly benefit for the cardioprotective effect for chronic ischemic myocardium.
Collapse
|
21
|
Khodiyar VK, Hill DP, Howe D, Berardini TZ, Tweedie S, Talmud PJ, Breckenridge R, Bhattarcharya S, Riley P, Scambler P, Lovering RC. The representation of heart development in the gene ontology. Dev Biol 2011; 354:9-17. [PMID: 21419760 DOI: 10.1016/j.ydbio.2011.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 02/14/2011] [Accepted: 03/09/2011] [Indexed: 11/25/2022]
Abstract
An understanding of heart development is critical in any systems biology approach to cardiovascular disease. The interpretation of data generated from high-throughput technologies (such as microarray and proteomics) is also essential to this approach. However, characterizing the role of genes in the processes underlying heart development and cardiovascular disease involves the non-trivial task of data analysis and integration of previous knowledge. The Gene Ontology (GO) Consortium provides structured controlled biological vocabularies that are used to summarize previous functional knowledge for gene products across all species. One aspect of GO describes biological processes, such as development and signaling. In order to support high-throughput cardiovascular research, we have initiated an effort to fully describe heart development in GO; expanding the number of GO terms describing heart development from 12 to over 280. This new ontology describes heart morphogenesis, the differentiation of specific cardiac cell types, and the involvement of signaling pathways in heart development. This work also aligns GO with the current views of the heart development research community and its representation in the literature. This extension of GO allows gene product annotators to comprehensively capture the genetic program leading to the developmental progression of the heart. This will enable users to integrate heart development data across species, resulting in the comprehensive retrieval of information about this subject. The revised GO structure, combined with gene product annotations, should improve the interpretation of data from high-throughput methods in a variety of cardiovascular research areas, including heart development, congenital cardiac disease, and cardiac stem cell research. Additionally, we invite the heart development community to contribute to the expansion of this important dataset for the benefit of future research in this area.
Collapse
Affiliation(s)
- Varsha K Khodiyar
- Cardiovascular GO Annotation Initiative, Centre for Cardiovascular Genetics, Rayne Institute, University College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rhee SC, Ji YH, Gharibjanian NA, Dhong ES, Park SH, Yoon ES. In Vivo Evaluation of Mixtures of Uncultured Freshly Isolated Adipose-Derived Stem Cells and Demineralized Bone Matrix for Bone Regeneration in a Rat Critically Sized Calvarial Defect Model. Stem Cells Dev 2011; 20:233-42. [DOI: 10.1089/scd.2009.0525] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Seung Chul Rhee
- Department of Plastic and Reconstructive Surgery, Inje University Ilsan Paik Hospital, Goyang City, Gyeonggi-do, Republic of Korea
| | - Yi-hwa Ji
- The Medical Science Research Center of Korea University, Seoul, Republic of Korea
| | - Nareg A. Gharibjanian
- Aesthetic and Plastic Surgery Institute, University of California, Irvine, Irvine, California
| | - Eun Sang Dhong
- Department of Plastic and Reconstructive Surgery, Korea University Ansan Hospital, Gyeonggi-do, Republic of Korea
| | - Seung Ha Park
- Korea University Anam Hospital, Seoul, Republic of Korea
| | - Eul-Sik Yoon
- The Medical Science Research Center of Korea University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Korea University Ansan Hospital, Gyeonggi-do, Republic of Korea
| |
Collapse
|
23
|
Rose BA, Force T, Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 2010; 90:1507-46. [PMID: 20959622 PMCID: PMC3808831 DOI: 10.1152/physrev.00054.2009] [Citation(s) in RCA: 554] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Among the myriad of intracellular signaling networks that govern the cardiac development and pathogenesis, mitogen-activated protein kinases (MAPKs) are prominent players that have been the focus of extensive investigations in the past decades. The four best characterized MAPK subfamilies, ERK1/2, JNK, p38, and ERK5, are the targets of pharmacological and genetic manipulations to uncover their roles in cardiac development, function, and diseases. However, information reported in the literature from these efforts has not yet resulted in a clear view about the roles of specific MAPK pathways in heart. Rather, controversies from contradictive results have led to a perception that MAPKs are ambiguous characters in heart with both protective and detrimental effects. The primary object of this review is to provide a comprehensive overview of the current progress, in an effort to highlight the areas where consensus is established verses the ones where controversy remains. MAPKs in cardiac development, cardiac hypertrophy, ischemia/reperfusion injury, and pathological remodeling are the main focuses of this review as these represent the most critical issues for evaluating MAPKs as viable targets of therapeutic development. The studies presented in this review will help to reveal the major challenges in the field and the limitations of current approaches and point to a critical need in future studies to gain better understanding of the fundamental mechanisms of MAPK function and regulation in the heart.
