1
|
Silva RRD, Motta GMDS, de Camargo MLA, Goroso DG, Puglisi EJL. Feed Forward Modeling: an efficient approach for mathematical modeling of the force frequency relationship in the rabbit isolated ventricular myocyte. Biomed Phys Eng Express 2024; 10:065020. [PMID: 39255811 DOI: 10.1088/2057-1976/ad78e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
Background and Objective. This study addresses the Force-Frequency relationship, a fundamental characteristic of cardiac muscle influenced byβ1-adrenergic stimulation. This relationship reveals that heart rate (HR) changes at the sinoatrial node lead to alterations in ventricular cell contractility, increasing the force and decreasing relaxation time for higher beat rates. Traditional models lacking this relationship offer an incomplete physiological depiction, impacting the interpretation of in silico experiment results. To improve this, we propose a new mathematical model for ventricular myocytes, named 'Feed Forward Modeling' (FFM).Methods. FFM adjusts model parameters like channel conductance and Ca2+pump affinity according to stimulation frequency, in contrast to fixed parameter values. An empirical sigmoid curve guided the adaptation of each parameter, integrated into a rabbit ventricular cell electromechanical model. Model validation was achieved by comparing simulated data with experimental current-voltage (I-V) curves for L-type Calcium and slow Potassium currents.Results. FFM-enhanced simulations align more closely with physiological behaviors, accurately reflecting inotropic and lusitropic responses. For instance, action potential duration at 90% repolarization (APD90) decreased from 206 ms at 1 Hz to 173 ms at 4 Hz using FFM, contrary to the conventional model, where APD90 increased, limiting high-frequency heartbeats. Peak force also showed an increase with FFM, from 8.5 mN mm-2at 1 Hz to 11.9 mN mm-2at 4 Hz, while it barely changed without FFM. Relaxation time at 50% of maximum force (t50) similarly improved, dropping from 114 ms at 1 Hz to 75.9 ms at 4 Hz with FFM, a change not observed without the model.Conclusion. The FFM approach offers computational efficiency, bypassing the need to model all beta-adrenergic pathways, thus facilitating large-scale simulations. The study recommends that frequency change experiments include fractional dosing of isoproterenol to better replicate heart conditionsin vivo.
Collapse
Affiliation(s)
- Robson Rodrigues da Silva
- Research and Technology Center, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil
- LabNECC, Center for Biomedical Engineering, University of Campinas, Campinas, SP, Brazil
| | | | | | - Daniel Gustavo Goroso
- Research and Technology Center, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil
| | - E José Luis Puglisi
- College of Medicine, California Northstate University, Elk Grove, Sacramento, CA, United States of America
| |
Collapse
|
2
|
Kato S, Himeno Y, Amano A. Mathematical analysis of left ventricular elastance with respect to afterload change during ejection phase. PLoS Comput Biol 2024; 20:e1011974. [PMID: 38635493 PMCID: PMC11025827 DOI: 10.1371/journal.pcbi.1011974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/07/2024] [Indexed: 04/20/2024] Open
Abstract
Since the left ventricle (LV) has pressure (Plv) and volume (Vlv), we can define LV elastance from the ratio between Plv and Vlv, termed as "instantaneous elastance." On the other hand, end-systolic elastance (Emax) is known to be a good index of LV contractility, which is measured by the slope of several end-systolic Plv-Vlv points obtained by using different loads. The word Emax originates from the assumption that LV elastance increases during the ejection phase and attains its maximum at the end-systole. From this concept, we can define another elastance determined by the slope of isochronous Plv-Vlv points, that is Plv-Vlv points at a certain time after the ejection onset time by using different loads. We refer to this elastance as "load-dependent elastance." To reveal the relation between these two elastances, we used a hemodynamic model that included a detailed ventricular myocyte contraction model. From the simulation results, we found that the isochronous Plv-Vlv points lay in one line and that the line slope corresponding to the load-dependent elastance slightly decreased during the ejection phase, which is quite different from the instantaneous elastance. Subsequently, we analyzed the mechanism determining these elastances from the model equations. We found that instantaneous elastance is directly related to contraction force generated by the ventricular myocyte, but the load-dependent elastance is determined by two factors: one is the transient characteristics of the cardiac cell, i.e., the velocity-dependent force drops characteristics in instantaneous shortening. The other is the force-velocity relation of the cardiac cell. We also found that the linear isochronous pressure-volume relation is based on the approximately linear relation between the time derivative of the cellular contraction force and the cellular shortening velocity that results from the combined characteristics of LV and aortic compliances.
Collapse
Affiliation(s)
- Shiro Kato
- Department of Bioinformatics, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Yukiko Himeno
- Department of Bioinformatics, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Akira Amano
- Department of Bioinformatics, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
3
|
Himeno Y, Zhang Y, Enomoto S, Nomura H, Yamamoto N, Kiyokawa S, Ujihara M, Muangkram Y, Noma A, Amano A. Ionic Mechanisms of Propagated Repolarization in a One-Dimensional Strand of Human Ventricular Myocyte Model. Int J Mol Sci 2023; 24:15378. [PMID: 37895058 PMCID: PMC10607672 DOI: 10.3390/ijms242015378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Although repolarization has been suggested to propagate in cardiac tissue both theoretically and experimentally, it has been challenging to estimate how and to what extent the propagation of repolarization contributes to relaxation because repolarization only occurs in the course of membrane excitation in normal hearts. We established a mathematical model of a 1D strand of 600 myocytes stabilized at an equilibrium potential near the plateau potential level by introducing a sustained component of the late sodium current (INaL). By applying a hyperpolarizing stimulus to a small part of the strand, we succeeded in inducing repolarization which propagated along the strand at a velocity of 1~2 cm/s. The ionic mechanisms responsible for repolarization at the myocyte level, i.e., the deactivation of both the INaL and the L-type calcium current (ICaL), and the activation of the rapid component of delayed rectifier potassium current (IKr) and the inward rectifier potassium channel (IK1), were found to be important for the propagation of repolarization in the myocyte strand. Using an analogy with progressive activation of the sodium current (INa) in the propagation of excitation, regenerative activation of the predominant magnitude of IK1 makes the myocytes at the wave front start repolarization in succession through the electrical coupling via gap junction channels.
Collapse
Affiliation(s)
- Yukiko Himeno
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan; (Y.Z.); (A.N.); (A.A.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Kohjitani H, Koda S, Himeno Y, Makiyama T, Yamamoto Y, Yoshinaga D, Wuriyanghai Y, Kashiwa A, Toyoda F, Zhang Y, Amano A, Noma A, Kimura T. Gradient-based parameter optimization method to determine membrane ionic current composition in human induced pluripotent stem cell-derived cardiomyocytes. Sci Rep 2022; 12:19110. [PMID: 36351955 PMCID: PMC9646722 DOI: 10.1038/s41598-022-23398-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Premature cardiac myocytes derived from human induced pluripotent stem cells (hiPSC-CMs) show heterogeneous action potentials (APs), probably due to different expression patterns of membrane ionic currents. We developed a method for determining expression patterns of functional channels in terms of whole-cell ionic conductance (Gx) using individual spontaneous AP configurations. It has been suggested that apparently identical AP configurations can be obtained using different sets of ionic currents in mathematical models of cardiac membrane excitation. If so, the inverse problem of Gx estimation might not be solved. We computationally tested the feasibility of the gradient-based optimization method. For a realistic examination, conventional 'cell-specific models' were prepared by superimposing the model output of AP on each experimental AP recorded by conventional manual adjustment of Gxs of the baseline model. Gxs of 4-6 major ionic currents of the 'cell-specific models' were randomized within a range of ± 5-15% and used as an initial parameter set for the gradient-based automatic Gxs recovery by decreasing the mean square error (MSE) between the target and model output. Plotting all data points of the MSE-Gx relationship during optimization revealed progressive convergence of the randomized population of Gxs to the original value of the cell-specific model with decreasing MSE. The absence of any other local minimum in the global search space was confirmed by mapping the MSE by randomizing Gxs over a range of 0.1-10 times the control. No additional local minimum MSE was obvious in the whole parameter space, in addition to the global minimum of MSE at the default model parameter.
