1
|
Mackiewicz J, Tomczak J, Lisek M, Sakowicz A, Guo F, Boczek T. NFATc4 Knockout Promotes Neuroprotection and Retinal Ganglion Cell Regeneration After Optic Nerve Injury. Mol Neurobiol 2024; 61:9383-9401. [PMID: 38639863 PMCID: PMC11496353 DOI: 10.1007/s12035-024-04129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
Retinal ganglion cells (RGCs), neurons transmitting visual information via the optic nerve, fail to regenerate their axons after injury. The progressive loss of RGC function underlies the pathophysiology of glaucoma and other optic neuropathies, often leading to irreversible blindness. Therefore, there is an urgent need to identify the regulators of RGC survival and the regenerative program. In this study, we investigated the role of the family of transcription factors known as nuclear factor of activated T cells (NFAT), which are expressed in the retina; however, their role in RGC survival after injury is unknown. Using the optic nerve crush (ONC) model, widely employed to study optic neuropathies and central nervous system axon injury, we found that NFATc4 is specifically but transiently up-regulated in response to mechanical injury. In the injured retina, NFATc4 immunolocalized primarily to the ganglionic cell layer. Utilizing NFATc4-/- and NFATc3-/- mice, we demonstrated that NFATc4, but not NFATc3, knockout increased RGC survival, improved retina function, and delayed axonal degeneration. Microarray screening data, along with decreased immunostaining of cleaved caspase-3, revealed that NFATc4 knockout was protective against ONC-induced degeneration by suppressing pro-apoptotic signaling. Finally, we used lentiviral-mediated NFATc4 delivery to the retina of NFATc4-/- mice and reversed the pro-survival effect of NFATc4 knockout, conclusively linking the enhanced survival of injured RGCs to NFATc4-dependent mechanisms. In summary, this study is the first to demonstrate that NFATc4 knockout may confer transient RGC neuroprotection and decelerate axonal degeneration after injury, providing a potent therapeutic strategy for optic neuropathies.
Collapse
Affiliation(s)
- Joanna Mackiewicz
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| | - Julia Tomczak
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| | - Malwina Lisek
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Lodz, Poland
| | - Feng Guo
- Department of Pharmaceutical Toxicology, China Medical University, Shenyang, China.
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
2
|
Golatkar V, Bhatt LK. mAKAPβ signalosome: A potential target for cardiac hypertrophy. Drug Dev Res 2023; 84:1072-1084. [PMID: 37203301 DOI: 10.1002/ddr.22081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/05/2023] [Accepted: 05/06/2023] [Indexed: 05/20/2023]
Abstract
Pathological cardiac hypertrophy is the result of a prolonged increase in the workload of the heart that activates various signaling pathways such as MAPK pathway, PKA-dependent cAMP signaling, and CaN-NFAT signaling pathway which further activates genes for cardiac remodeling. Various signalosomes are present in the heart that regulates the signaling of physiological and pathological cardiac hypertrophy. mAKAPβ is one such scaffold protein that regulates signaling pathways involved in promoting cardiac hypertrophy. It is present in the outer nuclear envelope of the cardiomyocytes, which provides specificity of the target toward the heart. In addition, nuclear translocation of signaling components and transcription factors such as MEF2D, NFATc, and HIF-1α is facilitated due to the localization of mAKAPβ near the nuclear envelope. These factors are required for activation of genes promoting cardiac remodeling. Downregulation of mAKAPβ improves cardiac function and attenuates cardiac hypertrophy which in turn prevents the development of heart failure. Unlike earlier therapies for heart failure, knockout or silencing of mAKAPβ is not associated with side effects because of its high specificity in the striated myocytes. Downregulating expression of mAKAPβ is a favorable therapeutic approach toward attenuating cardiac hypertrophy and hence preventing heart failure. This review discusses mAKAPβ signalosome as a potential target for cardiac hypertrophy intervention.
Collapse
Affiliation(s)
- Vaishnavi Golatkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh K Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| |
Collapse
|
3
|
Martinez EC, Li J, Ataam JA, Tokarski K, Thakur H, Karakikes I, Dodge-Kafka K, Kapiloff MS. Targeting mAKAPβ expression as a therapeutic approach for ischemic cardiomyopathy. Gene Ther 2023; 30:543-551. [PMID: 35102273 PMCID: PMC9339585 DOI: 10.1038/s41434-022-00321-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/02/2023]
Abstract
Ischemic cardiomyopathy is a leading cause of death and an unmet clinical need. Adeno-associated virus (AAV) gene-based therapies hold great promise for treating and preventing heart failure. Previously we showed that muscle A-kinase Anchoring Protein β (mAKAPβ, AKAP6β), a scaffold protein that organizes perinuclear signalosomes in the cardiomyocyte, is a critical regulator of pathological cardiac hypertrophy. Here, we show that inhibition of mAKAPβ expression in stressed adult cardiomyocytes in vitro was cardioprotective, while conditional cardiomyocyte-specific mAKAP gene deletion in mice prevented pathological cardiac remodeling due to myocardial infarction. We developed a new self-complementary serotype 9 AAV gene therapy vector expressing a short hairpin RNA for mAKAPβ under the control of a cardiomyocyte-specific promoter (AAV9sc.shmAKAP). This vector efficiently downregulated mAKAPβ expression in the mouse heart in vivo. Expression of the shRNA also inhibited mAKAPβ expression in human induced cardiomyocytes in vitro. Following myocardial infarction, systemic administration of AAV9sc.shmAKAP prevented the development of pathological cardiac remodeling and heart failure, providing long-term restoration of left ventricular ejection fraction. Our findings provide proof-of-concept for mAKAPβ as a therapeutic target for ischemic cardiomyopathy and support the development of a translational pipeline for AAV9sc.shmAKAP for the treatment of heart failure.
Collapse
Affiliation(s)
- Eliana C Martinez
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
| | - Jinliang Li
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, 94304, USA
| | - Jennifer Arthur Ataam
- Department of Cardiothoracic Surgery and Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Kristin Tokarski
- Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Hrishikesh Thakur
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, 94304, USA
| | - Ioannis Karakikes
- Department of Cardiothoracic Surgery and Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Kimberly Dodge-Kafka
- Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Michael S Kapiloff
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33101, USA.
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, 94304, USA.
| |
Collapse
|
4
|
Collins KB, Scott JD. Phosphorylation, compartmentalization, and cardiac function. IUBMB Life 2023; 75:353-369. [PMID: 36177749 PMCID: PMC10049969 DOI: 10.1002/iub.2677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022]
Abstract
Protein phosphorylation is a fundamental element of cell signaling. First discovered as a biochemical switch in glycogen metabolism, we now know that this posttranslational modification permeates all aspects of cellular behavior. In humans, over 540 protein kinases attach phosphate to acceptor amino acids, whereas around 160 phosphoprotein phosphatases remove phosphate to terminate signaling. Aberrant phosphorylation underlies disease, and kinase inhibitor drugs are increasingly used clinically as targeted therapies. Specificity in protein phosphorylation is achieved in part because kinases and phosphatases are spatially organized inside cells. A prototypic example is compartmentalization of the cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase A through association with A-kinase anchoring proteins. This configuration creates autonomous signaling islands where the anchored kinase is constrained in proximity to activators, effectors, and selected substates. This article primarily focuses on A kinase anchoring protein (AKAP) signaling in the heart with an emphasis on anchoring proteins that spatiotemporally coordinate excitation-contraction coupling and hypertrophic responses.
Collapse
Affiliation(s)
- Kerrie B. Collins
- Department of Pharmacology, University of Washington, School of Medicine, 1959 NE Pacific Ave, Seattle WA, 98195
| | - John D. Scott
- Department of Pharmacology, University of Washington, School of Medicine, 1959 NE Pacific Ave, Seattle WA, 98195
| |
Collapse
|
5
|
Subramanian H, Nikolaev VO. A-Kinase Anchoring Proteins in Cardiac Myocytes and Their Roles in Regulating Calcium Cycling. Cells 2023; 12:cells12030436. [PMID: 36766777 PMCID: PMC9913689 DOI: 10.3390/cells12030436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
The rate of calcium cycling and calcium transient amplitude are critical determinants for the efficient contraction and relaxation of the heart. Calcium-handling proteins in the cardiac myocyte are altered in heart failure, and restoring the proper function of those proteins is an effective potential therapeutic strategy. The calcium-handling proteins or their regulators are phosphorylated by a cAMP-dependent kinase (PKA), and thereby their activity is regulated. A-Kinase Anchoring Proteins (AKAPs) play a seminal role in orchestrating PKA and cAMP regulators in calcium handling and contractile machinery. This cAMP/PKA orchestration is crucial for the increased force and rate of contraction and relaxation of the heart in response to fight-or-flight. Knockout models and the few available preclinical models proved that the efficient targeting of AKAPs offers potential therapies tailor-made for improving defective calcium cycling. In this review, we highlight important studies that identified AKAPs and their regulatory roles in cardiac myocyte calcium cycling in health and disease.