Collapse
Affiliation(s)
- Beth A Rose
- Departments of Anesthesiology, Physiology, and Medicine, David Geffen School of Medicine, Molecular Biology, Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
24
|
Palpant NJ, Metzger JM. Aesthetic cardiology: adipose-derived stem cells for myocardial repair. Curr Stem Cell Res Ther 2010; 5:145-52. [PMID: 19941452 PMCID: PMC2896012 DOI: 10.2174/157488810791268654] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 07/15/2009] [Indexed: 11/22/2022]
Abstract
Stem cell biology has increasingly gained scientific and public interest in recent years. In particular, the use of stem cells for treatment of heart disease has been strongly pursued within the scientific and medical communities. Significant effort has gone into the use of adult tissue-derived stem cells for cardiac repair including bone marrow, blood, and cardiac-derived cell populations. Significant interest in this area has been balanced by the difficulties of understanding stem cells, cardiac injury, and the amalgamation of these areas of investigation in translational medicine. Recent studies have emerged on adipose-derived stem cells which show the potential for cardiac lineage development in vitro and may have application in cell-mediated in vivo therapy for the diseased heart. This review provides a summary of current findings within the field of adipose-derived stem cell biology regarding their cardiac differentiation potential.
Collapse
Affiliation(s)
- Nathan J. Palpant
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
25
|
Palpant NJ, Houang EM, Delport W, Hastings KEM, Onufriev AV, Sham YY, Metzger JM. Pathogenic peptide deviations support a model of adaptive evolution of chordate cardiac performance by troponin mutations. Physiol Genomics 2010; 42:287-99. [PMID: 20423961 DOI: 10.1152/physiolgenomics.00033.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In cardiac muscle, the troponin (cTn) complex is a key regulator of myofilament calcium sensitivity because it serves as a molecular switch required for translating myocyte calcium fluxes into sarcomeric contraction and relaxation. Studies of several species suggest that ectotherm chordates have myofilaments with heightened calcium responsiveness. However, genetic polymorphisms in cTn that cause increased myofilament sensitivity to activating calcium in mammals result in cardiac disease including arrhythmias, diastolic dysfunction, and increased susceptibility to sudden cardiac death. We hypothesized that specific residue modifications in the regulatory arm of troponin I (TnI) were critical in mediating the observed decrease in myofilament calcium sensitivity within the mammalian taxa. We performed large-scale phylogenetic analysis, atomic resolution molecular dynamics simulations and modeling, and computational alanine scanning. This study provides evidence that a His to Ala substitution within mammalian cardiac TnI (cTnI) reduced the thermodynamic potential at the interface between cTnI and cardiac TnC (cTnC) in the calcium-saturated state by disrupting a strong intermolecular electrostatic interaction. This key residue modification reduced myofilament calcium sensitivity by making cTnI molecularly untethered from cTnC. To meet the requirements for refined mammalian adult cardiac performance, we propose that compensatory evolutionary pressures favored mutations that enhanced the relaxation properties of cTn by decreasing its sensitivity to activating calcium.