Collapse
Affiliation(s)
- Hirohiko Kohjitani
- grid.258799.80000 0004 0372 2033Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigeya Koda
- grid.262576.20000 0000 8863 9909Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Yukiko Himeno
- grid.262576.20000 0000 8863 9909Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Takeru Makiyama
- grid.258799.80000 0004 0372 2033Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuta Yamamoto
- grid.258799.80000 0004 0372 2033Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daisuke Yoshinaga
- grid.258799.80000 0004 0372 2033Department Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yimin Wuriyanghai
- grid.258799.80000 0004 0372 2033Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Asami Kashiwa
- grid.258799.80000 0004 0372 2033Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Futoshi Toyoda
- grid.410827.80000 0000 9747 6806Department of Physiology, Shiga University of Medical Science, Otsu, Japan
| | - Yixin Zhang
- grid.262576.20000 0000 8863 9909Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Akira Amano
- grid.262576.20000 0000 8863 9909Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Akinori Noma
- grid.262576.20000 0000 8863 9909Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Takeshi Kimura
- grid.258799.80000 0004 0372 2033Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
5
|
Musgrave JH, Han JC, Ward ML, Taberner AJ, Loiselle DS, Tran K. Uncovering cross-bridge properties that underlie the cardiac active complex modulus using model linearisation techniques. Math Biosci 2022; 353:108922. [DOI: 10.1016/j.mbs.2022.108922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/12/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
6
|
Jeon YK, Kwon JW, Jang J, Choi SW, Woo J, Cho SH, Yu BI, Chun YS, Youm JB, Zhang YH, Kim SJ. Lower troponin expression in the right ventricle of rats explains interventricular differences in E-C coupling. J Gen Physiol 2022; 154:212990. [PMID: 35099502 PMCID: PMC8823606 DOI: 10.1085/jgp.202112949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
Despite distinctive functional and anatomic differences, a precise understanding of the cardiac interventricular differences in excitation–contraction (E–C) coupling mechanisms is still lacking. Here, we directly compared rat right and left cardiomyocytes (RVCM and LVCM). Whole-cell patch clamp, the IonOptix system, and fura-2 fluorimetry were used to measure electrical properties (action potential and ionic currents), single-cell contractility, and cytosolic Ca2+ ([Ca2+]i), respectively. Myofilament proteins were analyzed by immunoblotting. RVCM showed significantly shorter action potential duration (APD) and higher density of transient outward K+ current (Ito). However, the triggered [Ca2+]i change (Ca2+ transient) was not different, while the decay rate of the Ca2+ transient was slower in RVCM. Although the relaxation speed was also slower, the sarcomere shortening amplitude (ΔSL) was smaller in RVCM. SERCA activity was ∼60% lower in RVCM, which is partly responsible for the slower decay of the Ca2+ transient. Immunoblot analysis revealed lower expression of the cardiac troponin complex (cTn) in RVCM, implying a smaller Ca2+ buffering capacity (κS), which was proved by in situ analysis. The introduction of these new levels of cTn, Ito, and SERCA into a mathematical model of rat LVCM reproduced the similar Ca2+ transient, slower Ca2+ decay, shorter APD, and smaller ΔSL of RVCM. Taken together, these data show reduced expression of cTn proteins in the RVCM, which provides an explanation for the interventricular difference in the E–C coupling kinetics.
Collapse
Affiliation(s)
- Young Keul Jeon
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Won Kwon
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jihyun Jang
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Surgery, Center for Vascular and Inflammatory Disease, University of Maryland School of Medicine, Baltimore, MD
| | - Seong Woo Choi
- Department of Physiology and Ion Channel Disease Research Center, Dongguk University College of Medicine, Seoul, Republic of Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joohan Woo
- Department of Physiology and Ion Channel Disease Research Center, Dongguk University College of Medicine, Seoul, Republic of Korea
| | - Su Han Cho
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Byeong Il Yu
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yang Sook Chun
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Boum Youm
- Cardiovascular and Metabolic Disease Center, Department of Physiology, College of Medicine, Inje University, Busan, Republic of Korea
| | - Yin Hua Zhang
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Yanbian University Hospital, Yanji, China.,Institute of Cardiovascular Sciences, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester, UK
| | - Sung Joon Kim
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Republic of Korea
| |
Collapse
|
7
|
Short B. Troponin levels make a difference. J Gen Physiol 2022; 154:e202213119. [PMID: 35179560 PMCID: PMC8906392 DOI: 10.1085/jgp.202213119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
JGP study reveals that lower troponin expression in the right ventricle underlies interventricular differences in excitation-contraction coupling.
Collapse
|
8
|
Forouzandehmehr M, Koivumäki JT, Hyttinen J, Paci M. A mathematical model of hiPSC cardiomyocytes electromechanics. Physiol Rep 2021; 9:e15124. [PMID: 34825519 PMCID: PMC8617339 DOI: 10.14814/phy2.15124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 01/21/2023] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are becoming instrumental in cardiac research, human-based cell level cardiotoxicity tests, and developing patient-specific care. As one of the principal functional readouts is contractility, we propose a novel electromechanical hiPSC-CM computational model named the hiPSC-CM-CE. This model comprises a reparametrized version of contractile element (CE) by Rice et al., 2008, with a new passive force formulation, integrated into a hiPSC-CM electrophysiology formalism by Paci et al. in 2020. Our simulated results were validated against in vitro data reported for hiPSC-CMs at matching conditions from different labs. Specifically, key action potential (AP) and calcium transient (CaT) biomarkers simulated by the hiPSC-CM-CE model were within the experimental ranges. On the mechanical side, simulated cell shortening, contraction-relaxation kinetic indices (RT50 and RT25 ), and the amplitude of tension fell within the experimental intervals. Markedly, as an inter-scale analysis, correct classification of the inotropic effects due to non-cardiomyocytes in hiPSC-CM tissues was predicted on account of the passive force expression introduced to the CE. Finally, the physiological inotropic effects caused by Verapamil and Bay-K 8644 and the aftercontractions due to the early afterdepolarizations (EADs) were simulated and validated against experimental data. In the future, the presented model can be readily expanded to take in pharmacological trials and genetic mutations, such as those involved in hypertrophic cardiomyopathy, and study arrhythmia trigger mechanisms.
Collapse
Affiliation(s)
| | - Jussi T. Koivumäki
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Jari Hyttinen
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Michelangelo Paci
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| |
Collapse
|
9
|
Parikh J, Rumbell T, Butova X, Myachina T, Acero JC, Khamzin S, Solovyova O, Kozloski J, Khokhlova A, Gurev V. Generative adversarial networks for construction of virtual populations of mechanistic models: simulations to study Omecamtiv Mecarbil action. J Pharmacokinet Pharmacodyn 2021; 49:51-64. [PMID: 34716531 PMCID: PMC8837558 DOI: 10.1007/s10928-021-09787-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022]
Abstract
Biophysical models are increasingly used to gain mechanistic insights by fitting and reproducing experimental and clinical data. The inherent variability in the recorded datasets, however, presents a key challenge. In this study, we present a novel approach, which integrates mechanistic modeling and machine learning to analyze in vitro cardiac mechanics data and solve the inverse problem of model parameter inference. We designed a novel generative adversarial network (GAN) and employed it to construct virtual populations of cardiac ventricular myocyte models in order to study the action of Omecamtiv Mecarbil (OM), a positive cardiac inotrope. Populations of models were calibrated from mechanically unloaded myocyte shortening recordings obtained in experiments on rat myocytes in the presence and absence of OM. The GAN was able to infer model parameters while incorporating prior information about which model parameters OM targets. The generated populations of models reproduced variations in myocyte contraction recorded during in vitro experiments and provided improved understanding of OM’s mechanism of action. Inverse mapping of the experimental data using our approach suggests a novel action of OM, whereby it modifies interactions between myosin and tropomyosin proteins. To validate our approach, the inferred model parameters were used to replicate other in vitro experimental protocols, such as skinned preparations demonstrating an increase in calcium sensitivity and a decrease in the Hill coefficient of the force–calcium (F–Ca) curve under OM action. Our approach thereby facilitated the identification of the mechanistic underpinnings of experimental observations and the exploration of different hypotheses regarding variability in this complex biological system.