Collapse
Affiliation(s)
- Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck
- Correspondence: (H.S.); (V.O.N.); Tel.: +49(0)40-7410-57383 (V.O.N.)
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck
- Correspondence: (H.S.); (V.O.N.); Tel.: +49(0)40-7410-57383 (V.O.N.)
| |
Collapse
|
6
|
Turcotte MG, Thakur H, Kapiloff MS, Dodge-Kafka KL. A perinuclear calcium compartment regulates cardiac myocyte hypertrophy. J Mol Cell Cardiol 2022; 172:26-40. [PMID: 35952391 PMCID: PMC9727780 DOI: 10.1016/j.yjmcc.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 12/14/2022]
Abstract
The pleiotropic Ca2+/calmodulin-dependent phosphatase calcineurin is a key regulator of pathological cardiac myocyte hypertrophy. The selective activation of hypertrophic calcineurin signaling under stress conditions has been attributed to compartmentation of Ca2+ signaling in cardiac myocytes. Here, perinuclear signalosomes organized by the scaffold protein muscle A-Kinase Anchoring Protein β (mAKAPβ/AKAP6β) are shown to orchestrate local Ca2+ transients, inducing calcineurin-dependent NFATc nuclear localization and myocyte hypertrophy in response to β-adrenergic receptor activation. Fluorescent biosensors for Ca2+ and calcineurin and protein kinase A (PKA) activity, both diffusely expressed and localized by nesprin-1α to the nuclear envelope, are used to define an autonomous mAKAPβ signaling compartment in adult and neonatal rat ventricular myocytes. Notably, β-adrenergic-stimulated perinuclear Ca2+ and PKA and CaN activity transients depended upon mAKAPβ expression, while Ca2+ elevation and PKA and CaN activity in the cytosol were mAKAPβ independent. Buffering perinuclear cAMP and Ca2+ prevented calcineurin-dependent NFATc nuclear translocation and myocyte hypertrophy, without affecting cardiac myocyte contractility. Additional findings suggest that the perinuclear Ca2+ transients were mediated by signalosome-associated ryanodine receptors regulated by local PKA phosphorylation. These results demonstrate the existence of a functionally independent Ca2+ signaling compartment in the cardiac myocyte regulating hypertrophy and provide a premise for targeting mAKAPβ signalosomes to prevent selectively cardiac hypertrophy in disease.
Collapse
Affiliation(s)
- Moriah Gildart Turcotte
- Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Hrishikesh Thakur
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Michael S Kapiloff
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Kimberly L Dodge-Kafka
- Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
7
|
Jiang X, Cao M, Wu J, Wang X, Zhang G, Yang C, Gao P, Zou Y. Protections of transcription factor BACH2 and natural product myricetin against pathological cardiac hypertrophy and dysfunction. Front Physiol 2022; 13:971424. [PMID: 36105283 PMCID: PMC9465486 DOI: 10.3389/fphys.2022.971424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Pathological hypertrophic myocardium under consistent adverse stimuli eventually can cause heart failure. This study aims to explore the role of BACH2, a member of the basic region leucine zipper transcription factor family, in cardiac hypertrophy and failure. Transverse aortic constriction surgery was operated to induce cardiac hypertrophy and failure in mice. BACH2 was overexpressed in mice through tail vein injection of AAV9-Bach2. Mice with systemic or cardiac-specific knockdown of Bach2 were adopted. Neonatal rat ventricular myocytes (NRVMs) were isolated and infected with lentivirus to overexpress Bach2 or transfected with siRNA to knock down Bach2. Our data showed that overexpression of BACH2 ameliorated TAC-induced cardiac hypertrophy and failure in mice and decreased isoproterenol (ISO)-triggered myocyte hypertrophy in NRVMs. Systemic or cardiac-specific knockdown of Bach2 worsened the cardiac hypertrophy and failure phenotype in mice. Further assays showed that BACH2 bound to the promotor region of Akap6 at the -600 to -587 site and repressed its expression, which functioned as a crucial scaffold for cardiac hypertrophy and failure signaling pathways. Small molecular natural product library screening suggested that myricetin could up-regulate expression of Bach2 and simultaneously suppress the transcriptional levels of hypertrophic marker genes Bnp and Myh7. Further studies showed that myricetin exerted a BACH2-dependent protective effect against cardiac hypertrophy in vivo and in vitro. Taken together, our findings demonstrated that BACH2 plays a crucial role in the regulation of cardiac hypertrophy and failure and can be a potential therapeutic target in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pan Gao
- *Correspondence: Yunzeng Zou, ; Pan Gao,
| | | |
Collapse
|
8
|
Chaklader M, Rothermel BA. Calcineurin in the heart: New horizons for an old friend. Cell Signal 2021; 87:110134. [PMID: 34454008 PMCID: PMC8908812 DOI: 10.1016/j.cellsig.2021.110134] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 01/20/2023]
Abstract
Calcineurin, also known as PP2B or PPP3, is a member of the PPP family of protein phosphatases that also includes PP1 and PP2A. Together these three phosphatases carryout the majority of dephosphorylation events in the heart. Calcineurin is distinct in that it is activated by the binding of calcium/calmodulin (Ca2+/CaM) and therefore acts as a node for integrating Ca2+ signals with changes in phosphorylation, two fundamental intracellular signaling cascades. In the heart, calcineurin is primarily thought of in the context of pathological cardiac remodeling, acting through the Nuclear Factor of Activated T-cell (NFAT) family of transcription factors. However, calcineurin activity is also essential for normal heart development and homeostasis in the adult heart. Furthermore, it is clear that NFAT-driven changes in transcription are not the only relevant processes initiated by calcineurin in the setting of pathological remodeling. There is a growing appreciation for the diversity of calcineurin substrates that can impact cardiac function as well as the diversity of mechanisms for targeting calcineurin to specific sub-cellular domains in cardiomyocytes and other cardiac cell types. Here, we will review the basics of calcineurin structure, regulation, and function in the context of cardiac biology. Particular attention will be given to: the development of improved tools to identify and validate new calcineurin substrates; recent studies identifying new calcineurin isoforms with unique properties and targeting mechanisms; and the role of calcineurin in cardiac development and regeneration.
Collapse
Affiliation(s)
- Malay Chaklader
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Beverly A Rothermel
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA.
| |
Collapse
|
9
|
Potential therapeutic applications of AKAP disrupting peptides. Clin Sci (Lond) 2021; 134:3259-3282. [PMID: 33346357 DOI: 10.1042/cs20201244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
The 3'-5'-cyclic adenosine monophosphate (cAMP)/PKA pathway represents a major target for pharmacological intervention in multiple disease conditions. Although the last decade saw the concept of highly compartmentalized cAMP/PKA signaling consolidating, current means for the manipulation of this pathway still do not allow to specifically intervene on discrete cAMP/PKA microdomains. Since compartmentalization is crucial for action specificity, identifying new tools that allow local modulation of cAMP/PKA responses is an urgent need. Among key players of cAMP/PKA signaling compartmentalization, a major role is played by A-kinase anchoring proteins (AKAPs) that, by definition, anchor PKA, its substrates and its regulators within multiprotein complexes in well-confined subcellular compartments. Different tools have been conceived to interfere with AKAP-based protein-protein interactions (PPIs), and these primarily include peptides and peptidomimetics that disrupt AKAP-directed multiprotein complexes. While these molecules have been extensively used to understand the molecular mechanisms behind AKAP function in pathophysiological processes, less attention has been devoted to their potential application for therapy. In this review, we will discuss how AKAP-based PPIs can be pharmacologically targeted by synthetic peptides and peptidomimetics.