Collapse
Affiliation(s)
- Nathan J Palpant
- Department of Integrative Biology and Physiology, University of Minnesota Academic Health Center, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Chavakis E, Koyanagi M, Dimmeler S. Enhancing the outcome of cell therapy for cardiac repair: progress from bench to bedside and back. Circulation 2010; 121:325-35. [PMID: 20083719 DOI: 10.1161/circulationaha.109.901405] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Emmanouil Chavakis
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Frankfurt, Germany
| | | | | |
Collapse
|
27
|
Jumabay M, Zhang R, Yao Y, Goldhaber JI, Boström KI. Spontaneously beating cardiomyocytes derived from white mature adipocytes. Cardiovasc Res 2010; 85:17-27. [PMID: 19643806 DOI: 10.1093/cvr/cvp267] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIMS Adipose stromal cells and dissociated brown adipose tissue have been shown to generate cardiomyocyte-like cells. However, it is not clear whether white mature adipocytes have the same potential, even though a close relationship has been found between adipocytes and vascular endothelial cells, another cardiovascular cell type. The objective of this study was to examine if white adipocytes would be able to supply cardiomyocytes. METHODS AND RESULTS We prepared a highly purified population of lipid-filled adipocytes from mice, 6-7 weeks of age. When allowed to lose lipids, the adipocytes assumed a fibroblast-like morphology, so-called dedifferentiated fat (DFAT) cells. Subsequently, 10-15% of the DFAT cells spontaneously differentiated into cardiomyocyte-like cells, in which the cardiomyocyte phenotype was identified by morphological observations, expression of cardiomyocyte-specific markers, and immunocytochemical staining. In addition, electrophysiological studies revealed pacemaker activity in these cells, and functional studies showed that a beta-adrenergic agonist stimulated the beating rate, whereas a beta-antagonist reduced it. In vitro treatment of newly isolated adipocytes or DFAT cells with inhibitors of bone morphogenetic proteins (BMP) and Wnt signalling promoted the development of the cardiomyocyte phenotype as determined by the number or beating colonies of cardiomyocyte-like cells and expression of troponin I, a cardiomyocyte-specific marker. Inhibition of BMP was most effective in promoting the cardiomyocyte phenotype in adipocytes, whereas Wnt-inhibition was most effective in DFAT cells. CONCLUSION White mature adipocytes can differentiate into cardiomyocyte-like cells, suggesting a link between adipocyte and cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Medet Jumabay
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Qin Y, Ji H, Wu Y, Liu H. Chromosomal instability of murine adipose tissue-derived mesenchymal stem cells in long-term culture and development of cloned embryos. CLONING AND STEM CELLS 2009; 11:445-52. [PMID: 19594392 DOI: 10.1089/clo.2009.0006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mice are the most commonly used laboratory animals for research, and some mouse stem cells, such as induced pluripotent stem cells, embryonic stem cells, and mesenchymal stem cells (MSCs), are also widely used in basic research. It is thus important to know if these stem cells maintain their genomic stability when cultured. Murine bone marrow-derived mesenchymal stem cells (BMSCs) appear to undergo spontaneous transformation in vitro. Murine adipose tissue-derived mesenchymal stem cells (ADSCs), like BMSCs, have the potential to differentiate into multiple lineages. In this study, we used G-banding, induction of multiple-lineage differentiation, flow cytometry, and nuclear transfer (NT), and found that murine ADSCs also displayed chromosomal instability in long-term culture. Furthermore, we performed NT using murine ADSCs to study the nuclear reprogramming ability of undifferentiated adult stem cells and to find a new efficient donor for NT. Using the stem cells did not increase the percentage of NT embryos that developed to the morula/blastocyst stage, compared with cloned embryos from cumulus cells. This may be because the stem cells displayed chromosomal instability. This is the first reported study of the use of ADSCs for NT in mice. ADSCs could provide an alternative donor cell type for NT in other species, with the advantages of easy harvesting involving little or no pain or trauma.
Collapse
Affiliation(s)
- Yiren Qin
- Department of Histology and Embryology, Harbin Medical University, Harbin, PR China
| | | | | | | |
Collapse
|
30
|
Dyer LA, Kirby ML. The role of secondary heart field in cardiac development. Dev Biol 2009; 336:137-44. [PMID: 19835857 DOI: 10.1016/j.ydbio.2009.10.009] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/29/2009] [Accepted: 10/06/2009] [Indexed: 01/08/2023]
Abstract
Although de la Cruz and colleagues showed as early as 1977 that the outflow tract was added after the heart tube formed, the source of these secondarily added cells was not identified for nearly 25 years. In 2001, three pivotal publications described a secondary or anterior heart field that contributed to the developing outflow tract. This review details the history of the heart field, the discovery and continuing elucidation of the secondarily adding myocardial cells, and how the different populations identified in 2001 are related to the more recent lineage tracing studies that defined the first and second myocardial heart fields/lineages. Much recent work has focused on secondary heart field progenitors that give rise to the myocardium and smooth muscle at the definitive arterial pole. These progenitors are the last to be added to the arterial pole and are particularly susceptible to abnormal development, leading to conotruncal malformations in children. The major signaling pathways (Wnt, BMP, FGF8, Notch, and Shh) that control various aspects of secondary heart field progenitor behavior are discussed.