Collapse
Affiliation(s)
| | | | - Xenia Butova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences (UB RAS), Yekaterinburg, Russia
| | - Tatiana Myachina
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences (UB RAS), Yekaterinburg, Russia
| | - Jorge Corral Acero
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Svyatoslav Khamzin
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences (UB RAS), Yekaterinburg, Russia
| | - Olga Solovyova
- Ural Federal University, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences (UB RAS), Yekaterinburg, Russia
| | | | - Anastasia Khokhlova
- Ural Federal University, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences (UB RAS), Yekaterinburg, Russia
| | | |
Collapse
|
10
|
Kosta S, Dauby PC. Frank-Starling mechanism, fluid responsiveness, and length-dependent activation: Unravelling the multiscale behaviors with an in silico analysis. PLoS Comput Biol 2021; 17:e1009469. [PMID: 34634040 PMCID: PMC8504729 DOI: 10.1371/journal.pcbi.1009469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022] Open
Abstract
The Frank-Starling mechanism is a fundamental regulatory property which underlies the cardiac output adaptation to venous filling. Length-dependent activation is generally assumed to be the cellular origin of this mechanism. At the heart scale, it is commonly admitted that an increase in preload (ventricular filling) leads to an increased cellular force and an increased volume of ejected blood. This explanation also forms the basis for vascular filling therapy. It is actually difficult to unravel the exact nature of the relationship between length-dependent activation and the Frank-Starling mechanism, as three different scales (cellular, ventricular and cardiovascular) are involved. Mathematical models are powerful tools to overcome these limitations. In this study, we use a multiscale model of the cardiovascular system to untangle the three concepts (length-dependent activation, Frank-Starling, and vascular filling). We first show that length-dependent activation is required to observe both the Frank-Starling mechanism and a positive response to high vascular fillings. Our results reveal a dynamical length dependent activation-driven response to changes in preload, which involves interactions between the cellular, ventricular and cardiovascular levels and thus highlights fundamentally multiscale behaviors. We show however that the cellular force increase is not enough to explain the cardiac response to rapid changes in preload. We also show that the absence of fluid responsiveness is not related to a saturating Frank-Starling effect. As it is challenging to study those multiscale phenomena experimentally, this computational approach contributes to a more comprehensive knowledge of the sophisticated length-dependent properties of cardiac muscle.
Collapse
Affiliation(s)
- Sarah Kosta
- GIGA–In Silico Medicine, University of Liège, Liège, Belgium
| | - Pierre C. Dauby
- GIGA–In Silico Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
11
|
Yoneda K, Okada JI, Watanabe M, Sugiura S, Hisada T, Washio T. A Multiple Step Active Stiffness Integration Scheme to Couple a Stochastic Cross-Bridge Model and Continuum Mechanics for Uses in Both Basic Research and Clinical Applications of Heart Simulation. Front Physiol 2021; 12:712816. [PMID: 34483965 PMCID: PMC8414591 DOI: 10.3389/fphys.2021.712816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022] Open
Abstract
In a multiscale simulation of a beating heart, the very large difference in the time scales between rapid stochastic conformational changes of contractile proteins and deterministic macroscopic outcomes, such as the ventricular pressure and volume, have hampered the implementation of an efficient coupling algorithm for the two scales. Furthermore, the consideration of dynamic changes of muscle stiffness caused by the cross-bridge activity of motor proteins have not been well established in continuum mechanics. To overcome these issues, we propose a multiple time step scheme called the multiple step active stiffness integration scheme (MusAsi) for the coupling of Monte Carlo (MC) multiple steps and an implicit finite element (FE) time integration step. The method focuses on the active tension stiffness matrix, where the active tension derivatives concerning the current displacements in the FE model are correctly integrated into the total stiffness matrix to avoid instability. A sensitivity analysis of the number of samples used in the MC model and the combination of time step sizes confirmed the accuracy and robustness of MusAsi, and we concluded that the combination of a 1.25 ms FE time step and 0.005 ms MC multiple steps using a few hundred motor proteins in each finite element was appropriate in the tradeoff between accuracy and computational time. Furthermore, for a biventricular FE model consisting of 45,000 tetrahedral elements, one heartbeat could be computed within 1.5 h using 320 cores of a conventional parallel computer system. These results support the practicality of MusAsi for uses in both the basic research of the relationship between molecular mechanisms and cardiac outputs, and clinical applications of perioperative prediction.
Collapse
Affiliation(s)
- Kazunori Yoneda
- Section Solutions Division, Healthcare Solutions Development Unit, Fujitsu Japan Ltd., Tokyo, Japan
| | - Jun-ichi Okada
- UT-Heart Inc., Kashiwa, Japan
- Future Center Initiative, University of Tokyo, Kashiwa, Japan
| | - Masahiro Watanabe
- Section Solutions Division, Healthcare Solutions Development Unit, Fujitsu Japan Ltd., Tokyo, Japan
| | | | | | - Takumi Washio
- UT-Heart Inc., Kashiwa, Japan
- Future Center Initiative, University of Tokyo, Kashiwa, Japan
| |
Collapse
|
12
|
Rodrigues da Silva R, Baptista de Souza Filho O, Bassani JWM, Bassani RA. The ForceLAB simulator: Application to the comparison of current models of cardiomyocyte contraction. Comput Biol Med 2021; 131:104240. [PMID: 33556894 DOI: 10.1016/j.compbiomed.2021.104240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Mathematical models are useful tools in the study of physiological phenomena. However, due to differences in assumptions and formulations, discrepancy in simulations may occur. Among the models for cardiomyocyte contraction based on Huxley's cross-bridge cycling, those proposed by Negroni and Lascano (NL) and Rice et al. (RWH) are the most frequently used. This study was aimed at developing a computational tool, ForceLAB, which allows implementing different contraction models and modifying several functional parameters. As an application, electrically-stimulated twitches triggered by an equal Ca2+ input and steady-state force x pCa relationship (pCa = -log of the molar free Ca2+ concentration) simulated with the NL and RWH models were compared. The equilibrium Ca2+-troponin C (TnC) dissociation constant (Kd) was modified by changing either the association (kon) or the dissociation (koff) rate constant. With the NL model, raising Kd by either maneuver decreased monotonically twitch amplitude and duration, as expected. With the RWH model, in contrast, the same Kd variation caused increase or decrease of peak force depending on which rate constant was modified. Additionally, force x pCa curves simulated using Ca2+ binding constants estimated in cardiomyocytes bearing wild-type and mutated TnC were compared to curves previously determined in permeabilized fibers. Mutations increased kon and koff, and decreased Kd. Both models produced curves fairly comparable to the experimental ones, although sensitivity to Ca2+ was greater, especially with RWH model. The NL model reproduced slightly better the qualitative changes associated with the mutations. It is expected that this tool can be useful for teaching and investigation.