Collapse
|
10
|
Garnier A, Bork NI, Jacquet E, Zipfel S, Muñoz-Guijosa C, Baczkó I, Reichenspurner H, Donzeau-Gouge P, Maier LS, Dobrev D, Girdauskas E, Nikolaev VO, Fischmeister R, Molina CE. Mapping genetic changes in the cAMP-signaling cascade in human atria. J Mol Cell Cardiol 2021; 155:10-20. [PMID: 33631188 DOI: 10.1016/j.yjmcc.2021.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 11/15/2022]
Abstract
AIM To obtain a quantitative expression profile of the main genes involved in the cAMP-signaling cascade in human control atria and in different cardiac pathologies. METHODS AND RESULTS Expression of 48 target genes playing a relevant role in the cAMP-signaling cascade was assessed by RT-qPCR. 113 samples were obtained from right atrial appendages (RAA) of patients in sinus rhythm (SR) with or without atrium dilation, paroxysmal atrial fibrillation (AF), persistent AF or heart failure (HF); and left atrial appendages (LAA) from patients in SR or with AF. Our results show that right and left atrial appendages in donor hearts or from SR patients have similar expression values except for AC7 and PDE2A. Despite the enormous chamber-dependent variability in the gene-expression changes between pathologies, several distinguishable patterns could be identified. PDE8A, PI3Kγ and EPAC2 were upregulated in AF. Different phosphodiesterase (PDE) families showed specific pathology-dependent changes. CONCLUSION By comparing mRNA-expression patterns of the cAMP-signaling cascade related genes in right and left atrial appendages of human hearts and across different pathologies, we show that 1) gene expression is not significantly affected by cardioplegic solution content, 2) it is appropriate to use SR atrial samples as controls, and 3) many genes in the cAMP-signaling cascade are affected in AF and HF but only few of them appear to be chamber (right or left) specific. TOPIC Genetic changes in human diseased atria. TRANSLATIONAL PERSPECTIVE The cyclic AMP signaling pathway is important for atrial function. However, expression patterns of the genes involved in the atria of healthy and diseased hearts are still unclear. We give here a general overview of how different pathologies affect the expression of key genes in the cAMP signaling pathway in human right and left atria appendages. Our study may help identifying new genes of interest as potential therapeutic targets or clinical biomarkers for these pathologies and could serve as a guide in future gene therapy studies.
Collapse
Affiliation(s)
- Anne Garnier
- Université Paris-Saclay, Inserm, UMR-S 1180, Châtenay-Malabry, France
| | - Nadja I Bork
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany; German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | - Eric Jacquet
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Svante Zipfel
- Dept. of Cardiovascular Surgery, University Heart Center Hamburg, Germany
| | | | - Istvan Baczkó
- Dept. Pharmacology and Pharmacotherapy, Univ. of Szeged, Hungary
| | | | | | - Lars S Maier
- Dept. Internal Medicine II, University Heart Center, University Hospital Regensburg, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West-German Heart and Vascular Center, Faculty of Medicine, University Duisburg-, Essen, Germany
| | - Evaldas Girdauskas
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany; Dept. of Cardiovascular Surgery, University Heart Center Hamburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany; German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | | | - Cristina E Molina
- Université Paris-Saclay, Inserm, UMR-S 1180, Châtenay-Malabry, France; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany; German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| |
Collapse
|
11
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Li J, Tan Y, Passariello CL, Martinez EC, Kritzer MD, Li X, Li X, Li Y, Yu Q, Ohgi K, Thakur H, MacArthur JW, Ivey JR, Woo YJ, Emter CA, Dodge-Kafka K, Rosenfeld MG, Kapiloff MS. Signalosome-Regulated Serum Response Factor Phosphorylation Determining Myocyte Growth in Width Versus Length as a Therapeutic Target for Heart Failure. Circulation 2020; 142:2138-2154. [PMID: 32933333 DOI: 10.1161/circulationaha.119.044805] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Concentric and eccentric cardiac hypertrophy are associated with pressure and volume overload, respectively, in cardiovascular disease both conferring an increased risk of heart failure. These contrasting forms of hypertrophy are characterized by asymmetrical growth of the cardiac myocyte in mainly width or length, respectively. The molecular mechanisms determining myocyte preferential growth in width versus length remain poorly understood. Identification of the mechanisms governing asymmetrical myocyte growth could provide new therapeutic targets for the prevention or treatment of heart failure. METHODS Primary adult rat ventricular myocytes, adeno-associated virus (AAV)-mediated gene delivery in mice, and human tissue samples were used to define a regulatory pathway controlling pathological myocyte hypertrophy. Chromatin immunoprecipitation assays with sequencing and precision nuclear run-on sequencing were used to define a transcriptional mechanism. RESULTS We report that asymmetrical cardiac myocyte hypertrophy is modulated by SRF (serum response factor) phosphorylation, constituting an epigenomic switch balancing the growth in width versus length of adult ventricular myocytes in vitro and in vivo. SRF Ser103 phosphorylation is bidirectionally regulated by RSK3 (p90 ribosomal S6 kinase type 3) and PP2A (protein phosphatase 2A) at signalosomes organized by the scaffold protein mAKAPβ (muscle A-kinase anchoring protein β), such that increased SRF phosphorylation activates AP-1 (activator protein-1)-dependent enhancers that direct myocyte growth in width. AAV are used to express in vivo mAKAPβ-derived RSK3 and PP2A anchoring disruptor peptides that block the association of the enzymes with the mAKAPβ scaffold. Inhibition of RSK3 signaling prevents concentric cardiac remodeling induced by pressure overload, while inhibition of PP2A signaling prevents eccentric cardiac remodeling induced by myocardial infarction, in each case improving cardiac function. SRF Ser103 phosphorylation is significantly decreased in dilated human hearts, supporting the notion that modulation of the mAKAPβ-SRF signalosome could be a new therapeutic approach for human heart failure. CONCLUSIONS We have identified a new molecular switch, namely mAKAPβ signalosome-regulated SRF phosphorylation, that controls a transcriptional program responsible for modulating changes in cardiac myocyte morphology that occur secondary to pathological stressors. Complementary AAV-based gene therapies constitute rationally-designed strategies for a new translational modality for heart failure.
Collapse
Affiliation(s)
- Jinliang Li
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Xueyi Li, Y. L., Q.Y., H.T., M.S.K.).,Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (J.L., C.L.P., E.C.M., M.D.K., Xiaofeng Li, H.T., M.S.K.)
| | - Yuliang Tan
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, La Jolla, CA (Y.T., K.O., M.G.R.)
| | - Catherine L Passariello
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (J.L., C.L.P., E.C.M., M.D.K., Xiaofeng Li, H.T., M.S.K.)
| | - Eliana C Martinez
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (J.L., C.L.P., E.C.M., M.D.K., Xiaofeng Li, H.T., M.S.K.)
| | - Michael D Kritzer
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (J.L., C.L.P., E.C.M., M.D.K., Xiaofeng Li, H.T., M.S.K.)
| | - Xueyi Li
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Xueyi Li, Y. L., Q.Y., H.T., M.S.K.)
| | - Xiaofeng Li
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (J.L., C.L.P., E.C.M., M.D.K., Xiaofeng Li, H.T., M.S.K.)
| | - Yang Li
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Xueyi Li, Y. L., Q.Y., H.T., M.S.K.)
| | - Qian Yu
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Xueyi Li, Y. L., Q.Y., H.T., M.S.K.)
| | - Kenneth Ohgi
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, La Jolla, CA (Y.T., K.O., M.G.R.)
| | - Hrishikesh Thakur
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Xueyi Li, Y. L., Q.Y., H.T., M.S.K.).,Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (J.L., C.L.P., E.C.M., M.D.K., Xiaofeng Li, H.T., M.S.K.)
| | | | - Jan R Ivey
- Department of Biomedical Sciences, University of Missouri-Columbia (J.R.I., C.A.E.)
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, CA (Y.J.W.)
| | - Craig A Emter
- Department of Biomedical Sciences, University of Missouri-Columbia (J.R.I., C.A.E.)
| | - Kimberly Dodge-Kafka
- Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington (K.D-K.)
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, La Jolla, CA (Y.T., K.O., M.G.R.)
| | - Michael S Kapiloff
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Xueyi Li, Y. L., Q.Y., H.T., M.S.K.).,Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (J.L., C.L.P., E.C.M., M.D.K., Xiaofeng Li, H.T., M.S.K.)
| |
Collapse
|
13
|
Affiliation(s)
- Kathleen C Woulfe
- Department of Medicine, Division of Cardiology (K.C.W., J.G.T., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Joshua G Travers
- Department of Medicine, Division of Cardiology (K.C.W., J.G.T., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (J.G.T., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology (K.C.W., J.G.T., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (J.G.T., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| |
Collapse
|
14
|
Bucko PJ, Scott JD. Drugs That Regulate Local Cell Signaling: AKAP Targeting as a Therapeutic Option. Annu Rev Pharmacol Toxicol 2020; 61:361-379. [PMID: 32628872 DOI: 10.1146/annurev-pharmtox-022420-112134] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells respond to environmental cues by mobilizing signal transduction cascades that engage protein kinases and phosphoprotein phosphatases. Correct organization of these enzymes in space and time enables the efficient and precise transmission of chemical signals. The cyclic AMP-dependent protein kinase A is compartmentalized through its association with A-kinase anchoring proteins (AKAPs). AKAPs are a family of multivalent scaffolds that constrain signaling enzymes and effectors at subcellular locations to drive essential physiological events. More recently, it has been recognized that defective signaling in certain endocrine disorders and cancers proceeds through pathological AKAP complexes. Consequently, pharmacologically targeting these macromolecular complexes unlocks new therapeutic opportunities for a growing number of clinical indications. This review highlights recent findings on AKAP signaling in disease, particularly in certain cancers, and offers an overview of peptides and small molecules that locally regulate AKAP-binding partners.
