1
|
Exertier C, Antonelli L, Fiorillo A, Bernardini R, Colotti B, Ilari A, Colotti G. Sorcin in Cancer Development and Chemotherapeutic Drug Resistance. Cancers (Basel) 2024; 16:2810. [PMID: 39199583 PMCID: PMC11352664 DOI: 10.3390/cancers16162810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
SOluble Resistance-related Calcium-binding proteIN (sorcin) earned its name due to its co-amplification with ABCB1 in multidrug-resistant cells. Initially thought to be an accidental consequence of this co-amplification, recent research indicates that sorcin plays a more active role as an oncoprotein, significantly impacting multidrug resistance (MDR). Sorcin is a highly expressed calcium-binding protein, often overproduced in human tumors and multidrug-resistant cancers, and is a promising novel MDR marker. In tumors, sorcin levels inversely correlate with both patient response to chemotherapy and overall prognosis. Multidrug-resistant cell lines consistently exhibit higher sorcin expression compared to their parental counterparts. Furthermore, sorcin overexpression via gene transfection enhances drug resistance to various chemotherapeutic drugs across numerous cancer lines. Conversely, silencing sorcin expression reverses drug resistance in many cell lines. Sorcin participates in several mechanisms of MDR, including drug efflux, drug sequestering, cell death inhibition, gene amplification, epithelial-to-mesenchymal transition, angiogenesis, and metastasis. The present review focuses on the structure and function of sorcin, on sorcin's role in cancer and drug resistance, and on the approaches aimed at targeting sorcin.
Collapse
Affiliation(s)
- Cécile Exertier
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| | - Lorenzo Antonelli
- Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (L.A.); (A.F.)
| | - Annarita Fiorillo
- Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (L.A.); (A.F.)
| | - Roberta Bernardini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
| | - Beatrice Colotti
- Child Neuropsychiatry Unit, Child Neuropsychiatry School, University Hospital of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| |
Collapse
|
2
|
Wang Y, Zhu Y, Pu Z, Li Z, Deng Y, Li N, Peng F. Soluble resistance-related calcium-binding protein participates in multiple diseases via protein-protein interactions. Biochimie 2021; 189:76-86. [PMID: 34153376 DOI: 10.1016/j.biochi.2021.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022]
Abstract
Soluble resistance-related calcium-binding protein (sorcin), a 22 kDa penta-EF-hand protein, has been intensively studied in cancers and multidrug resistance over a prolonged period. Sorcin is widely distributed in tissues and participates in the regulation of Ca2+ homeostasis and Ca2+-dependent signaling. Protein-protein interactions (PPIs) are essential for regulating protein functions in almost all biological processes. Sorcin interaction partners tend to vary in type, including Ca2+ receptors, Ca2+ transporters, endoplasmic reticulum stress markers, transcriptional regulatory elements, immunomodulation-related factors, and viral proteins. Recent studies have shown that sorcin is involved in a broad range of pathological conditions, such as cardiomyopathy, type 2 diabetes mellitus, neurodegenerative diseases, liver diseases, and viral infections. As a multifunctional cellular protein, in these diseases, sorcin has a role by interacting with or regulating the expression of other proteins, such as sarcoplasmic reticulum/endoplasmic reticulum Ca2+ ATPase, ryanodine receptors, presenilin 2, L-type Ca2+ channels, carbohydrate-responsive element-binding protein, tau, α-synuclein, signal transducer and activator of transcription 3, HCV nonstructural 5A protein, and viral capsid protein 1. This review summarizes the roles that sorcin plays in various diseases, mainly via different PPIs, and focuses principally on non-neoplastic diseases to help acquire a more comprehensive understanding of sorcin's multifunctional characteristics.
Collapse
Affiliation(s)
- Yinmiao Wang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China; NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Yuanyuan Zhu
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China; NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Zhangya Pu
- Department of Infectious Diseases and Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Zhenfen Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China; NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Ying Deng
- People's Hospital of Ningxiang, Changsha, Hunan Province 410600, China
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Fang Peng
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China; NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China.