Collapse
Affiliation(s)
- Robson Rodrigues da Silva
- Research and Technology Center, University of Mogi Das Cruzes, Mogi Das Cruzes, SP, Brazil; LabNECC, Center for Biomedical Engineering, University of Campinas, Campinas, SP, Brazil.
| | | | - José Wilson Magalhães Bassani
- LabNECC, Center for Biomedical Engineering, University of Campinas, Campinas, SP, Brazil; Department of Biomedical Engineering, School of Electrical and Computing Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Rosana Almada Bassani
- LabNECC, Center for Biomedical Engineering, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
13
|
Nguyen TD, Kadri OE, Voronov RS. An Introductory Overview of Image-Based Computational Modeling in Personalized Cardiovascular Medicine. Front Bioeng Biotechnol 2020; 8:529365. [PMID: 33102452 PMCID: PMC7546862 DOI: 10.3389/fbioe.2020.529365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases account for the number one cause of deaths in the world. Part of the reason for such grim statistics is our limited understanding of the underlying mechanisms causing these devastating pathologies, which is made difficult by the invasiveness of the procedures associated with their diagnosis (e.g., inserting catheters into the coronal artery to measure blood flow to the heart). Likewise, it is also difficult to design and test assistive devices without implanting them in vivo. However, with the recent advancements made in biomedical scanning technologies and computer simulations, image-based modeling (IBM) has arisen as the next logical step in the evolution of non-invasive patient-specific cardiovascular medicine. Yet, due to its novelty, it is still relatively unknown outside of the niche field. Therefore, the goal of this manuscript is to review the current state-of-the-art and the limitations of the methods used in this area of research, as well as their applications to personalized cardiovascular investigations and treatments. Specifically, the modeling of three different physics – electrophysiology, biomechanics and hemodynamics – used in the cardiovascular IBM is discussed in the context of the physiology that each one of them describes and the mechanisms of the underlying cardiac diseases that they can provide insight into. Only the “bare-bones” of the modeling approaches are discussed in order to make this introductory material more accessible to an outside observer. Additionally, the imaging methods, the aspects of the unique cardiac anatomy derived from them, and their relation to the modeling algorithms are reviewed. Finally, conclusions are drawn about the future evolution of these methods and their potential toward revolutionizing the non-invasive diagnosis, virtual design of treatments/assistive devices, and increasing our understanding of these lethal cardiovascular diseases.
Collapse
Affiliation(s)
- Thanh Danh Nguyen
- Otto H. York Department of Chemical and Materials Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Olufemi E Kadri
- Otto H. York Department of Chemical and Materials Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States.,UC-P&G Simulation Center, University of Cincinnati, Cincinnati, OH, United States
| | - Roman S Voronov
- Otto H. York Department of Chemical and Materials Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States.,Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
14
|
Powers JD, Kooiker KB, Mason AB, Teitgen AE, Flint GV, Tardiff JC, Schwartz SD, McCulloch AD, Regnier M, Davis J, Moussavi-Harami F. Modulating the tension-time integral of the cardiac twitch prevents dilated cardiomyopathy in murine hearts. JCI Insight 2020; 5:142446. [PMID: 32931484 PMCID: PMC7605524 DOI: 10.1172/jci.insight.142446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is often associated with sarcomere protein mutations that confer reduced myofilament tension–generating capacity. We demonstrated that cardiac twitch tension-time integrals can be targeted and tuned to prevent DCM remodeling in hearts with contractile dysfunction. We employed a transgenic murine model of DCM caused by the D230N-tropomyosin (Tm) mutation and designed a sarcomere-based intervention specifically targeting the twitch tension-time integral of D230N-Tm hearts using multiscale computational models of intramolecular and intermolecular interactions in the thin filament and cell-level contractile simulations. Our models predicted that increasing the calcium sensitivity of thin filament activation using the cardiac troponin C (cTnC) variant L48Q can sufficiently augment twitch tension-time integrals of D230N-Tm hearts. Indeed, cardiac muscle isolated from double-transgenic hearts expressing D230N-Tm and L48Q cTnC had increased calcium sensitivity of tension development and increased twitch tension-time integrals compared with preparations from hearts with D230N-Tm alone. Longitudinal echocardiographic measurements revealed that DTG hearts retained normal cardiac morphology and function, whereas D230N-Tm hearts developed progressive DCM. We present a computational and experimental framework for targeting molecular mechanisms governing the twitch tension of cardiomyopathic hearts to counteract putative mechanical drivers of adverse remodeling and open possibilities for tension-based treatments of genetic cardiomyopathies. Tuning the molecular mechanisms that govern the twitch tension of cardiomyopathic hearts counteracts mechanical drivers of adverse remodeling.
Collapse
Affiliation(s)
- Joseph D Powers
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, Washington, USA.,Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Kristina B Kooiker
- Division of Cardiology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Allison B Mason
- Department of Chemistry and Biochemistry, College of Science, and
| | - Abigail E Teitgen
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Galina V Flint
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, Washington, USA
| | - Jil C Tardiff
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, Arizona, USA
| | | | - Andrew D McCulloch
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA.,Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Michael Regnier
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, Washington, USA
| | - Jennifer Davis
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, Washington, USA.,Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA
| | - Farid Moussavi-Harami
- Division of Cardiology, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
15
|
Mullins PD, Bondarenko VE. Mathematical model for β1-adrenergic regulation of the mouse ventricular myocyte contraction. Am J Physiol Heart Circ Physiol 2020; 318:H264-H282. [DOI: 10.1152/ajpheart.00492.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The β1-adrenergic regulation of cardiac myocyte contraction plays an important role in regulating heart function. Activation of this system leads to an increased heart rate and stronger myocyte contraction. However, chronic stimulation of the β1-adrenergic signaling system can lead to cardiac hypertrophy and heart failure. To understand the mechanisms of action of β1-adrenoceptors, a mathematical model of cardiac myocyte contraction that includes the β1-adrenergic system was developed and studied. The model was able to simulate major experimental protocols for measurements of steady-state force-calcium relationships, cross-bridge release rate and force development rate, force-velocity relationship, and force redevelopment rate. It also reproduced quite well frequency and isoproterenol dependencies for intracellular Ca2+ concentration ([Ca2+]i) transients, total contraction force, and sarcomere shortening. The mathematical model suggested the mechanisms of increased contraction force and myocyte shortening on stimulation of β1-adrenergic receptors is due to phosphorylation of troponin I and myosin-binding protein C and increased [Ca2+]i transient resulting from activation of the β1-adrenergic signaling system. The model was used to simulate work-loop contractions and estimate the power during the cardiac cycle as well as the effects of 4-aminopyridine and tedisamil on the myocyte contraction. The developed mathematical model can be used further for simulations of contraction of ventricular myocytes from genetically modified mice and myocytes from mice with chronic cardiac diseases. NEW & NOTEWORTHY A new mathematical model of mouse ventricular myocyte contraction that includes the β1-adrenergic system was developed. The model simulated major experimental protocols for myocyte contraction and predicted the effects of 4-aminopyridine and tedisamil on the myocyte contraction. The model also allowed for simulations of work-loop contractions and estimation of the power during the cardiac cycle.