Collapse
Affiliation(s)
- Paula J Bucko
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA; ,
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA; ,
| |
Collapse
|
15
|
Li X, Li J, Martinez EC, Froese A, Passariello CL, Henshaw K, Rusconi F, Li Y, Yu Q, Thakur H, Nikolaev VO, Kapiloff MS. Calcineurin Aβ-Specific Anchoring Confers Isoform-Specific Compartmentation and Function in Pathological Cardiac Myocyte Hypertrophy. Circulation 2020; 142:948-962. [PMID: 32611257 DOI: 10.1161/circulationaha.119.044893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The Ca2+/calmodulin-dependent phosphatase calcineurin is a key regulator of cardiac myocyte hypertrophy in disease. An unexplained paradox is how the β isoform of the calcineurin catalytic A-subunit (CaNAβ) is required for induction of pathological myocyte hypertrophy, despite calcineurin Aα expression in the same cells. It is unclear how the pleiotropic second messenger Ca2+ drives excitation-contraction coupling while not stimulating hypertrophy by calcineurin in the normal heart. Elucidation of the mechanisms conferring this selectivity in calcineurin signaling should reveal new strategies for targeting the phosphatase in disease. METHODS Primary adult rat ventricular myocytes were studied for morphology and intracellular signaling. New Förster resonance energy transfer reporters were used to assay Ca2+ and calcineurin activity in living cells. Conditional gene deletion and adeno-associated virus-mediated gene delivery in the mouse were used to study calcineurin signaling after transverse aortic constriction in vivo. RESULTS CIP4 (Cdc42-interacting protein 4)/TRIP10 (thyroid hormone receptor interactor 10) was identified as a new polyproline domain-dependent scaffold for CaNAβ2 by yeast 2-hybrid screen. Cardiac myocyte-specific CIP4 gene deletion in mice attenuated pressure overload-induced pathological cardiac remodeling and heart failure. Blockade of CaNAβ polyproline-dependent anchoring using a competing peptide inhibited concentric hypertrophy in cultured myocytes; disruption of anchoring in vivo using an adeno-associated virus gene therapy vector inhibited cardiac hypertrophy and improved systolic function after pressure overload. Live cell Förster resonance energy transfer biosensor imaging of cultured myocytes revealed that Ca2+ levels and calcineurin activity associated with the CIP4 compartment were increased by neurohormonal stimulation, but minimally by pacing. Conversely, Ca2+ levels and calcineurin activity detected by nonlocalized Förster resonance energy transfer sensors were induced by pacing and minimally by neurohormonal stimulation, providing functional evidence for differential intracellular compartmentation of Ca2+ and calcineurin signal transduction. CONCLUSIONS These results support a structural model for Ca2+ and CaNAβ compartmentation in cells based on an isoform-specific mechanism for calcineurin protein-protein interaction and localization. This mechanism provides an explanation for the specific role of CaNAβ in hypertrophy and its selective activation under conditions of pathologic stress. Disruption of CaNAβ polyproline-dependent anchoring constitutes a rational strategy for therapeutic targeting of CaNAβ-specific signaling responsible for pathological cardiac remodeling in cardiovascular disease deserving of further preclinical investigation.
Collapse
Affiliation(s)
- Xiaofeng Li
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Jinliang Li
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.).,Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| | - Eliana C Martinez
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Alexander Froese
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.F., V.O.N.)
| | - Catherine L Passariello
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Kathryn Henshaw
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Francesca Rusconi
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Yang Li
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| | - Qian Yu
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| | - Hrishikesh Thakur
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.).,Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.F., V.O.N.)
| | - Michael S Kapiloff
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.).,Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| |
Collapse
|
16
|
Marin W. A-kinase anchoring protein 1 (AKAP1) and its role in some cardiovascular diseases. J Mol Cell Cardiol 2019; 138:99-109. [PMID: 31783032 DOI: 10.1016/j.yjmcc.2019.11.154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/08/2019] [Accepted: 11/22/2019] [Indexed: 01/09/2023]
Abstract
A-kinase anchoring proteins (AKAPs) play crucial roles in regulating compartmentalized multi-protein signaling networks related to PKA-mediated phosphorylation. The mitochondrial AKAP - AKAP1 proteins are enriched in heart and play cardiac protective roles. This review aims to thoroughly summarize AKAP1 variants from their sequence features to the structure-function relationships between AKAP1 and its binding partners, as well as the molecular mechanisms of AKAP1 in cardiac hypertrophy, hypoxia-induced myocardial infarction and endothelial cells dysfunction, suggesting AKAP1 as a candidate for cardiovascular therapy.
Collapse
Affiliation(s)
- Wenwen Marin
- Institute for Translational Medicine, Medical Faculty of Qingdao University, Qingdao 266021, China.
| |
Collapse
|
17
|
Dodge-Kafka K, Gildart M, Tokarski K, Kapiloff MS. mAKAPβ signalosomes - A nodal regulator of gene transcription associated with pathological cardiac remodeling. Cell Signal 2019; 63:109357. [PMID: 31299211 PMCID: PMC7197268 DOI: 10.1016/j.cellsig.2019.109357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 12/14/2022]
Abstract
Striated myocytes compose about half of the cells of the heart, while contributing the majority of the heart's mass and volume. In response to increased demands for pumping power, including in diseases of pressure and volume overload, the contractile myocytes undergo non-mitotic growth, resulting in increased heart mass, i.e. cardiac hypertrophy. Myocyte hypertrophy is induced by a change in the gene expression program driven by the altered activity of transcription factors and co-repressor and co-activator chromatin-associated proteins. These gene regulatory proteins are subject to diverse post-translational modifications and serve as nuclear effectors for intracellular signal transduction pathways, including those controlled by cyclic nucleotides and calcium ion. Scaffold proteins contribute to the underlying architecture of intracellular signaling networks by targeting signaling enzymes to discrete intracellular compartments, providing specificity to the regulation of downstream effectors, including those regulating gene expression. Muscle A-kinase anchoring protein β (mAKAPβ) is a well-characterized scaffold protein that contributes to the regulation of pathological cardiac hypertrophy. In this review, we discuss the mechanisms how this prototypical scaffold protein organizes signalosomes responsible for the regulation of class IIa histone deacetylases and cardiac transcription factors such as NFAT, MEF2, and HIF-1α, as well as how this signalosome represents a novel therapeutic target for the prevention or treatment of heart failure.
Collapse
Affiliation(s)
- Kimberly Dodge-Kafka
- Calhoun Center for Cardiology, Cardiac Signal Transduction and Cellular Biology Laboratory, University of Connecticut Health Center, Farmington, CT, USA.
| | - Moriah Gildart
- Calhoun Center for Cardiology, Cardiac Signal Transduction and Cellular Biology Laboratory, University of Connecticut Health Center, Farmington, CT, USA
| | - Kristin Tokarski
- Calhoun Center for Cardiology, Cardiac Signal Transduction and Cellular Biology Laboratory, University of Connecticut Health Center, Farmington, CT, USA
| | - Michael S Kapiloff
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
18
|
Regulation of Neuronal Survival and Axon Growth by a Perinuclear cAMP Compartment. J Neurosci 2019; 39:5466-5480. [PMID: 31097623 DOI: 10.1523/jneurosci.2752-18.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/11/2019] [Accepted: 04/10/2019] [Indexed: 12/21/2022] Open
Abstract
cAMP signaling is known to be critical in neuronal survival and axon growth. Increasingly the subcellular compartmentation of cAMP signaling has been appreciated, but outside of dendritic synaptic regulation, few cAMP compartments have been defined in terms of molecular composition or function in neurons. Specificity in cAMP signaling is conferred in large part by A-kinase anchoring proteins (AKAPs) that localize protein kinase A and other signaling enzymes to discrete intracellular compartments. We now reveal that cAMP signaling within a perinuclear neuronal compartment organized by the large multivalent scaffold protein mAKAPα promotes neuronal survival and axon growth. mAKAPα signalosome function is explored using new molecular tools designed to specifically alter local cAMP levels as studied by live-cell FRET imaging. In addition, enhancement of mAKAPα-associated cAMP signaling by isoform-specific displacement of bound phosphodiesterase is demonstrated to increase retinal ganglion cell survival in vivo in mice of both sexes following optic nerve crush injury. These findings define a novel neuronal compartment that confers cAMP regulation of neuroprotection and axon growth and that may be therapeutically targeted in disease.SIGNIFICANCE STATEMENT cAMP is a second messenger responsible for the regulation of diverse cellular processes including neuronal neurite extension and survival following injury. Signal transduction by cAMP is highly compartmentalized in large part because of the formation of discrete, localized multimolecular signaling complexes by A-kinase anchoring proteins. Although the concept of cAMP compartmentation is well established, the function and identity of these compartments remain poorly understood in neurons. In this study, we provide evidence for a neuronal perinuclear cAMP compartment organized by the scaffold protein mAKAPα that is necessary and sufficient for the induction of neurite outgrowth in vitro and for the survival of retinal ganglion cells in vivo following optic nerve injury.