| |
Collapse
|
3
|
Wang D, Shi S, Hsieh YL, Wang J, Wang H, Wang W. Knockdown of sorcin increases HEI-OC1 cell damage induced by cisplatin in vitro. Arch Biochem Biophys 2021; 701:108752. [PMID: 33675811 DOI: 10.1016/j.abb.2021.108752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/27/2020] [Accepted: 01/01/2021] [Indexed: 12/29/2022]
Abstract
Hearing loss caused by ototoxic drugs is a kind of acquired hearing loss. Cisplatin is one of the most commonly used drugs and its main action sites are hair cells (HCs). Sorcin is a drug-resistant calcium-binding protein belonging to the small penta-EF-hand protein family. Sorcin is highly expressed in many tissues, including bone, heart, brain, lung, and skin tissues. Single-cell RNA sequencing showed that sorcin was expressed in the outer HCs of mice, but its role remained unknown. We also found that sorcin was highly expressed in the cytoplasm of cochlear HCs and HEI-OC1 cells. After cisplatin injury, the expression of sorcin in HCs and HEI-OC1 cells decreased significantly. SiRNA transfection technology was used to knock down the expression of sorcin. The results showed that the number of apoptotic cells, the expression of cleaved caspased-3, and the expression of Bax increased while the anti-apoptotic factor Bcl-2 decreased in the siRNA-Sorcin + CIS group. The observed increase in apoptosis was related to the increase of reactive oxygen species (ROS) and the destruction of the mitochondrial membrane potential (MMP). Finally, we found that the downregulated sorcin worked by activating the P-ERK1/2 signaling pathway. Overall, this study showed that sorcin can be used as a new target to prevent the ototoxicity of platinum drugs.
Collapse
Affiliation(s)
- Dan Wang
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, 200031, China
| | - Suming Shi
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, 200031, China
| | - Yue-Lin Hsieh
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, 200031, China
| | - Jiali Wang
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, 200031, China
| | - Hui Wang
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, 200031, China
| | - Wuqing Wang
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, 200031, China.
| |
Collapse
|
4
|
Genovese I, Carotti A, Ilari A, Fiorillo A, Battista T, Colotti G, Ivarsson Y. Profiling calcium-dependent interactions between Sorcin and intrinsically disordered regions of human proteome. Biochim Biophys Acta Gen Subj 2020; 1864:129618. [PMID: 32305337 DOI: 10.1016/j.bbagen.2020.129618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/05/2020] [Accepted: 04/12/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Sorcin is a calcium sensor that exerts many calcium-related functions in the cells, e.g. it regulates calcium concentration in the cytoplasm, endoplasmic reticulum (ER) and mitochondria, by interacting with calcium pumps, exchangers and channels. Albeit Sorcin is an interesting potential cancer target, little is known about its interactors upon calcium-mediated activation. Our previous study suggested that Sorcin may recognize short linear binding motifs as the crystal structure revealed a self-interaction with a GYYPGG stretch in its N-terminus, and combinatorial peptide-phage display provided support for peptide-mediated interactions. METHODS In this study we screened for motif-based interactions between Sorcin and intrinsically disordered regions of the human proteome using proteomic peptide phage display (ProP-PD). We identified a peptide belonging to protein phosphatase 1 regulatory subunit 3G (PPP1R3G) as a potential novel interactor and confirm the interaction through biophysical and cell-based approaches, and provide structural information through molecular dynamics simulations. RESULTS Altogether, we identify a preferred motif in the enriched pool of binders and a peptide belonging to protein phosphatase 1 regulatory subunit 3G (PPP1R3G) as a preferred ligand. CONCLUSION Through this study we gain information on a new Sorcin binding partner and profile Sorcin's motif-based interaction. GENERAL SIGNIFICANCE The interaction between Sorcin and PPP1R3G may suggest a close dependence between glucose homeostasis and calcium concentration in the different cell compartments, opening a completely new and interesting scenery yet to be fully disclosed.
Collapse
Affiliation(s)
- Ilaria Genovese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy; Department of Biochemical Sciences, University Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy; Department of Chemistry - BMC, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden.
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology National Research Council, IBPM-CNR, c/o Department of Biochemical Sciences, University Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Annarita Fiorillo
- Department of Biochemical Sciences, University Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Theo Battista
- Department of Biochemical Sciences, University Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology National Research Council, IBPM-CNR, c/o Department of Biochemical Sciences, University Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| |
Collapse
|
5
|
Battista T, Fiorillo A, Chiarini V, Genovese I, Ilari A, Colotti G. Roles of Sorcin in Drug Resistance in Cancer: One Protein, Many Mechanisms, for a Novel Potential Anticancer Drug Target. Cancers (Basel) 2020; 12:cancers12040887. [PMID: 32268494 PMCID: PMC7226229 DOI: 10.3390/cancers12040887] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
The development of drug resistance is one of the main causes of failure in anti-cancer treatments. Tumor cells adopt many strategies to counteract the action of chemotherapeutic agents, e.g., enhanced DNA damage repair, inactivation of apoptotic pathways, alteration of drug targets, drug inactivation, and overexpression of ABC (Adenosine triphosphate-binding cassette, or ATP-binding cassette) transporters. These are broad substrate-specificity ATP-dependent efflux pumps able to export toxins or drugs out of cells; for instance, ABCB1 (MDR1, or P-glycoprotein 1), overexpressed in most cancer cells, confers them multidrug resistance (MDR). The gene coding for sorcin (SOluble Resistance-related Calcium-binding proteIN) is highly conserved among mammals and is located in the same chromosomal locus and amplicon as the ABC transporters ABCB1 and ABCB4, both in human and rodent genomes (two variants of ABCB1, i.e., ABCB1a and ABCB1b, are in rodent amplicon). Sorcin was initially characterized as a soluble protein overexpressed in multidrug (MD) resistant cells and named "resistance-related" because of its co-amplification with ABCB1. Although for years sorcin overexpression was thought to be only a by-product of the co-amplification with ABC transporter genes, many papers have recently demonstrated that sorcin plays an important part in MDR, indicating a possible role of sorcin as an oncoprotein. The present review illustrates sorcin roles in the generation of MDR via many mechanisms and points to sorcin as a novel potential target of different anticancer molecules.