Collapse
Affiliation(s)
- Paula D. Mullins
- Department of Mathematics, University of North Georgia, Blue Ridge, Georgia
- Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Vladimir E. Bondarenko
- Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
16
|
Muangkram Y, Honda M, Amano A, Himeno Y, Noma A. Exploring the role of fatigue-related metabolite activity during high-intensity exercise using a simplified whole-body mathematical model. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
17
|
Passini E, Trovato C, Morissette P, Sannajust F, Bueno‐Orovio A, Rodriguez B. Drug-induced shortening of the electromechanical window is an effective biomarker for in silico prediction of clinical risk of arrhythmias. Br J Pharmacol 2019; 176:3819-3833. [PMID: 31271649 PMCID: PMC6780030 DOI: 10.1111/bph.14786] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/21/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Early identification of drug-induced cardiac adverse events is key in drug development. Human-based computer models are emerging as an effective approach, complementary to in vitro and animal models. Drug-induced shortening of the electromechanical window has been associated with increased risk of arrhythmias. This study investigates the potential of a cellular surrogate for the electromechanical window (EMw) for prediction of pro-arrhythmic cardiotoxicity, and its underlying ionic mechanisms, using human-based computer models. EXPERIMENTAL APPROACH In silico drug trials for 40 reference compounds were performed, testing up to 100-fold the therapeutic concentrations (EFTPCmax ) and using a control population of human ventricular action potential (AP) models, optimised to capture pro-arrhythmic ionic profiles. EMw was calculated for each model in the population as the difference between AP and Ca2+ transient durations at 90%. Drug-induced changes in the EMw and occurrence of repolarisation abnormalities (RA) were quantified. KEY RESULTS Drugs with clinical risk of Torsade de Pointes arrhythmias induced a concentration-dependent EMw shortening, while safe drugs lead to increase or small change in EMw. Risk predictions based on EMw shortening achieved 90% accuracy at 10× EFTPCmax , whereas RA-based predictions required 100× EFTPCmax to reach the same accuracy. As it is dependent on Ca2+ transient, the EMw was also more sensitive than AP prolongation in distinguishing between pure hERG blockers and multichannel compounds also blocking the calcium current. CONCLUSION AND IMPLICATIONS The EMw is an effective biomarker for in silico predictions of drug-induced clinical pro-arrhythmic risk, particularly for compounds with multichannel blocking action.
Collapse
Affiliation(s)
- Elisa Passini
- Department of Computer ScienceUniversity of OxfordOxfordUK
| | | | - Pierre Morissette
- SALAR, Safety and Exploratory Pharmacology Department, Merck Research LaboratoriesMerck & Co., Inc.West PointPAUSA
| | - Frederick Sannajust
- SALAR, Safety and Exploratory Pharmacology Department, Merck Research LaboratoriesMerck & Co., Inc.West PointPAUSA
| | | | | |
Collapse
|
18
|
Syomin FA, Zberia MV, Tsaturyan AK. Multiscale simulation of the effects of atrioventricular block and valve diseases on heart performance. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3216. [PMID: 31083764 DOI: 10.1002/cnm.3216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/12/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
A new mathematical model of the cardiovascular system is proposed. The left ventricle is described by an axisymmetric multiscale model where myocardium is treated as an incompressible transversely isotropic medium with a realistic distribution of fibre orientation. Active tension and its regulation by Ca2+ ions are described by our recent kinetic model. A lumped parameter model is used for the simulation of blood circulation, in which the left and right atria and the right ventricle are described by a system of ordinary differential equations for active pressure-volume relationships. The stress and strain of the left ventricle myocardium were calculated by the finite element method implemented by the authors. The changes in the haemodynamics upon changes in preload of a healthy heart, upon physical exercise, and in case of atrioventricular block with different types of arrhythmias were simulated. To simulate the effect of stenosis or regurgitation of the aortic or mitral valves, the hydraulic and inertial flow resistances of the heart valves were set as functions of their orifice areas. The model reproduced a number of phenomena observed in clinical practice, including the classification of the severity of valve disease.
Collapse
Affiliation(s)
- Fyodor A Syomin
- Department of Biomechanics, Institute of Mechanics, M.V. Lomonosov Moscow State University, 1 Mitchurinsky Prosp., Moscow, 119192, Russian Federation
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| | - Maria V Zberia
- Department of Biomechanics, Institute of Mechanics, M.V. Lomonosov Moscow State University, 1 Mitchurinsky Prosp., Moscow, 119192, Russian Federation
| | - Andrey K Tsaturyan
- Department of Biomechanics, Institute of Mechanics, M.V. Lomonosov Moscow State University, 1 Mitchurinsky Prosp., Moscow, 119192, Russian Federation
| |
Collapse
|
19
|
Muangkram Y, Noma A, Amano A. A new myofilament contraction model with ATP consumption for ventricular cell model. J Physiol Sci 2018; 68:541-554. [PMID: 28770433 PMCID: PMC10717283 DOI: 10.1007/s12576-017-0560-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 07/14/2017] [Indexed: 01/14/2023]
Abstract
A new contraction model of cardiac muscle was developed by combining previously described biochemical and biophysical models. The biochemical component of the new contraction model represents events in the presence of Ca2+-crossbridge attachment and power stroke following inorganic phosphate release, detachment evoked by the replacement of ADP by ATP, ATP hydrolysis, and recovery stroke. The biophysical component focuses on Ca2+ activation and force (F b) development assuming an equivalent crossbridge. The new model faithfully incorporates the major characteristics of the biochemical and biophysical models, such as F b activation by transient Ca2+ ([Ca2+]-F b), [Ca2+]-ATP hydrolysis relations, sarcomere length-F b, and F b recovery after jumps in length under the isometric mode and upon sarcomere shortening after a rapid release of mechanical load under the isotonic mode together with the load-velocity relationship. ATP consumption was obtained for all responses. When incorporated in a ventricular cell model, the contraction model was found to share approximately 60% of the total ATP usage in the cell model.
Collapse
Affiliation(s)
- Yuttamol Muangkram
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Akinori Noma
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Akira Amano
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
20
|
Experimental assessment of a myocyte-based multiscale model of cardiac contractile dysfunction. J Theor Biol 2018; 456:16-28. [PMID: 30063925 DOI: 10.1016/j.jtbi.2018.07.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 07/09/2018] [Accepted: 07/27/2018] [Indexed: 12/22/2022]
Abstract
Cardiac contractile dysfunction (CD) is a multifactorial syndrome caused by different acute or progressive diseases which hamper assessing the role of the underlying mechanisms characterizing a defined pathological condition. Mathematical modeling can help to understand the processes involved in CD and analyze their relative impact in the overall response. The aim of this study was thus to use a myocyte-based multiscale model of the circulatory system to simulate the effects of halothane, a volatile anesthetic which at high doses elicits significant acute CD both in isolated myocytes and intact animals. Ventricular chambers built using a human myocyte model were incorporated into a whole circulatory system represented by resistances and capacitances. Halothane-induced decreased sarco(endo)plasmic reticulum Ca2+ (SERCA2a) reuptake pump, transient outward K+ (Ito), Na+-Ca2+ exchanger (INCX) and L-type Ca2+ channel (ICaL) currents, together with ryanodine receptor (RyR2) increased open probability (Po) and reduced myofilament Ca2+ sensitivity, reproduced equivalent decreased action potential duration at 90% repolarization and intracellular Ca2+ concentration at the myocyte level reported in the literature. In the whole circulatory system, model reduction in mean arterial pressure, cardiac output and regional wall thickening fraction was similar to experimental results in open-chest sheep subjected to acute halothane overdose. Effective model performance indicates that the model structure could be used to study other changes in myocyte targets eliciting CD.
Collapse
|
21
|
Paci M, Pölönen RP, Cori D, Penttinen K, Aalto-Setälä K, Severi S, Hyttinen J. Automatic Optimization of an in Silico Model of Human iPSC Derived Cardiomyocytes Recapitulating Calcium Handling Abnormalities. Front Physiol 2018; 9:709. [PMID: 29997516 PMCID: PMC6028769 DOI: 10.3389/fphys.2018.00709] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/22/2018] [Indexed: 12/20/2022] Open
Abstract
The growing importance of human induced pluripotent stem cell-derived cardiomyoyctes (hiPSC-CMs), as patient-specific and disease-specific models for studying cellular cardiac electrophysiology or for preliminary cardiotoxicity tests, generated better understanding of hiPSC-CM biophysical mechanisms and great amount of action potential and calcium transient data. In this paper, we propose a new hiPSC-CM in silico model, with particular attention to Ca2+ handling. We used (i) the hiPSC-CM Paci2013 model as starting point, (ii) a new dataset of Ca2+ transient measurements to tune the parameters of the inward and outward Ca2+ fluxes of sarcoplasmic reticulum, and (iii) an automatic parameter optimization to fit action potentials and Ca2+ transients. The Paci2018 model simulates, together with the typical hiPSC-CM spontaneous action potentials, more refined Ca2+ transients and delayed afterdepolarizations-like abnormalities, which the old Paci2013 was not able to predict due to its mathematical formulation. The Paci2018 model was validated against (i) the same current blocking experiments used to validate the Paci2013 model, and (ii) recently published data about effects of different extracellular ionic concentrations. In conclusion, we present a new and more versatile in silico model, which will provide a platform for modeling the effects of drugs or mutations that affect Ca2+ handling in hiPSC-CMs.