Collapse
Affiliation(s)
- Laura A Dyer
- Department of Pediatrics (Neonatology), Duke University, Room 403 Jones, Box 103105, Durham, NC 2771, USA
| | | |
Collapse
|
31
|
Koyanagi M, Iwasaki M, Haendeler J, Leitges M, Zeiher AM, Dimmeler S. Wnt5a increases cardiac gene expressions of cultured human circulating progenitor cells via a PKC delta activation. PLoS One 2009; 4:e5765. [PMID: 19492056 PMCID: PMC2686162 DOI: 10.1371/journal.pone.0005765] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 04/24/2009] [Indexed: 12/22/2022] Open
Abstract
Background Wnt signaling controls the balance between stem cell proliferation and differentiation and body patterning throughout development. Previous data demonstrated that non-canonical Wnts (Wnt5a, Wnt11) increased cardiac gene expression of circulating endothelial progenitor cells (EPC) and bone marrow-derived stem cells cultured in vitro. Since previous studies suggested a contribution of the protein kinase C (PKC) family to the Wnt5a-induced signalling, we investigated which PKC isoforms are activated by non-canonical Wnt5a in human EPC. Methodology/Principal Findings Immunoblot experiments demonstrated that Wnt5a selectively activated the novel PKC isoform, PKC delta, as evidenced by phosphorylation and translocation. In contrast, the classical Ca2+-dependent PKC isoforms, PKC alpha and beta2, and one of the other novel PKC isoforms, PKC epsilon, were not activated by Wnt5a. The PKC delta inhibitor rottlerin significantly blocked co-culture-induced cardiac differentiation in vitro, whereas inhibitors directed against the classical Ca2+-dependent PKC isoforms or a PKC epsilon-inhibitory peptide did not block cardiac differentiation. In accordance, EPC derived from PKC delta heterozygous mice exhibited a significant reduction of Wnt5a-induced cardiac gene expression compared to wild type mice derived EPC. Conclusions/Significance These data indicate that Wnt5a enhances cardiac gene expressions of EPC via an activation of PKC delta.
Collapse
Affiliation(s)
- Masamichi Koyanagi
- Institute of Cardiovascular Regeneration, Center for Molecular Medicine, J.W. Goethe University, Frankfurt, Germany
| | - Masayoshi Iwasaki
- Institute of Cardiovascular Regeneration, Center for Molecular Medicine, J.W. Goethe University, Frankfurt, Germany
| | - Judith Haendeler
- Institute of Cardiovascular Regeneration, Center for Molecular Medicine, J.W. Goethe University, Frankfurt, Germany
| | - Michael Leitges
- The Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
| | - Andreas M. Zeiher
- Department of Cardiology, Internal Medicine III, J.W. Goethe University, Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center for Molecular Medicine, J.W. Goethe University, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
32
|
Current world literature. Curr Opin Organ Transplant 2009; 14:103-11. [PMID: 19337155 DOI: 10.1097/mot.0b013e328323ad31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Lin G, Garcia M, Ning H, Banie L, Guo YL, Lue TF, Lin CS. Defining stem and progenitor cells within adipose tissue. Stem Cells Dev 2009; 17:1053-63. [PMID: 18597617 DOI: 10.1089/scd.2008.0117] [Citation(s) in RCA: 294] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue-derived stem cells (ADSC) are routinely isolated from the stromal vascular fraction (SVF) of homogenized adipose tissue. Freshly isolated ADSC display surface markers that differ from those of cultured ADSC, but both cell preparations are capable of multipotential differentiation. Recent studies have inferred that these progenitors may reside in a perivascular location where they appeared to coexpress CD34 and smooth muscle actin (alpha-SMA) but not CD31. However, these studies provided only limited histological evidence to support such assertions. In the present study, we employed immunohistochemistry and immunofluorescence to define more precisely the location of ADSC within human adipose tissue. Our results show that alpha-SMA and CD31 localized within smooth muscle and endothelial cells, respectively, in all blood vessels examined. CD34 localized to both the intima (endothelium) and adventitia neither of which expressed alpha-SMA. The niche marker Wnt5a was confined exclusively to the vascular wall within mural smooth muscle cells. Surprisingly, the widely accepted mesenchymal stem cell marker STRO-1 was expressed exclusively in the endothelium of capillaries and arterioles but not in the endothelium of arteries. The embryonic stem cell marker SSEA1 localized to a pericytic location in capillaries and in certain smooth muscle cells of arterioles. Cells expressing the embryonic stem cell markers telomerase and OCT4 were rare and observed only in capillaries. Based on these findings and evidence gathered from the existing literature, we propose that ADSC are vascular precursor (stem) cells at various stages of differentiation. In their native tissue, ADSC at early stages of differentiation can differentiate into tissue-specific cells such as adipocytes. Isolated, ADSC can be induced to differentiate into additional cell types such as osteoblasts and chondrocytes.