Collapse
Affiliation(s)
- Theo Battista
- Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy; (T.B.); (A.F.)
| | - Annarita Fiorillo
- Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy; (T.B.); (A.F.)
| | - Valerio Chiarini
- Doctoral Programme in Integrative Life Science, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland;
| | - Ilaria Genovese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy;
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council, Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche (IBPM-CNR), c/o Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy
- Correspondence: (A.I.); (G.C.)
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche (IBPM-CNR), c/o Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy
- Correspondence: (A.I.); (G.C.)
| |
Collapse
|
6
|
CaMKIIδ interacts directly with IKKβ and modulates NF-κB signalling in adult cardiac fibroblasts. Cell Signal 2018; 51:166-175. [PMID: 30059730 DOI: 10.1016/j.cellsig.2018.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 11/23/2022]
Abstract
Calcium/calmodulin dependent protein kinase IIδ (CaMKIIδ) acts as a molecular switch regulating cardiovascular Ca2+ handling and contractility in health and disease. Activation of CaMKIIδ is also known to regulate cardiovascular inflammation and is reported to be required for pro-inflammatory NF-κB signalling. In this study the aim was to characterise how CaMKIIδ interacts with and modulates NF-κB signalling and whether this interaction exists in non-contractile cells of the heart. Recombinant or purified CaMKIIδ and the individual inhibitory -κB kinase (IKK) proteins of the NF-κB signalling pathway were used in autoradiography and Surface Plasmon Resonance (SPR) to explore potential interactions between both components. Primary adult rat cardiac fibroblasts were then used to study the effects of selective CaMKII inhibition on pharmacologically-induced NF-κB activation as well as interaction between CaMKII and specific IKK isoforms in a cardiac cellular setting. Autoradiography analysis suggested that CaMKIIδ phosphorylated IKKβ but not IKKα. SPR analysis further supported a direct interaction between CaMKIIδ and IKKβ but not between CaMKIIδ and IKKα or IKKγ. CaMKIIδ regulation of IκΒα degradation was explored in adult cardiac fibroblasts exposed to pharmacological stimulation. Cells were stimulated with agonist in the presence or absence of a CaMKII inhibitor, autocamtide inhibitory peptide (AIP). Selective inhibition of CaMKII resulted in reduced NF-κB activation, as measured by agonist-stimulated IκBα degradation. Importantly, and in agreement with the recombinant protein work, an interaction between CaMKII and IKKβ was evident following Proximity Ligation Assays in adult cardiac fibroblasts. This study provides new evidence supporting direct interaction between CaMKIIδ and IKKβ in pro-inflammatory signalling in cardiac fibroblasts and could represent a feature that may be exploited for therapeutic benefit.