Collapse
Affiliation(s)
- Michelangelo Paci
- Faculty of Biomedical Sciences and Engineering, BioMediTech Institute, Tampere University of Technology, Tampere, Finland
| | - Risto-Pekka Pölönen
- Faculty of Medicine and Life Sciences, BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Dario Cori
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, Italy
| | - Kirsi Penttinen
- Faculty of Medicine and Life Sciences, BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Katriina Aalto-Setälä
- Faculty of Medicine and Life Sciences, BioMediTech Institute, University of Tampere, Tampere, Finland.,Heart Hospital, Tampere University Hospital, Tampere, Finland
| | - Stefano Severi
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, Italy
| | - Jari Hyttinen
- Faculty of Biomedical Sciences and Engineering, BioMediTech Institute, Tampere University of Technology, Tampere, Finland
| |
Collapse
|
22
|
Washio T, Hisada T, Shintani SA, Higuchi H. Analysis of spontaneous oscillations for a three-state power-stroke model. Phys Rev E 2017; 95:022411. [PMID: 28297930 DOI: 10.1103/physreve.95.022411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Indexed: 11/07/2022]
Abstract
Our study considers the mechanism of the spontaneous oscillations of molecular motors that are driven by the power stroke principle by applying linear stability analysis around the stationary solution. By representing the coupling equation of microscopic molecular motor dynamics and mesoscopic sarcomeric dynamics by a rank-1 updated matrix system, we derived the analytical representations of the eigenmodes of the Jacobian matrix that cause the oscillation. Based on these analytical representations, we successfully derived the essential conditions for the oscillation in terms of the rate constants of the power stroke and the reversal stroke transitions of the molecular motor. Unlike the two-state model, in which the dependence of the detachment rates on the motor coordinates or the applied forces on the motors plays a key role for the oscillation, our three-state power stroke model demonstrates that the dependence of the rate constants of the power and reversal strokes on the strains in the elastic elements in the motor molecules plays a key role, where these rate constants are rationally determined from the free energy available for the power stroke, the stiffness of the elastic element in the molecular motor, and the working stroke size. By applying the experimentally confirmed values to the free energy, the stiffness, and the working stroke size, our numerical model reproduces well the experimentally observed oscillatory behavior. Furthermore, our analysis shows that two eigenmodes with real positive eigenvalues characterize the oscillatory behavior, where the eigenmode with the larger eigenvalue indicates the transient of the system of the quick sarcomeric lengthening induced by the collective reversal strokes, and the smaller eigenvalue correlates with the speed of sarcomeric shortening, which is much slower than lengthening. Applying the perturbation analyses with primal physical parameters, we find that these two real eigenvalues occur on two branches derived from a merge point of a pair of complex-conjugate eigenvalues generated by Hopf bifurcation.
Collapse
Affiliation(s)
- Takumi Washio
- Graduate School of Frontier Sciences, The University of Tokyo, 178-4 Wakashiba, Kashiwa, Chiba 277-0871, Japan
| | - Toshiaki Hisada
- Graduate School of Frontier Sciences, The University of Tokyo, 178-4 Wakashiba, Kashiwa, Chiba 277-0871, Japan
| | - Seine A Shintani
- Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideo Higuchi
- Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
23
|
Kosta S, Negroni J, Lascano E, Dauby PC. Multiscale model of the human cardiovascular system: Description of heart failure and comparison of contractility indices. Math Biosci 2016; 284:71-79. [PMID: 27283921 DOI: 10.1016/j.mbs.2016.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/25/2016] [Accepted: 05/28/2016] [Indexed: 01/17/2023]
Abstract
A multiscale model of the cardiovascular system is presented. Hemodynamics is described by a lumped parameter model, while heart contraction is described at the cellular scale. An electrophysiological model and a mechanical model were coupled and adjusted so that the pressure and volume of both ventricles are linked to the force and length of a half-sarcomere. Particular attention was paid to the extreme values of the sarcomere length, which must keep physiological values. This model is able to reproduce healthy behavior, preload variations experiments, and ventricular failure. It also allows to compare the relevance of standard cardiac contractility indices. This study shows that the theoretical gold standard for assessing cardiac contractility, namely the end-systolic elastance, is actually load-dependent and therefore not a reliable index of cardiac contractility.
Collapse
Affiliation(s)
- S Kosta
- GIGA - In Silico Medicine, University of Liege, Liege, Belgium.
| | - J Negroni
- Department of Comparative Cellular and Molecular Biology, Favaloro University, Buenos Aires, Argentina
| | - E Lascano
- Department of Comparative Cellular and Molecular Biology, Favaloro University, Buenos Aires, Argentina
| | - P C Dauby
- GIGA - In Silico Medicine, University of Liege, Liege, Belgium.
| |
Collapse
|
24
|
A Tension-Based Model Distinguishes Hypertrophic versus Dilated Cardiomyopathy. Cell 2016; 165:1147-1159. [PMID: 27114035 DOI: 10.1016/j.cell.2016.04.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 01/13/2016] [Accepted: 03/30/2016] [Indexed: 12/18/2022]
Abstract
The heart either hypertrophies or dilates in response to familial mutations in genes encoding sarcomeric proteins, which are responsible for contraction and pumping. These mutations typically alter calcium-dependent tension generation within the sarcomeres, but how this translates into the spectrum of hypertrophic versus dilated cardiomyopathy is unknown. By generating a series of cardiac-specific mouse models that permit the systematic tuning of sarcomeric tension generation and calcium fluxing, we identify a significant relationship between the magnitude of tension developed over time and heart growth. When formulated into a computational model, the integral of myofilament tension development predicts hypertrophic and dilated cardiomyopathies in mice associated with essentially any sarcomeric gene mutations, but also accurately predicts human cardiac phenotypes from data generated in induced-pluripotent-stem-cell-derived myocytes from familial cardiomyopathy patients. This tension-based model also has the potential to inform pharmacologic treatment options in cardiomyopathy patients.
Collapse
|
25
|
Himeno Y, Asakura K, Cha CY, Memida H, Powell T, Amano A, Noma A. A human ventricular myocyte model with a refined representation of excitation-contraction coupling. Biophys J 2016. [PMID: 26200878 DOI: 10.1016/j.bpj.2015.06.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cardiac Ca(2+)-induced Ca(2+) release (CICR) occurs by a regenerative activation of ryanodine receptors (RyRs) within each Ca(2+)-releasing unit, triggered by the activation of L-type Ca(2+) channels (LCCs). CICR is then terminated, most probably by depletion of Ca(2+) in the junctional sarcoplasmic reticulum (SR). Hinch et al. previously developed a tightly coupled LCC-RyR mathematical model, known as the Hinch model, that enables simulations to deal with a variety of functional states of whole-cell populations of a Ca(2+)-releasing unit using a personal computer. In this study, we developed a membrane excitation-contraction model of the human ventricular myocyte, which we call the human ventricular cell (HuVEC) model. This model is a hybrid of the most recent HuVEC models and the Hinch model. We modified the Hinch model to reproduce the regenerative activation and termination of CICR. In particular, we removed the inactivated RyR state and separated the single step of RyR activation by LCCs into triggering and regenerative steps. More importantly, we included the experimental measurement of a transient rise in Ca(2+) concentrations ([Ca(2+)], 10-15 μM) during CICR in the vicinity of Ca(2+)-releasing sites, and thereby calculated the effects of the local Ca(2+) gradient on CICR as well as membrane excitation. This HuVEC model successfully reconstructed both membrane excitation and key properties of CICR. The time course of CICR evoked by an action potential was accounted for by autonomous changes in an instantaneous equilibrium open probability of couplons. This autonomous time course was driven by a core feedback loop including the pivotal local [Ca(2+)], influenced by a time-dependent decay in the SR Ca(2+) content during CICR.