Collapse
|
19
|
Murphy JG, Crosby KC, Dittmer PJ, Sather WA, Dell'Acqua ML. AKAP79/150 recruits the transcription factor NFAT to regulate signaling to the nucleus by neuronal L-type Ca 2+ channels. Mol Biol Cell 2019; 30:1743-1756. [PMID: 31091162 PMCID: PMC6727748 DOI: 10.1091/mbc.e19-01-0060] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In neurons, regulation of activity-dependent transcription by the nuclear factor of activated T-cells (NFAT) depends upon Ca2+ influx through voltage-gated L-type calcium channels (LTCC) and NFAT translocation to the nucleus following its dephosphorylation by the Ca2+-dependent phosphatase calcineurin (CaN). CaN is recruited to the channel by A-kinase anchoring protein (AKAP) 79/150, which binds to the LTCC C-terminus via a modified leucine-zipper (LZ) interaction. Here we sought to gain new insights into how LTCCs and signaling to NFAT are regulated by this LZ interaction. RNA interference–mediated knockdown of endogenous AKAP150 and replacement with human AKAP79 lacking its C-terminal LZ domain resulted in loss of depolarization-stimulated NFAT signaling in rat hippocampal neurons. However, the LZ mutation had little impact on the AKAP–LTCC interaction or LTCC function, as measured by Förster resonance energy transfer, Ca2+ imaging, and electrophysiological recordings. AKAP79 and NFAT coimmunoprecipitated when coexpressed in heterologous cells, and the LZ mutation disrupted this association. Critically, measurements of NFAT mobility in neurons employing fluorescence recovery after photobleaching and fluorescence correlation spectroscopy provided further evidence for an AKAP79 LZ interaction with NFAT. These findings suggest that the AKAP79/150 LZ motif functions to recruit NFAT to the LTCC signaling complex to promote its activation by AKAP-anchored calcineurin.
Collapse
Affiliation(s)
- Jonathan G Murphy
- Eunice Kennedy Shriver Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892.,Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Kevin C Crosby
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Philip J Dittmer
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - William A Sather
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
20
|
Gildart M, Kapiloff MS, Dodge-Kafka KL. Calcineurin-AKAP interactions: therapeutic targeting of a pleiotropic enzyme with a little help from its friends. J Physiol 2018; 598:3029-3042. [PMID: 30488951 PMCID: PMC7586300 DOI: 10.1113/jp276756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/14/2018] [Indexed: 01/14/2023] Open
Abstract
The ubiquitous Ca2+ /calmodulin-dependent phosphatase calcineurin is a key regulator of pathological cardiac hypertrophy whose therapeutic targeting in heart disease has been elusive due to its role in other essential biological processes. Calcineurin is targeted to diverse intracellular compartments by association with scaffold proteins, including by multivalent A-kinase anchoring proteins (AKAPs) that bind protein kinase A and other important signalling enzymes determining cardiac myocyte function and phenotype. Calcineurin anchoring by AKAPs confers specificity to calcineurin function in the cardiac myocyte. Targeting of calcineurin 'signalosomes' may provide a rationale for inhibiting the phosphatase in disease.
Collapse
Affiliation(s)
- Moriah Gildart
- Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, CT, USA
| | - Michael S Kapiloff
- Departments of Ophthalmology and Cardiovascular Medicine, Byers Eye Institute and Spencer Center for Vision Research, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Kimberly L Dodge-Kafka
- Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
21
|
Li J, Aponte Paris S, Thakur H, Kapiloff MS, Dodge-Kafka KL. Muscle A-kinase-anchoring protein-β-bound calcineurin toggles active and repressive transcriptional complexes of myocyte enhancer factor 2D. J Biol Chem 2018; 294:2543-2554. [PMID: 30523159 DOI: 10.1074/jbc.ra118.005465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/04/2018] [Indexed: 12/13/2022] Open
Abstract
Myocyte enhancer factor 2 (MEF2) transcription factors are key regulators of the development and adult phenotype of diverse tissues, including skeletal and cardiac muscles. Controlled by multiple post-translational modifications, MEF2D is an effector for the Ca2+/calmodulin-dependent protein phosphatase calcineurin (CaN, PP2B, and PPP3). CaN-catalyzed dephosphorylation promotes the desumoylation and acetylation of MEF2D, increasing its transcriptional activity. Both MEF2D and CaN bind the scaffold protein muscle A-kinase-anchoring protein β (mAKAPβ), which is localized to the nuclear envelope, such that C2C12 skeletal myoblast differentiation and neonatal rat ventricular myocyte hypertrophy are inhibited by mAKAPβ signalosome targeting. Using immunoprecipitation and DNA-binding assays, we now show that the formation of mAKAPβ signalosomes is required for MEF2D dephosphorylation, desumoylation, and acetylation in C2C12 cells. Reduced MEF2D phosphorylation was coupled to a switch from type IIa histone deacetylase to p300 histone acetylase binding that correlated with increased MEF2D-dependent gene expression and ventricular myocyte hypertrophy. Together, these results highlight the importance of mAKAPβ signalosomes for regulating MEF2D activity in striated muscle, affirming mAKAPβ as a nodal regulator in the myocyte intracellular signaling network.
Collapse
Affiliation(s)
- Jinliang Li
- From the Departments of Ophthalmology and Cardiovascular Medicine, Byers Eye Institute, and Spencer Center for Vision Research, Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-1209 and
| | - Shania Aponte Paris
- the Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Hrishikesh Thakur
- From the Departments of Ophthalmology and Cardiovascular Medicine, Byers Eye Institute, and Spencer Center for Vision Research, Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-1209 and
| | - Michael S Kapiloff
- From the Departments of Ophthalmology and Cardiovascular Medicine, Byers Eye Institute, and Spencer Center for Vision Research, Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-1209 and
| | - Kimberly L Dodge-Kafka
- the Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, Connecticut 06030
| |
Collapse
|
22
|
Paruchuri S, Thodeti CK. Form follows function: polymorphisms in mAKAP alter cardiac cAMP/PKA signaling. Am J Physiol Heart Circ Physiol 2018; 315:H626-H628. [PMID: 29727216 DOI: 10.1152/ajpheart.00248.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Charles K Thodeti
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
23
|
Dodge-Kafka KL, Gildart M, Li J, Thakur H, Kapiloff MS. Bidirectional regulation of HDAC5 by mAKAPβ signalosomes in cardiac myocytes. J Mol Cell Cardiol 2018. [PMID: 29522762 DOI: 10.1016/j.yjmcc.2018.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Class IIa histone deacetylases (HDACs) are transcriptional repressors whose nuclear export in the cardiac myocyte is associated with the induction of pathological gene expression and cardiac remodeling. Class IIa HDACs are regulated by multiple, functionally opposing post-translational modifications, including phosphorylation by protein kinase D (PKD) that promotes nuclear export and phosphorylation by protein kinase A (PKA) that promotes nuclear import. We have previously shown that the scaffold protein muscle A-kinase anchoring protein β (mAKAPβ) orchestrates signaling in the cardiac myocyte required for pathological cardiac remodeling, including serving as a scaffold for both PKD and PKA. We now show that mAKAPβ is a scaffold for HDAC5 in cardiac myocytes, forming signalosomes containing HDAC5, PKD, and PKA. Inhibition of mAKAPβ expression attenuated the phosphorylation of HDAC5 by PKD and PKA in response to α- and β-adrenergic receptor stimulation, respectively. Importantly, disruption of mAKAPβ-HDAC5 anchoring prevented the induction of HDAC5 nuclear export by α-adrenergic receptor signaling and PKD phosphorylation. In addition, disruption of mAKAPβ-PKA anchoring prevented the inhibition by β-adrenergic receptor stimulation of α-adrenergic-induced HDAC5 nuclear export. Together, these data establish that mAKAPβ signalosomes serve to bidirectionally regulate the nuclear-cytoplasmic localization of class IIa HDACs. Thus, the mAKAPβ scaffold serves as a node in the myocyte regulatory network controlling both the repression and activation of pathological gene expression in health and disease, respectively.