Collapse
|
7
|
Kahremany S, Zhenin M, Shenberger Y, Maimoun D, Colotti G, Arad M, Shainberg A, Senderowitz H, Ruthstein S, Gruzman A. Peptide-based development of PKA activators. NEW J CHEM 2018. [DOI: 10.1039/c8nj01732h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Activation of the PKA catalytic unit by small peptide (SE1). Development of peptidomimetics.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry
- Faculty of Exact Sciences
- Bar-Ilan University
- Ramat Gan
- Israel
| | - Michael Zhenin
- Department of Chemistry
- Faculty of Exact Sciences
- Bar-Ilan University
- Ramat Gan
- Israel
| | - Yulia Shenberger
- Department of Chemistry
- Faculty of Exact Sciences
- Bar-Ilan University
- Ramat Gan
- Israel
| | - David Maimoun
- Faculty of Life Sciences
- Bar-Ilan University
- Ramat-Gan
- Israel
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology CNR
- Dept. Biochemical Sciences
- Sapienza University
- Rome
- Italy
| | - Michael Arad
- Leviev Heart Center
- Sheba Medical Center
- Tel Hashomer and Sackler School of Medicine
- Tel Aviv University
- Israel
| | | | - Hanoch Senderowitz
- Department of Chemistry
- Faculty of Exact Sciences
- Bar-Ilan University
- Ramat Gan
- Israel
| | - Sharon Ruthstein
- Department of Chemistry
- Faculty of Exact Sciences
- Bar-Ilan University
- Ramat Gan
- Israel
| | - Arie Gruzman
- Department of Chemistry
- Faculty of Exact Sciences
- Bar-Ilan University
- Ramat Gan
- Israel
| |
Collapse
|
8
|
Genovese I, Fiorillo A, Ilari A, Masciarelli S, Fazi F, Colotti G. Binding of doxorubicin to Sorcin impairs cell death and increases drug resistance in cancer cells. Cell Death Dis 2017; 8:e2950. [PMID: 28726784 PMCID: PMC5550883 DOI: 10.1038/cddis.2017.342] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/22/2017] [Accepted: 06/13/2017] [Indexed: 12/23/2022]
Abstract
Sorcin is a calcium binding protein that plays an important role in multidrug resistance (MDR) in tumors, since its expression confers resistance to doxorubicin and to other chemotherapeutic drugs. In this study, we show that Sorcin is able to bind doxorubicin, vincristine, paclitaxel and cisplatin directly and with high affinity. The high affinity binding of doxorubicin to sorcin has been demonstrated with different techniques, that is, surface plasmon resonance, fluorescence titration and X-ray diffraction. Although the X-ray structure of sorcin in complex with doxorubicin has been solved at low resolution, it allows the identification of one of the two doxorubicin binding sites, placed at the interface between the EF5 loop the G helix and the EF4 loop. We show that Sorcin cellular localization changes upon doxorubicin treatment, an indication that the protein responds to doxorubicin and it presumably binds the drug also inside the cell, soon after drug entrance. We also demonstrate that Sorcin is able to limit the toxic effects of the chemotherapeutic agent in the cell. In addition, Sorcin silencing increases cell death upon treatment with doxorubicin, increases the accumulation of doxorubicin in cell nucleus, decreases the expression of MDR1 and doxorubicin efflux via MDR1.
Collapse
Affiliation(s)
- Ilaria Genovese
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Annarita Fiorillo
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Andrea Ilari
- IBPM-CNR Institute of Molecular Biology and Pathology, Italian National Research Council, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic &Orthopaedic Sciences, Section of Histology &Medical Embryology, Sapienza University, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic &Orthopaedic Sciences, Section of Histology &Medical Embryology, Sapienza University, Rome, Italy
| | - Gianni Colotti
- IBPM-CNR Institute of Molecular Biology and Pathology, Italian National Research Council, Rome, Italy
| |
Collapse
|
9
|
Li X, Liu Y, Wang Y, Liu J, Li X, Cao H, Gao X, Zheng SJ. Negative Regulation of Hepatic Inflammation by the Soluble Resistance-Related Calcium-Binding Protein via Signal Transducer and Activator of Transcription 3. Front Immunol 2017; 8:709. [PMID: 28706517 PMCID: PMC5489593 DOI: 10.3389/fimmu.2017.00709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/31/2017] [Indexed: 01/05/2023] Open
Abstract
Host immune response is tightly controlled by negative regulators to avoid excessive immune reactions for homeostasis. Some pathogens may take advantage of host negative regulating system to evade host defense. Our previous report showed that foot-and-mouth disease virus (FMDV) VP1 inhibited TNF-α- and SeV-induced type I interferon response via interaction with cellular protein soluble resistance-related calcium-binding protein (sorcin). Conversely, TNF-α- or SeV-induced type I interferon response increased when sorcin knocked down, leading to inhibition of vesicular stomatitis virus replication. However, the exact role of sorcin in regulation of the immune response is still not clear. Here, we show that mice deficient of sorcin (sorcin-/-) display enhanced ConA-induced hepatitis. Importantly, splenocytes from sorcin-/- mice produced more IL-2, IL-4, IL-17, and IFN-γ than that of littermate controls (sorcin+/+) in response to anti-CD3/28 stimulation. Furthermore, our data indicate that sorcin interacts with signal transducer and activator of transcription 3 (STAT3) and enhances its phosphorylation and that STAT3 acts as an immediate downstream molecule of sorcin in the negative regulation of NF-κB signaling. Thus, sorcin, in association with STAT3, negatively regulates hepatic inflammation.