Collapse
Affiliation(s)
- Yukiko Himeno
- Biosimulation Research Center, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Keiichi Asakura
- Biosimulation Research Center, College of Life Sciences, Ritsumeikan University, Shiga, Japan; Nippon Shinyaku Co., Ltd., Kyoto, Japan
| | - Chae Young Cha
- Biosimulation Research Center, College of Life Sciences, Ritsumeikan University, Shiga, Japan; Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Hiraku Memida
- Biosimulation Research Center, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Trevor Powell
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Akira Amano
- Biosimulation Research Center, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Akinori Noma
- Biosimulation Research Center, College of Life Sciences, Ritsumeikan University, Shiga, Japan.
| |
Collapse
|
26
|
Utaki H, Taniguchi K, Konishi H, Himeno Y, Amano A. A Method for Determining Scale Parameters in a Hemodynamic model incorporating Cardiac Cellular Contraction model. ADVANCED BIOMEDICAL ENGINEERING 2016. [DOI: 10.14326/abe.5.32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
| | | | | | | | - Akira Amano
- Department of Life Sciences, Ritsumeikan University
| |
Collapse
|
27
|
Taniguchi K, Utaki H, Yamamoto D, Himeno Y, Amano A. Influence of Activation Time on Hemodynamic Parameters: a Simulation Study. ADVANCED BIOMEDICAL ENGINEERING 2016. [DOI: 10.14326/abe.5.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
| | | | | | | | - Akira Amano
- Department of Life Sciences, Ritsumeikan University
| |
Collapse
|
28
|
Negroni JA, Morotti S, Lascano EC, Gomes AV, Grandi E, Puglisi JL, Bers DM. β-adrenergic effects on cardiac myofilaments and contraction in an integrated rabbit ventricular myocyte model. J Mol Cell Cardiol 2015; 81:162-75. [PMID: 25724724 DOI: 10.1016/j.yjmcc.2015.02.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/10/2015] [Accepted: 02/17/2015] [Indexed: 12/21/2022]
Abstract
A five-state model of myofilament contraction was integrated into a well-established rabbit ventricular myocyte model of ion channels, Ca(2+) transporters and kinase signaling to analyze the relative contribution of different phosphorylation targets to the overall mechanical response driven by β-adrenergic stimulation (β-AS). β-AS effect on sarcoplasmic reticulum Ca(2+) handling, Ca(2+), K(+) and Cl(-) currents, and Na(+)/K(+)-ATPase properties was included based on experimental data. The inotropic effect on the myofilaments was represented as reduced myofilament Ca(2+) sensitivity (XBCa) and titin stiffness, and increased cross-bridge (XB) cycling rate (XBcy). Assuming independent roles of XBCa and XBcy, the model reproduced experimental β-AS responses on action potentials and Ca(2+) transient amplitude and kinetics. It also replicated the behavior of force-Ca(2+), release-restretch, length-step, stiffness-frequency and force-velocity relationships, and increased force and shortening in isometric and isotonic twitch contractions. The β-AS effect was then switched off from individual targets to analyze their relative impact on contractility. Preventing β-AS effects on L-type Ca(2+) channels or phospholamban limited Ca(2+) transients and contractile responses in parallel, while blocking phospholemman and K(+) channel (IKs) effects enhanced Ca(2+) and inotropy. Removal of β-AS effects from XBCa enhanced contractile force while decreasing peak Ca(2+) (due to greater Ca(2+) buffering), but had less effect on shortening. Conversely, preventing β-AS effects on XBcy preserved Ca(2+) transient effects, but blunted inotropy (both isometric force and especially shortening). Removal of titin effects had little impact on contraction. Finally, exclusion of β-AS from XBCa and XBcy while preserving effects on other targets resulted in preserved peak isometric force response (with slower kinetics) but nearly abolished enhanced shortening. β-AS effects on XBCa and XBcy have greater impact on isometric and isotonic contraction, respectively.
Collapse
Affiliation(s)
- Jorge A Negroni
- Department of Comparative, Cellular and Molecular Biology, Universidad Favaloro, Buenos Aires, Argentina.
| | - Stefano Morotti
- Department of Pharmacology, University of California Davis, CA, USA
| | - Elena C Lascano
- Department of Comparative, Cellular and Molecular Biology, Universidad Favaloro, Buenos Aires, Argentina
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology and Behavior, University of California Davis, CA, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, CA, USA
| | - José L Puglisi
- Department of Pharmacology, University of California Davis, CA, USA
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, CA, USA.
| |
Collapse
|
29
|
Kosta S, Negroni J, Lascano E, Dauby P. Cell-based description of ventricular contraction in a model of the human cardiovascular system. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.ifacol.2015.10.130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
EAD and DAD mechanisms analyzed by developing a new human ventricular cell model. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 116:11-24. [PMID: 25192800 DOI: 10.1016/j.pbiomolbio.2014.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/09/2014] [Indexed: 12/31/2022]
Abstract
It has long been suggested that the Ca(2+)-mechanisms are largely involved in generating the early afterdepolarization (EAD) as well as the delayed afterdepolarization (DAD). This view was examined in a quantitative manner by applying the lead potential analysis to a new human ventricular cell model. In this ventricular cell model, the tight coupled LCC-RyR model (CaRU) based on local control theory (Hinch et al. 2004) and ion channel models mostly based on human electrophysiological data were included to reproduce realistic Ca(2+) dynamics as well as the membrane excitation. Simultaneously, the Ca(2+) accumulation near the Ca(2+) releasing site was incorporated as observed in real cardiac myocytes. The maximum rate of ventricular repolarization (-1.02 mV/ms) is due to IK1 (-0.55 mV/ms) and the rest is provided nearly equally by INCX (-0.20 mV/ms), INaL (-0.16 mV/ms) and INaT (-0.13 mV/ms). These INaL and INaT components are due to closure of the voltage gate, which remains partially open during the plateau potential. DADs could be evoked by applying high-frequency stimulations supplemented by a partial Na(+)/K(+) pump inhibition, or by a microinjection of Ca(2+). EADs was evoked by retarding the inactivation of INaL. The lead potential (VL) analysis revealed that IK1 and IKr played the primary role to reverse the AP repolarization to depolarizing limb of EAD. ICaL and INCX amplified EAD, while the remaining currents partially antagonized dVL/dt. The maximum rate of rise of EAD was attributable to the rapid activation of both ICaL (45.5%) and INCX (54.5%).
Collapse
|
31
|
Seow CY. Hill's equation of muscle performance and its hidden insight on molecular mechanisms. J Gen Physiol 2013; 142:561-73. [PMID: 24277600 PMCID: PMC3840917 DOI: 10.1085/jgp.201311107] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/04/2013] [Indexed: 11/20/2022] Open
Abstract
Muscles shorten faster against light loads than they do against heavy loads. The hyperbolic equation first used by A.V. Hill over seven decades ago to illustrate the relationship between shortening velocity and load is still the predominant method used to characterize muscle performance, even though it has been regarded as purely empirical and lacking precision in predicting velocities at high and low loads. Popularity of the Hill equation has been sustained perhaps because of historical reasons, but its simplicity is certainly attractive. The descriptive nature of the equation does not diminish its role as a useful tool in our quest to understand animal locomotion and optimal design of muscle-powered devices like bicycles. In this Review, an analysis is presented to illustrate the connection between the historic Hill equation and the kinetics of myosin cross-bridge cycle based on the latest findings on myosin motor interaction with actin filaments within the structural confines of a sarcomere. In light of the new data and perspective, some previous studies of force-velocity relations of muscle are revisited to further our understanding of muscle mechanics and the underlying biochemical events, specifically how extracellular and intracellular environment, protein isoform expression, and posttranslational modification of contractile and regulatory proteins change the interaction between myosin and actin that in turn alter muscle force, shortening velocity, and the relationship between them.