Collapse
Affiliation(s)
- Kimberly L Dodge-Kafka
- Calhoun Center for Cardiology, University of Connecticut Health Center, Cardiac Signal Transduction and Cellular Biology Laboratory, Farmington, CT, USA.
| | - Moriah Gildart
- Calhoun Center for Cardiology, University of Connecticut Health Center, Cardiac Signal Transduction and Cellular Biology Laboratory, Farmington, CT, USA
| | - Jinliang Li
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute Stanford University, Palo Alto, CA, USA
| | - Hrishikesh Thakur
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute Stanford University, Palo Alto, CA, USA
| | - Michael S Kapiloff
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
24
|
Leroy J, Vandecasteele G, Fischmeister R. Cyclic AMP signaling in cardiac myocytes. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2017.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Function of Adenylyl Cyclase in Heart: the AKAP Connection. J Cardiovasc Dev Dis 2018; 5:jcdd5010002. [PMID: 29367580 PMCID: PMC5872350 DOI: 10.3390/jcdd5010002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP), synthesized by adenylyl cyclase (AC), is a universal second messenger that regulates various aspects of cardiac physiology from contraction rate to the initiation of cardioprotective stress response pathways. Local pools of cAMP are maintained by macromolecular complexes formed by A-kinase anchoring proteins (AKAPs). AKAPs facilitate control by bringing together regulators of the cAMP pathway including G-protein-coupled receptors, ACs, and downstream effectors of cAMP to finely tune signaling. This review will summarize the distinct roles of AC isoforms in cardiac function and how interactions with AKAPs facilitate AC function, highlighting newly appreciated roles for lesser abundant AC isoforms.
Collapse
|
26
|
Villalobo A, Ishida H, Vogel HJ, Berchtold MW. Calmodulin as a protein linker and a regulator of adaptor/scaffold proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:507-521. [PMID: 29247668 DOI: 10.1016/j.bbamcr.2017.12.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 01/29/2023]
Abstract
Calmodulin (CaM) is a universal regulator for a huge number of proteins in all eukaryotic cells. Best known is its function as a calcium-dependent modulator of the activity of enzymes, such as protein kinases and phosphatases, as well as other signaling proteins including membrane receptors, channels and structural proteins. However, less well known is the fact that CaM can also function as a Ca2+-dependent adaptor protein, either by bridging between different domains of the same protein or by linking two identical or different target proteins together. These activities are possible due to the fact that CaM contains two independently-folded Ca2+ binding lobes that are able to interact differentially and to some degree separately with targets proteins. In addition, CaM can interact with and regulates several proteins that function exclusively as adaptors. This review provides an overview over our present knowledge concerning the structural and functional aspects of the role of CaM as an adaptor protein and as a regulator of known adaptor/scaffold proteins.
Collapse
Affiliation(s)
- Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, E-28029 Madrid, Spain.
| | - Hiroaki Ishida
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta T2N 1N4, Canada
| | - Hans J Vogel
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta T2N 1N4, Canada.
| | - Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
27
|
Regulation of the phosphatase PP2B by protein-protein interactions. Biochem Soc Trans 2017; 44:1313-1319. [PMID: 27911714 DOI: 10.1042/bst20160150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/09/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023]
Abstract
Protein dephosphorylation is important for regulating cellular signaling in a variety of contexts. Protein phosphatase-2B (PP2B), or calcineurin, is a widely expressed serine/threonine phosphatase that acts on a large cross section of potential protein substrates when activated by increased levels of intracellular calcium in concert with calmodulin. PxIxIT and LxVP targeting motifs are important for maintaining specificity in response to elevated calcium. In the present study, we describe the mechanism of PP2B activation, discuss its targeting by conserved binding motifs and review recent advances in the understanding of an A-kinase anchoring protein 79/PP2B/protein kinase A complex's role in synaptic long-term depression. Finally, we discuss potential for targeting PP2B anchoring motifs for therapeutic benefit.
Collapse
|
28
|
Parra V, Rothermel BA. Calcineurin signaling in the heart: The importance of time and place. J Mol Cell Cardiol 2017; 103:121-136. [PMID: 28007541 PMCID: PMC5778886 DOI: 10.1016/j.yjmcc.2016.12.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 12/20/2022]
Abstract
The calcium-activated protein phosphatase, calcineurin, lies at the intersection of protein phosphorylation and calcium signaling cascades, where it provides an essential nodal point for coordination between these two fundamental modes of intracellular communication. In excitatory cells, such as neurons and cardiomyocytes, that experience rapid and frequent changes in cytoplasmic calcium, calcineurin protein levels are exceptionally high, suggesting that these cells require high levels of calcineurin activity. Yet, it is widely recognized that excessive activation of calcineurin in the heart contributes to pathological hypertrophic remodeling and the progression to failure. How does a calcium activated enzyme function in the calcium-rich environment of the continuously contracting heart without pathological consequences? This review will discuss the wide range of calcineurin substrates relevant to cardiovascular health and the mechanisms calcineurin uses to find and act on appropriate substrates in the appropriate location while potentially avoiding others. Fundamental differences in calcineurin signaling in neonatal verses adult cardiomyocytes will be addressed as well as the importance of maintaining heterogeneity in calcineurin activity across the myocardium. Finally, we will discuss how circadian oscillations in calcineurin activity may facilitate integration with other essential but conflicting processes, allowing a healthy heart to reap the benefits of calcineurin signaling while avoiding the detrimental consequences of sustained calcineurin activity that can culminate in heart failure.
Collapse
Affiliation(s)
- Valentina Parra
- Advanced Centre for Chronic Disease (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago,Chile; Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chie, Santiago, Chile
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Centre, Dallas, TX, USA; Department of Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA.
| |
Collapse
|
29
|
Terentyev D, Hamilton S. Regulation of sarcoplasmic reticulum Ca 2+ release by serine-threonine phosphatases in the heart. J Mol Cell Cardiol 2016; 101:156-164. [PMID: 27585747 DOI: 10.1016/j.yjmcc.2016.08.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 12/17/2022]
Abstract
The amount and timing of Ca2+ release from the sarcoplasmic reticulum (SR) during cardiac cycle are the main determinants of cardiac contractility. Reversible phosphorylation of the SR Ca2+ release channel, ryanodine receptor type 2 (RyR2) is the central mechanism of regulation of Ca2+ release in cardiomyocytes. Three major serine-threonine phosphatases including PP1, PP2A and PP2B (calcineurin) have been implicated in modulation of RyR2 function. Changes in expression levels of these phosphatases, their activity and targeting to the RyR2 macromolecular complex were demonstrated in many animal models of cardiac disease and humans and are implicated in cardiac arrhythmia and heart failure. Here we review evidence in support of regulation of RyR2-mediated SR Ca2+ release by serine-threonine phosphatases and the role and mechanisms of dysregulation of phosphatases in various disease states.
Collapse
Affiliation(s)
- Dmitry Terentyev
- The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Department of Medicine, Cardiovascular Research Center, United States.
| | - Shanna Hamilton
- Cardiff University, School of Medicine, Wales Heart Research Institute, United Kingdom
| |
Collapse
|
30
|
Abstract
Cardiac remodeling is regulated by an extensive intracellular signal transduction network. Each of the many signaling pathways in this network contributes uniquely to the control of cellular adaptation. In the last few years, it has become apparent that multimolecular signaling complexes or "signalosomes" are important for fidelity in intracellular signaling and for mediating crosstalk between the different signaling pathways. These complexes integrate upstream signals and control downstream effectors. In the cardiac myocyte, the protein mAKAPβ serves as a scaffold for a large signalosome that is responsive to cAMP, calcium, hypoxia, and mitogen-activated protein kinase signaling. The main function of mAKAPβ signalosomes is to modulate stress-related gene expression regulated by the transcription factors NFATc, MEF2, and HIF-1α and type II histone deacetylases that control pathological cardiac hypertrophy.