Collapse
Affiliation(s)
- Xiaying Li
- State Key Laboratory of Agrobiotechnology, Beijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanan Liu
- State Key Laboratory of Agrobiotechnology, Beijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongqiang Wang
- State Key Laboratory of Agrobiotechnology, Beijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jue Liu
- Institute of Veterinary and Animal Sciences, Beijing Academy of Agriculture and Forestry, Beijing, China
| | - Xiaoqi Li
- State Key Laboratory of Agrobiotechnology, Beijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hong Cao
- State Key Laboratory of Agrobiotechnology, Beijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiang Gao
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Shijun J Zheng
- State Key Laboratory of Agrobiotechnology, Beijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Gambardella J, Trimarco B, Iaccarino G, Santulli G. New Insights in Cardiac Calcium Handling and Excitation-Contraction Coupling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1067:373-385. [PMID: 28956314 DOI: 10.1007/5584_2017_106] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Excitation-contraction (EC) coupling denotes the conversion of electric stimulus in mechanic output in contractile cells. Several studies have demonstrated that calcium (Ca2+) plays a pivotal role in this process. Here we present a comprehensive and updated description of the main systems involved in cardiac Ca2+ handling that ensure a functional EC coupling and their pathological alterations, mainly related to heart failure.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy.,Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Fisciano, Italy
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy
| | - Guido Iaccarino
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Fisciano, Italy
| | - Gaetano Santulli
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy. .,Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Forch 525, 10461, New York, NY, USA.
| |
Collapse
|
11
|
Nonstructural 5A Protein of Hepatitis C Virus Regulates Soluble Resistance-Related Calcium-Binding Protein Activity for Viral Propagation. J Virol 2015; 90:2794-805. [PMID: 26719254 DOI: 10.1128/jvi.02493-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/18/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) is a major cause of chronic liver disease and is highly dependent on cellular proteins for virus propagation. To identify the cellular factors involved in HCV propagation, we recently performed protein microarray assays using the HCV nonstructural 5A (NS5A) protein as a probe. Of 90 cellular protein candidates, we selected the soluble resistance-related calcium-binding protein (sorcin) for further characterization. Sorcin is a calcium-binding protein and is highly expressed in certain cancer cells. We verified that NS5A interacted with sorcin through domain I of NS5A, and phosphorylation of the threonine residue 155 of sorcin played a crucial role in protein interaction. Small interfering RNA (siRNA)-mediated knockdown of sorcin impaired HCV propagation. Silencing of sorcin expression resulted in a decrease of HCV assembly without affecting HCV RNA and protein levels. We further demonstrated that polo-like kinase 1 (PLK1)-mediated phosphorylation of sorcin was increased by NS5A. We showed that both phosphorylation and calcium-binding activity of sorcin were required for HCV propagation. These data indicate that HCV modulates sorcin activity via NS5A protein for its own propagation. IMPORTANCE Sorcin is a calcium-binding protein and regulates intracellular calcium homeostasis. HCV NS5A interacts with sorcin, and phosphorylation of sorcin is required for protein interaction. Gene silencing of sorcin impaired HCV propagation at the assembly step of the HCV life cycle. Sorcin is phosphorylated by PLK1 via protein interaction. We showed that sorcin interacted with both NS5A and PLK1, and PLK1-mediated phosphorylation of sorcin was increased by NS5A. Moreover, calcium-binding activity of sorcin played a crucial role in HCV propagation. These data provide evidence that HCV regulates host calcium metabolism for virus propagation, and thus manipulation of sorcin activity may represent a novel therapeutic target for HCV.
Collapse
|
12
|
Mooney L, Skinner M, Coker SJ, Currie S. Effects of acute and chronic sunitinib treatment on cardiac function and calcium/calmodulin-dependent protein kinase II. Br J Pharmacol 2015; 172:4342-54. [PMID: 26040813 DOI: 10.1111/bph.13213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/18/2015] [Accepted: 05/27/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ) is an important regulator of cardiac contractile function and dysfunction and may be an unwanted secondary target for anti-cancer drugs such as sunitinib and imatinib that have been reported to alter cardiac performance. This study aimed to determine whether anti-cancer kinase inhibitors may affect CaMKII activity and expression when administered in vivo. EXPERIMENTAL APPROACH Cardiovascular haemodynamics in response to acute and chronic sunitinib treatment, and chronic imatinib treatment, were assessed in guinea pigs and the effects compared with those of the known positive and negative inotropes, isoprenaline and verapamil. Parallel studies from the same animals assessed CaMKIIδ expression and CaMKII activity following drug treatments. KEY RESULTS Acute administration of sunitinib decreased left ventricular (LV) dP/dtmax. Acute administration of isoprenaline increased LVdP/dtmax dose-dependently, while LVdP/dtmax was decreased by verapamil. CaMKII activity was decreased by acute administration of sunitinib and was increased by acute administration of isoprenaline, and decreased by acute administration of verapamil. CaMKIIδ expression following all acute treatments remained unchanged. Chronic imatinib and sunitinib treatments did not alter fractional shortening; however, both CaMKIIδ expression and CaMKII activity were significantly increased. Chronic administration of isoprenaline and verapamil decreased LV fractional shortening with parallel increases in CaMKIIδ expression and CaMKII activity. CONCLUSIONS AND IMPLICATIONS Chronic sunitinib and imatinib treatment increased CaMKIIδ expression and CaMKII activity. As these compounds are associated with cardiac dysfunction, increased CaMKII expression could be an early indication of cellular cardiotoxicity marking potential progression of cardiac contractile dysfunction.