Collapse
Affiliation(s)
- Chun Y Seow
- Department of Pathology and Laboratory Medicine, James Hogg Research Centre/St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia V6Z 1Y6, Canada
| |
Collapse
|
32
|
Lascano EC, Said M, Vittone L, Mattiazzi A, Mundiña-Weilenmann C, Negroni JA. Role of CaMKII in post acidosis arrhythmias: a simulation study using a human myocyte model. J Mol Cell Cardiol 2013; 60:172-83. [PMID: 23624090 DOI: 10.1016/j.yjmcc.2013.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/15/2013] [Accepted: 04/15/2013] [Indexed: 02/08/2023]
Abstract
Postacidotic arrhythmias have been associated to increased sarcoplasmic reticulum (SR) Ca(2+) load and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activation. However, the molecular mechanisms underlying these arrhythmias are still unclear. To better understand this process, acidosis produced by CO2 increase from 5% to 30%, resulting in intracellular pH (pHi) change from 7.15 to 6.7, was incorporated into a myocyte model of excitation-contraction coupling and contractility, including acidotic inhibition of L-type Ca(2+) channel (I(CaL)), Na(+)-Ca(2+) exchanger, Ca(2+) release through the SR ryanodine receptor (RyR2) (I(rel)), Ca(2+) reuptake by the SR Ca(2+) ATPase2a (I(up)), Na(+)-K(+) pump, K(+) efflux through the inward rectifier K(+) channel and the transient outward K(+) flow (I(to)) together with increased activity of the Na(+)-H(+) exchanger (I(NHE)). Simulated CaMKII regulation affecting I(rel), I(up), I(CaL), I(NHE) and I(to) was introduced in the model to partially compensate the acidosis outcome. Late Na(+) current increase by CaMKII was also incorporated. Using this scheme and assuming that diastolic Ca(2+) leak through the RyR2 was modulated by the resting state of this channel and the difference between SR and dyadic cleft [Ca(2+)], postacidotic delayed after depolarizations (DADs) were triggered upon returning to normal pHi after 6 min acidosis. The model showed that DADs depend on SR Ca(2+) load and on increased Ca(2+) leak through RyR2. This postacidotic arrhythmogenic pattern relies mainly on CaMKII effect on I(CaL) and I(up), since its individual elimination produced the highest DAD reduction. The model further revealed that during the return to normal pHi, DADs are fully determined by SR Ca(2+) load at the end of acidosis. Thereafter, DADs are maintained by SR Ca(2+) reloading by Ca(2+) influx through the reverse NCX mode during the time period in which [Na(+)]i is elevated.
Collapse
Affiliation(s)
- Elena C Lascano
- Department of Biology, Universidad Favaloro, Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
33
|
MioLab: Simulator for cardiac myocyte contractile force of rat based on the dynamics of calcium. Med Eng Phys 2013; 35:338-49. [DOI: 10.1016/j.medengphy.2012.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 03/20/2012] [Accepted: 05/16/2012] [Indexed: 11/22/2022]
|
34
|
Puglisi JL, Negroni JA, Chen-Izu Y, Bers DM. The force-frequency relationship: insights from mathematical modeling. ADVANCES IN PHYSIOLOGY EDUCATION 2013; 37:28-34. [PMID: 23471245 PMCID: PMC3776472 DOI: 10.1152/advan.00072.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/31/2012] [Indexed: 06/01/2023]
Abstract
The force-frequency relationship has intrigued researchers since its discovery by Bowditch in 1871. Many attempts have been made to construct mathematical descriptions of this phenomenon, beginning with the simple formulation of Koch-Wesser and Blinks in 1963 to the most sophisticated ones of today. This property of cardiac muscle is amplified by β-adrenergic stimulation, and, in a coordinated way, the neurohumoral state alters both frequency (acting on the sinoatrial node) as well as force generation (modifying ventricular myocytes). This synchronized tuning is needed to meet new metabolic demands. Cardiac modelers have already linked mechanical and electrical activity in their formulations and showed how those activities feedback on each other. However, now it is necessary to include neurological control to have a complete description of heart performance, especially when changes in frequency are involved. Study of arrhythmias (or antiarrhythmic drugs) based on mathematical models should incorporate this effect to make useful predictions or point out potential pharmaceutical targets.
Collapse
Affiliation(s)
- Jose L Puglisi
- Department of Pharmacology, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
35
|
Multi-scale simulations of cardiac electrophysiology and mechanics using the University of Tokyo heart simulator. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:380-9. [DOI: 10.1016/j.pbiomolbio.2012.07.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/11/2012] [Indexed: 11/20/2022]
|
36
|
Trayanova NA, Rice JJ. Cardiac electromechanical models: from cell to organ. Front Physiol 2011; 2:43. [PMID: 21886622 PMCID: PMC3154390 DOI: 10.3389/fphys.2011.00043] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 07/12/2011] [Indexed: 11/13/2022] Open
Abstract
The heart is a multiphysics and multiscale system that has driven the development of the most sophisticated mathematical models at the frontiers of computational physiology and medicine. This review focuses on electromechanical (EM) models of the heart from the molecular level of myofilaments to anatomical models of the organ. Because of the coupling in terms of function and emergent behaviors at each level of biological hierarchy, separation of behaviors at a given scale is difficult. Here, a separation is drawn at the cell level so that the first half addresses subcellular/single-cell models and the second half addresses organ models. At the subcellular level, myofilament models represent actin–myosin interaction and Ca-based activation. The discussion of specific models emphasizes the roles of cooperative mechanisms and sarcomere length dependence of contraction force, considered to be the cellular basis of the Frank–Starling law. A model of electrophysiology and Ca handling can be coupled to a myofilament model to produce an EM cell model, and representative examples are summarized to provide an overview of the progression of the field. The second half of the review covers organ-level models that require solution of the electrical component as a reaction–diffusion system and the mechanical component, in which active tension generated by the myocytes produces deformation of the organ as described by the equations of continuum mechanics. As outlined in the review, different organ-level models have chosen to use different ionic and myofilament models depending on the specific application; this choice has been largely dictated by compromises between model complexity and computational tractability. The review also addresses application areas of EM models such as cardiac resynchronization therapy and the role of mechano-electric coupling in arrhythmias and defibrillation.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University Baltimore, MD, USA
| | | |
Collapse
|
37
|
Huke S, Knollmann BC. Increased myofilament Ca2+-sensitivity and arrhythmia susceptibility. J Mol Cell Cardiol 2010; 48:824-33. [PMID: 20097204 PMCID: PMC2854218 DOI: 10.1016/j.yjmcc.2010.01.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/12/2010] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
Abstract
Increased myofilament Ca(2+) sensitivity is a common attribute of many inherited and acquired cardiomyopathies that are associated with cardiac arrhythmias. Accumulating evidence supports the concept that increased myofilament Ca(2+) sensitivity is an independent risk factor for arrhythmias. This review describes and discusses potential underlying molecular and cellular mechanisms how myofilament Ca(2+) sensitivity affects cardiac excitation and leads to the generation of arrhythmias. Emphasized are downstream effects of increased myofilament Ca(2+) sensitivity: altered Ca(2+) buffering/handling, impaired energy metabolism and increased mechanical stretch, and how they may contribute to arrhythmogenesis.
Collapse
Affiliation(s)
- Sabine Huke
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN 37232-0575, USA
| | | |
Collapse
|