Collapse
|
31
|
AKAP150 participates in calcineurin/NFAT activation during the down-regulation of voltage-gated K(+) currents in ventricular myocytes following myocardial infarction. Cell Signal 2015; 28:733-40. [PMID: 26724383 DOI: 10.1016/j.cellsig.2015.12.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/22/2015] [Indexed: 12/19/2022]
Abstract
The Ca(2+)-responsive phosphatase calcineurin/protein phosphatase 2B dephosphorylates the transcription factor NFATc3. In the myocardium activation of NFATc3 down-regulates the expression of voltage-gated K(+) (Kv) channels after myocardial infarction (MI). This prolongs action potential duration and increases the probability of arrhythmias. Although recent studies infer that calcineurin is activated by local and transient Ca(2+) signals the molecular mechanism that underlies the process is unclear in ventricular myocytes. Here we test the hypothesis that sequestering of calcineurin to the sarcolemma of ventricular myocytes by the anchoring protein AKAP150 is required for acute activation of NFATc3 and the concomitant down-regulation of Kv channels following MI. Biochemical and cell based measurements resolve that approximately 0.2% of the total calcineurin activity in cardiomyocytes is associated with AKAP150. Electrophysiological analyses establish that formation of this AKAP150-calcineurin signaling dyad is essential for the activation of the phosphatase and the subsequent down-regulation of Kv channel currents following MI. Thus AKAP150-mediated targeting of calcineurin to sarcolemmal micro-domains in ventricular myocytes contributes to the local and acute gene remodeling events that lead to the down-regulation of Kv currents.
Collapse
|
32
|
Diviani D, Reggi E, Arambasic M, Caso S, Maric D. Emerging roles of A-kinase anchoring proteins in cardiovascular pathophysiology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1926-36. [PMID: 26643253 DOI: 10.1016/j.bbamcr.2015.11.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 01/08/2023]
Abstract
Heart and blood vessels ensure adequate perfusion of peripheral organs with blood and nutrients. Alteration of the homeostatic functions of the cardiovascular system can cause hypertension, atherosclerosis, and coronary artery disease leading to heart injury and failure. A-kinase anchoring proteins (AKAPs) constitute a family of scaffolding proteins that are crucially involved in modulating the function of the cardiovascular system both under physiological and pathological conditions. AKAPs assemble multifunctional signaling complexes that ensure correct targeting of the cAMP-dependent protein kinase (PKA) as well as other signaling enzymes to precise subcellular compartments. This allows local regulation of specific effector proteins that control the function of vascular and cardiac cells. This review will focus on recent advances illustrating the role of AKAPs in cardiovascular pathophysiology. The accent will be mainly placed on the molecular events linked to the control of vascular integrity and blood pressure as well as on the cardiac remodeling process associated with heart failure. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Dario Diviani
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland.
| | - Erica Reggi
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Miroslav Arambasic
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Stefania Caso
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Darko Maric
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| |
Collapse
|
33
|
Wang Y, Cameron EG, Li J, Stiles TL, Kritzer MD, Lodhavia R, Hertz J, Nguyen T, Kapiloff MS, Goldberg JL. Muscle A-Kinase Anchoring Protein-α is an Injury-Specific Signaling Scaffold Required for Neurotrophic- and Cyclic Adenosine Monophosphate-Mediated Survival. EBioMedicine 2015; 2:1880-7. [PMID: 26844267 PMCID: PMC4703706 DOI: 10.1016/j.ebiom.2015.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 10/17/2015] [Accepted: 10/22/2015] [Indexed: 12/11/2022] Open
Abstract
Neurotrophic factor and cAMP-dependent signaling promote the survival and neurite outgrowth of retinal ganglion cells (RGCs) after injury. However, the mechanisms conferring neuroprotection and neuroregeneration downstream to these signals are unclear. We now reveal that the scaffold protein muscle A-kinase anchoring protein-α (mAKAPα) is required for the survival and axon growth of cultured primary RGCs. Although genetic deletion of mAKAPα early in prenatal RGC development did not affect RGC survival into adulthood, nor promoted the death of RGCs in the uninjured adult retina, loss of mAKAPα in the adult increased RGC death after optic nerve crush. Importantly, mAKAPα was required for the neuroprotective effects of brain-derived neurotrophic factor and cyclic adenosine-monophosphate (cAMP) after injury. These results identify mAKAPα as a scaffold for signaling in the stressed neuron that is required for RGC neuroprotection after optic nerve injury. mAKAPα is a stress-specific mediator of RGC survival. mAKAP deletion does not affect RGC survival in development or in the uninjured adult retina. mAKAP is downregulated after optic nerve injury, and its further deletion exacerbates RGC death. mAKAP deletion suppresses the neuroprotective effects of cAMP and BDNF after injury.
After injury or in degenerative diseases, neurons of the central nervous system (CNS) fail to regenerate and often die partly due to a lack of pro-survival, trophic signaling. Better understanding of such signaling is important for the development of therapies that enhance survival and regeneration of neurons after injury. Here we identify a critical regulator of such signaling, mAKAPα, a scaffold protein that coordinates pro-survival signaling to enhance survival and regeneration in CNS neurons after injury. The neuroprotective role of mAKAPα will likely lead to further future insights into the detailed nature of survival signaling in adult neurons.
Collapse
Affiliation(s)
- Yan Wang
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Department of Ophthalmology, University of California, San Diego, CA 92093, United States
| | - Evan G Cameron
- Department of Ophthalmology, University of California, San Diego, CA 92093, United States; Byers Eye Institute, Stanford University, Palo Alto, CA 94303, United States
| | - Jinliang Li
- Department of Pediatrics, Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, United States; Department of Medicine, Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, United States
| | - Travis L Stiles
- Department of Ophthalmology, University of California, San Diego, CA 92093, United States
| | - Michael D Kritzer
- Department of Pediatrics, Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, United States; Department of Medicine, Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, United States
| | - Rahul Lodhavia
- Department of Ophthalmology, University of California, San Diego, CA 92093, United States
| | - Jonathan Hertz
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Tu Nguyen
- Department of Ophthalmology, University of California, San Diego, CA 92093, United States
| | - Michael S Kapiloff
- Department of Pediatrics, Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, United States; Department of Medicine, Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, United States
| | - Jeffrey L Goldberg
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Department of Ophthalmology, University of California, San Diego, CA 92093, United States; Byers Eye Institute, Stanford University, Palo Alto, CA 94303, United States
| |
Collapse
|
34
|
Dema A, Perets E, Schulz MS, Deák VA, Klussmann E. Pharmacological targeting of AKAP-directed compartmentalized cAMP signalling. Cell Signal 2015; 27:2474-87. [PMID: 26386412 DOI: 10.1016/j.cellsig.2015.09.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 01/26/2023]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) can bind and activate protein kinase A (PKA). The cAMP/PKA system is ubiquitous and involved in a wide array of biological processes and therefore requires tight spatial and temporal regulation. Important components of the safeguard system are the A-kinase anchoring proteins (AKAPs), a heterogeneous family of scaffolding proteins defined by its ability to directly bind PKA. AKAPs tether PKA to specific subcellular compartments, and they bind further interaction partners to create local signalling hubs. The recent discovery of new AKAPs and advances in the field that shed light on the relevance of these hubs for human disease highlight unique opportunities for pharmacological modulation. This review exemplifies how interference with signalling, particularly cAMP signalling, at such hubs can reshape signalling responses and discusses how this could lead to novel pharmacological concepts for the treatment of disease with an unmet medical need such as cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Alessandro Dema
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Ekaterina Perets
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Maike Svenja Schulz
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Veronika Anita Deák
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany; DZHK, German Centre for Cardiovascular Research, Oudenarder Straße 16, 13347 Berlin, Germany.
| |
Collapse
|
35
|
Calejo AI, Taskén K. Targeting protein-protein interactions in complexes organized by A kinase anchoring proteins. Front Pharmacol 2015; 6:192. [PMID: 26441649 PMCID: PMC4562273 DOI: 10.3389/fphar.2015.00192] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/24/2015] [Indexed: 01/06/2023] Open
Abstract
Cyclic AMP is a ubiquitous intracellular second messenger involved in the regulation of a wide variety of cellular processes, a majority of which act through the cAMP – protein kinase A (PKA) signaling pathway and involve PKA phosphorylation of specific substrates. PKA phosphorylation events are typically spatially restricted and temporally well controlled. A-kinase anchoring proteins (AKAPs) directly bind PKA and recruit it to specific subcellular loci targeting the kinase activity toward particular substrates, and thereby provide discrete spatiotemporal control of downstream phosphorylation events. AKAPs also scaffold other signaling molecules into multi-protein complexes that function as crossroads between different signaling pathways. Targeting AKAP coordinated protein complexes with high-affinity peptidomimetics or small molecules to tease apart distinct protein–protein interactions (PPIs) therefore offers important means to disrupt binding of specific components of the complex to better understand the molecular mechanisms involved in the function of individual signalosomes and their pathophysiological role. Furthermore, development of novel classes of small molecules involved in displacement of AKAP-bound signal molecules is now emerging. Here, we will focus on mechanisms for targeting PPI, disruptors that modulate downstream cAMP signaling and their role, especially in the heart.