Collapse
Affiliation(s)
- L Mooney
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - M Skinner
- Safety Assessment UK, AstraZeneca R&D, Macclesfield, UK
| | - S J Coker
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - S Currie
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
13
|
Colotti G, Poser E, Fiorillo A, Genovese I, Chiarini V, Ilari A. Sorcin, a calcium binding protein involved in the multidrug resistance mechanisms in cancer cells. Molecules 2014; 19:13976-89. [PMID: 25197934 PMCID: PMC6271628 DOI: 10.3390/molecules190913976] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 11/23/2022] Open
Abstract
Sorcin is a penta-EF hand calcium binding protein, which participates in the regulation of calcium homeostasis in cells. Sorcin regulates calcium channels and exchangers located at the plasma membrane and at the endo/sarcoplasmic reticulum (ER/SR), and allows high levels of calcium in the ER to be maintained, preventing ER stress and possibly, the unfolded protein response. Sorcin is highly expressed in the heart and in the brain, and overexpressed in many cancer cells. Sorcin gene is in the same amplicon as other genes involved in the resistance to chemotherapeutics in cancer cells (multi-drug resistance, MDR) such as ABCB4 and ABCB1; its overexpression results in increased drug resistance to a number of chemotherapeutic agents, and inhibition of sorcin expression by sorcin-targeting RNA interference leads to reversal of drug resistance. Sorcin is increasingly considered a useful marker of MDR and may represent a therapeutic target for reversing tumor multidrug resistance.
Collapse
Affiliation(s)
- Gianni Colotti
- Institute of Biology, Molecular Medicine and Nanobiotechnology, Consiglio Nazionale delle Ricerche, P.le A Moro 5, Rome 00185, Italy.
| | - Elena Poser
- Department Biochemical Sciences "A. Rossi Fanelli", University Sapienza, P.le A. Moro 5, Rome 00185, Italy.
| | - Annarita Fiorillo
- Department Biochemical Sciences "A. Rossi Fanelli", University Sapienza, P.le A. Moro 5, Rome 00185, Italy.
| | - Ilaria Genovese
- Department Biochemical Sciences "A. Rossi Fanelli", University Sapienza, P.le A. Moro 5, Rome 00185, Italy.
| | - Valerio Chiarini
- Department Biochemical Sciences "A. Rossi Fanelli", University Sapienza, P.le A. Moro 5, Rome 00185, Italy.
| | - Andrea Ilari
- Institute of Biology, Molecular Medicine and Nanobiotechnology, Consiglio Nazionale delle Ricerche, P.le A Moro 5, Rome 00185, Italy.
| |
Collapse
|
14
|
Dadi PK, Vierra NC, Ustione A, Piston DW, Colbran RJ, Jacobson DA. Inhibition of pancreatic β-cell Ca2+/calmodulin-dependent protein kinase II reduces glucose-stimulated calcium influx and insulin secretion, impairing glucose tolerance. J Biol Chem 2014; 289:12435-45. [PMID: 24627477 DOI: 10.1074/jbc.m114.562587] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells is caused by Ca(2+) entry via voltage-dependent Ca(2+) channels. CaMKII is a key mediator and feedback regulator of Ca(2+) signaling in many tissues, but its role in β-cells is poorly understood, especially in vivo. Here, we report that mice with conditional inhibition of CaMKII in β-cells show significantly impaired glucose tolerance due to decreased GSIS. Moreover, β-cell CaMKII inhibition dramatically exacerbates glucose intolerance following exposure to a high fat diet. The impairment of islet GSIS by β-cell CaMKII inhibition is not accompanied by changes in either glucose metabolism or the activities of KATP and voltage-gated potassium channels. However, glucose-stimulated Ca(2+) entry via voltage-dependent Ca(2+) channels is reduced in islet β-cells with CaMKII inhibition, as well as in primary wild-type β-cells treated with a peptide inhibitor of CaMKII. The levels of basal β-cell cytoplasmic Ca(2+) and of endoplasmic reticulum Ca(2+) stores are also decreased by CaMKII inhibition. In addition, CaMKII inhibition suppresses glucose-stimulated action potential firing frequency. These results reveal that CaMKII is a Ca(2+) sensor with a key role as a feed-forward stimulator of β-cell Ca(2+) signals that enhance GSIS under physiological and pathological conditions.