Collapse
Affiliation(s)
- Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California 94143-0738, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Maiese K. Triple play: promoting neurovascular longevity with nicotinamide, WNT, and erythropoietin in diabetes mellitus. Biomed Pharmacother 2008; 62:218-32. [PMID: 18342481 PMCID: PMC2431130 DOI: 10.1016/j.biopha.2008.01.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Accepted: 01/23/2008] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is a principal pathway for the dysfunction and ultimate destruction of cells in the neuronal and vascular systems for several disease entities, not promoting the ravages of oxidative stress to any less of a degree than diabetes mellitus. Diabetes mellitus is increasing in incidence as a result of changes in human behavior that relate to diet and daily exercise and is predicted to affect almost 400 million individuals worldwide in another two decades. Furthermore, both type 1 and type 2 diabetes mellitus can lead to significant disability in the nervous and cardiovascular systems, such as cognitive loss and cardiac insufficiency. As a result, innovative strategies that directly target oxidative stress to preserve neuronal and vascular longevity could offer viable therapeutic options to diabetic patients in addition to more conventional treatments that are designed to control serum glucose levels. Here we discuss the novel application of nicotinamide, Wnt signaling, and erythropoietin that modulate cellular oxidative stress and offer significant promise for the prevention of diabetic complications in the nervous and vascular systems. Essential to this process is the precise focus upon diverse as well as common cellular pathways governed by nicotinamide, Wnt signaling, and erythropoietin to outline not only the potential benefits, but also the challenges and possible detriments of these therapies. In this way, new avenues of investigation can hopefully bypass toxic complications, or at the very least, avoid contraindications that may limit care and offer both safe and robust clinical treatment for patients.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
35
|
Maiese K, Li F, Chong ZZ, Shang YC. The Wnt signaling pathway: aging gracefully as a protectionist? Pharmacol Ther 2008; 118:58-81. [PMID: 18313758 DOI: 10.1016/j.pharmthera.2008.01.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 01/18/2008] [Indexed: 12/16/2022]
Abstract
No longer considered to be exclusive to cellular developmental pathways, the Wnt family of secreted cysteine-rich glycosylated proteins has emerged as versatile targets for a variety of conditions that involve cardiovascular disease, aging, cancer, diabetes, neurodegeneration, and inflammation. In particular, modulation of Wnt signaling may fill a critical void for the treatment of disorders that impact upon both cellular survival and cellular longevity. Yet, in some scenarios, Wnt signaling can become the catalyst for disease development or promote cell senescence that can compromise clinical utility. This double edge sword in regards to the role of Wnt and its signaling pathways highlights the critical need to further elucidate the cellular mechanisms governed by Wnt in conjunction with the development of robust pharmacological ligands that may open new avenues for disease treatment. Here we discuss the influence of the Wnt pathway during cell survival, metabolism, and aging in order for one to gain a greater insight for the novel role of Wnt signaling as well as exemplify its unique cellular pathways that influence both normal physiology and disease.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
36
|
|