Collapse
Affiliation(s)
- Prasanna K Dadi
- From the Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232
| | | | | | | | | | | |
Collapse
|
15
|
Lalioti VS, Ilari A, O'Connell DJ, Poser E, Sandoval IV, Colotti G. Sorcin links calcium signaling to vesicle trafficking, regulates Polo-like kinase 1 and is necessary for mitosis. PLoS One 2014; 9:e85438. [PMID: 24427308 PMCID: PMC3888430 DOI: 10.1371/journal.pone.0085438] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/27/2013] [Indexed: 12/11/2022] Open
Abstract
Sorcin, a protein overexpressed in many multi-drug resistant cancers, dynamically localizes to distinct subcellular sites in 3T3-L1 fibroblasts during cell-cycle progression. During interphase sorcin is in the nucleus, in the plasma membrane, in endoplasmic reticulum (ER) cisternae, and in ER-derived vesicles localized along the microtubules. These vesicles are positive to RyR, SERCA, calreticulin and Rab10. At the beginning of mitosis, sorcin-containing vesicles associate with the mitotic spindle, and during telophase are concentrated in the cleavage furrow and, subsequently, in the midbody. Sorcin regulates dimensions and calcium load of the ER vesicles by inhibiting RYR and activating SERCA. Analysis of sorcin interactome reveals calcium-dependent interactions with many proteins, including Polo-like kinase 1 (PLK1), Aurora A and Aurora B kinases. Sorcin interacts physically with PLK1, is phosphorylated by PLK1 and induces PLK1 autophosphorylation, thereby regulating kinase activity. Knockdown of sorcin results in major defects in mitosis and cytokinesis, increase in the number of rounded polynucleated cells, blockage of cell progression in G2/M, apoptosis and cell death. Sorcin regulates calcium homeostasis and is necessary for the activation of mitosis and cytokinesis.
Collapse
Affiliation(s)
- Vasiliki S. Lalioti
- Centro de Biología Molecular Severo Ochoa, CSIC -Universidad Autónoma de Madrid, Departamento Biología Celular e Inmunología, Cantoblanco; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Andrea Ilari
- CNR-National Research Council of Italy, Institute of Molecular Biology and Pathology c/o Department of Biochemical Sciences “A. Rossi Fanelli”, University “Sapienza” P.le A.Moro 5, Rome, Italy
| | - David J. O'Connell
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Elena Poser
- Department of Biochemical Sciences “A. Rossi Fanelli”, University “Sapienza” P.le A.Moro 5, Rome, Italy
| | - Ignacio V. Sandoval
- Centro de Biología Molecular Severo Ochoa, CSIC -Universidad Autónoma de Madrid, Departamento Biología Celular e Inmunología, Cantoblanco; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Gianni Colotti
- CNR-National Research Council of Italy, Institute of Molecular Biology and Pathology c/o Department of Biochemical Sciences “A. Rossi Fanelli”, University “Sapienza” P.le A.Moro 5, Rome, Italy
| |
Collapse
|
16
|
Li X, Wang J, Liu J, Li Z, Wang Y, Xue Y, Li X, Cao H, Zheng SJ. Engagement of soluble resistance-related calcium binding protein (sorcin) with foot-and-mouth disease virus (FMDV) VP1 inhibits type I interferon response in cells. Vet Microbiol 2013; 166:35-46. [PMID: 23764275 DOI: 10.1016/j.vetmic.2013.04.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 04/13/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
Abstract
Foot-and-mouth disease (FMD) is an acute, highly contagious animal disease caused by FMD virus (FMDV). Although FMDV-induced immunosuppression in host has been well established, the exact molecular mechanism for such induction is not very clear. We report here the identification of FMDV VP1 as an interferon-suppressor by interacting with soluble resistance-related calcium binding protein (sorcin). We found that VP1 suppressed tumor necrosis factor (TNF)-α or Sendai virus (SeV)-induced type I interferon response in HEK293T cells, and that this suppression could be completely abolished by knockdown of sorcin by shRNA. Furthermore, overexpression of sorcin inhibited type I interferon response. Conversely, TNF- or SeV-induced type I interferon response increased when sorcin knocked down, leading to inhibition of vesicular stomatitis virus (VSV) replication. Thus, VP1-induced suppression of type I interferon is mediated by interacting with sorcin, a protein that appears to regulate cell response to viral infections.
Collapse
Affiliation(s)
- Xiaying Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ali R, Huang Y, Maher SE, Kim RW, Giordano FJ, Tellides G, Geirsson A. miR-1 mediated suppression of Sorcin regulates myocardial contractility through modulation of Ca2+ signaling. J Mol Cell Cardiol 2012; 52:1027-37. [DOI: 10.1016/j.yjmcc.2012.01.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 01/05/2012] [Accepted: 01/25/2012] [Indexed: 01/01/2023]
|
18
|
Sorcin, a potential therapeutic target for reversing multidrug resistance in cancer. J Physiol Biochem 2012; 68:281-7. [DOI: 10.1007/s13105-011-0140-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
19
|
Kesherwani V, Agrawal SK. Upregulation of RyR2 in hypoxic/reperfusion injury. J Neurotrauma 2011; 29:1255-65. [PMID: 21612318 DOI: 10.1089/neu.2011.1780] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Calcium influx into cells is responsible for initiating the cell death in neuronal tissue after hypoxic injury. Changes in intracellular calcium with subsequent increased expression of ryanodine receptor 2 (RyR2) are hypothesized to cause cell death after hypoxic injury. In the present study we have examined the time-dependent changes of RyR2 expression in hypoxic/reperfusion injury of spinal cord dorsal column. In this study we used western blotting, real time PCR (RT-PCR) and immunohistochemistry to examine changes in protein and gene expression of RyR2 after spinal cord injury (SCI) in the rat. Quantitative immunoblotting showed increase in the expression of RyR2 at 4 h during hypoxic/reperfusion injury of dorsal column. Moreover, RT-PCR showed 36-fold increases in mRNA of RyR2 after 4 h of hypoxic injury of white matter. By double immunofluorescence staining, RyR2 was localized on axons and astrocytes in the white matter of the spinal cord. After treatment with KN-62; (inhibitor of CaMKII) and SP600125 (inhibitor of JNK), there is a significant reduction in the expression of RyR2, indicating the role of these molecules in RyR2 regulation. Further removal of extracellular calcium does not have significant effect on RyR2 expression and phosphorylation of CaMKII, which was further confirmed by treatment with intracellular Ca(++) chelator BAPTA-AM. Finally, bioassay with quantitative analysis showed that treatment with inhibitor significantly reduced the cellular oxidative stress suggesting RyR2 is responsible for increased cellular oxidative load. In summary, we provide evidence that RyR2 gene and protein expression in astrocyte and axons is markedly increased after hypoxic injury. Further CaMKII/JNK pathway upregulates RyR2 expression after hypoxic injury. Therefore we propose that inhibitors of CaMKII/JNK pathway would reduce the cellular oxidative load and thereby have a neuroprotective role.
Collapse
Affiliation(s)
- Varun Kesherwani
- Section of Neurosurgery, Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198-6250, USA
| | | |
Collapse
|
20
|
Ojima K, Ono Y, Ottenheijm C, Hata S, Suzuki H, Granzier H, Sorimachi H. Non-proteolytic functions of calpain-3 in sarcoplasmic reticulum in skeletal muscles. J Mol Biol 2011; 407:439-49. [PMID: 21295580 DOI: 10.1016/j.jmb.2011.01.057] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/27/2011] [Accepted: 01/28/2011] [Indexed: 10/18/2022]
Abstract
Mutations in CAPN3/Capn3, which codes for skeletal muscle-specific calpain-3/p94 protease, are responsible for limb-girdle muscular dystrophy type 2A. Using "knock-in" (referred to as Capn3(CS/CS)) mice, in which the endogenous calpain-3 is replaced with a mutant calpain-3:C129S, which is a proteolytically inactive but structurally intact calpain-3, we demonstrated in our previous studies that loss of calpain-3 protease activity causes muscular dystrophy [Ojima, K. et al. (2010) J. Clin. Invest. 120, 2672-2683]. However, compared to Capn3-null (Capn3(-/-)) mice, Capn3(CS/CS) mice showed less severe dystrophic symptoms. This suggests that calpain-3 also has a non-proteolytic function. This study aimed to elucidate the non-proteolytic functions of calpain-3 through comparison of Capn3(CS/CS) mice with Capn3(-/-) mice. We found that calpain-3 is a component of the sarcoplasmic reticulum (SR), and that calpain-3 interacts with, but does not proteolyze, typical SR components such as ryanodine receptor and calsequestrin. Furthermore, Capn3(CS/CS) mice showed that the nonenzymatic role of calpain-3 is required for proper Ca(2+) efflux from the SR to cytosol during muscle contraction. These results indicate that calpain-3 functions as a nonenzymatic element for the Ca(2+) efflux machinery in the SR, rather than as a protease. Thus, defects in the nonenzymatic function of calpain-3 must also be involved in the pathogenesis of limb-girdle muscular dystrophy type 2A.
Collapse
Affiliation(s)
- Koichi Ojima
- Calpain Project, The Tokyo Metropolitan Institute of Medical Science (Rinshoken), 2-1-6 Kamikitaza, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|