Collapse
Affiliation(s)
- Ana I Calejo
- Biotechnology Centre, University of Oslo Oslo, Norway ; Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo and Oslo University Hospital Oslo, Norway
| | - Kjetil Taskén
- Biotechnology Centre, University of Oslo Oslo, Norway ; Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo and Oslo University Hospital Oslo, Norway
| |
Collapse
|
36
|
Zoccarato A, Surdo NC, Aronsen JM, Fields LA, Mancuso L, Dodoni G, Stangherlin A, Livie C, Jiang H, Sin YY, Gesellchen F, Terrin A, Baillie GS, Nicklin SA, Graham D, Szabo-Fresnais N, Krall J, Vandeput F, Movsesian M, Furlan L, Corsetti V, Hamilton G, Lefkimmiatis K, Sjaastad I, Zaccolo M. Cardiac Hypertrophy Is Inhibited by a Local Pool of cAMP Regulated by Phosphodiesterase 2. Circ Res 2015; 117:707-19. [PMID: 26243800 DOI: 10.1161/circresaha.114.305892] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 08/04/2015] [Indexed: 12/25/2022]
Abstract
RATIONALE Chronic elevation of 3'-5'-cyclic adenosine monophosphate (cAMP) levels has been associated with cardiac remodeling and cardiac hypertrophy. However, enhancement of particular aspects of cAMP/protein kinase A signaling seems to be beneficial for the failing heart. cAMP is a pleiotropic second messenger with the ability to generate multiple functional outcomes in response to different extracellular stimuli with strict fidelity, a feature that relies on the spatial segregation of the cAMP pathway components in signaling microdomains. OBJECTIVE How individual cAMP microdomains affect cardiac pathophysiology remains largely to be established. The cAMP-degrading enzymes phosphodiesterases (PDEs) play a key role in shaping local changes in cAMP. Here we investigated the effect of specific inhibition of selected PDEs on cardiac myocyte hypertrophic growth. METHODS AND RESULTS Using pharmacological and genetic manipulation of PDE activity, we found that the rise in cAMP resulting from inhibition of PDE3 and PDE4 induces hypertrophy, whereas increasing cAMP levels via PDE2 inhibition is antihypertrophic. By real-time imaging of cAMP levels in intact myocytes and selective displacement of protein kinase A isoforms, we demonstrate that the antihypertrophic effect of PDE2 inhibition involves the generation of a local pool of cAMP and activation of a protein kinase A type II subset, leading to phosphorylation of the nuclear factor of activated T cells. CONCLUSIONS Different cAMP pools have opposing effects on cardiac myocyte cell size. PDE2 emerges as a novel key regulator of cardiac hypertrophy in vitro and in vivo, and its inhibition may have therapeutic applications.
Collapse
Affiliation(s)
- Anna Zoccarato
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Nicoletta C Surdo
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Jan M Aronsen
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Laura A Fields
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Luisa Mancuso
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Giuliano Dodoni
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Alessandra Stangherlin
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Craig Livie
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - He Jiang
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Yuan Yan Sin
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Frank Gesellchen
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Anna Terrin
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - George S Baillie
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Stuart A Nicklin
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Delyth Graham
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Nicolas Szabo-Fresnais
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Judith Krall
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Fabrice Vandeput
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Matthew Movsesian
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Leonardo Furlan
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Veronica Corsetti
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Graham Hamilton
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Konstantinos Lefkimmiatis
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Ivar Sjaastad
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Manuela Zaccolo
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.).
| |
Collapse
|
37
|
Nygren PJ, Scott JD. Therapeutic strategies for anchored kinases and phosphatases: exploiting short linear motifs and intrinsic disorder. Front Pharmacol 2015; 6:158. [PMID: 26283967 PMCID: PMC4516873 DOI: 10.3389/fphar.2015.00158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/16/2015] [Indexed: 12/17/2022] Open
Abstract
Phosphorylation events that occur in response to the second messenger cAMP are controlled spatially and temporally by protein kinase A (PKA) interacting with A-kinase anchoring proteins (AKAPs). Recent advances in understanding the structural basis for this interaction have reinforced the hypothesis that AKAPs create spatially constrained signaling microdomains. This has led to the realization that the PKA/AKAP interface is a potential drug target for modulating a plethora of cell-signaling events. Pharmacological disruption of kinase–AKAP interactions has previously been explored for disease treatment and remains an interesting area of research. However, disrupting or enhancing the association of phosphatases with AKAPs is a therapeutic concept of equal promise, particularly since they oppose the actions of many anchored kinases. Accordingly, numerous AKAPs bind phosphatases such as protein phosphatase 1 (PP1), calcineurin (PP2B), and PP2A. These multimodal signaling hubs are equally able to control the addition of phosphate groups onto target substrates, as well as the removal of these phosphate groups. In this review, we describe recent advances in structural analysis of kinase and phosphatase interactions with AKAPs, and suggest future possibilities for targeting these interactions for therapeutic benefit.
Collapse
Affiliation(s)
- Patrick J Nygren
- Department of Pharmacology, University of Washington Seattle, WA, USA ; Howard Hughes Medical Institute Chevy Chase, MD, USA
| | - John D Scott
- Department of Pharmacology, University of Washington Seattle, WA, USA ; Howard Hughes Medical Institute Chevy Chase, MD, USA
| |
Collapse
|
38
|
Martinez EC, Passariello CL, Li J, Matheson CJ, Dodge-Kafka K, Reigan P, Kapiloff MS. RSK3: A regulator of pathological cardiac remodeling. IUBMB Life 2015; 67:331-7. [PMID: 25988524 PMCID: PMC4449288 DOI: 10.1002/iub.1383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/08/2015] [Indexed: 12/18/2022]
Abstract
The family of p90 ribosomal S6 kinases (RSKs) are pleiotropic effectors for extracellular signal-regulated kinase signaling pathways. Recently, RSK3 was shown to be important for pathological remodeling of the heart. Although cardiac myocyte hypertrophy can be compensatory for increased wall stress, in chronic heart diseases, this nonmitotic cell growth is usually associated with interstitial fibrosis, increased cell death, and decreased cardiac function. Although RSK3 is less abundant in the cardiac myocyte than other RSK family members, RSK3 appears to serve a unique role in cardiac myocyte stress responses. A potential mechanism conferring the unique function of RSK3 in the heart is anchoring by the scaffold protein muscle A-kinase anchoring protein β (mAKAPβ). Recent findings suggest that RSK3 should be considered as a therapeutic target for the prevention of heart failure, a clinical syndrome of major public health significance.
Collapse
Affiliation(s)
- Eliana C. Martinez
- Department of Pediatrics, Division of Cardiology, Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Catherine L. Passariello
- Department of Pediatrics, Division of Cardiology, Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jinliang Li
- Department of Pediatrics, Division of Cardiology, Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Christopher J. Matheson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Kimberly Dodge-Kafka
- Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, CT, USA
| | - Philip Reigan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Michael S. Kapiloff
- Department of Pediatrics, Division of Cardiology, Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
39
|
Soni S, Scholten A, Vos MA, van Veen TAB. Anchored protein kinase A signalling in cardiac cellular electrophysiology. J Cell Mol Med 2014; 18:2135-46. [PMID: 25216213 PMCID: PMC4224547 DOI: 10.1111/jcmm.12365] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 06/10/2014] [Indexed: 01/13/2023] Open
Abstract
The cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) is an elementary molecule involved in both acute and chronic modulation of cardiac function. Substantial research in recent years has highlighted the importance of A-kinase anchoring proteins (AKAP) therein as they act as the backbones of major macromolecular signalling complexes of the β-adrenergic/cAMP/PKA pathway. This review discusses the role of AKAP-associated protein complexes in acute and chronic cardiac modulation by dissecting their role in altering the activity of different ion channels, which underlie cardiac action potential (AP) generation. In addition, we review the involvement of different AKAP complexes in mechanisms of cardiac remodelling and arrhythmias.
Collapse
Affiliation(s)
- Siddarth Soni
- Division of Heart & Lungs, Dept of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands; Biomolecular Mass Spectrometry & Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
40
|
Kapiloff MS, Rigatti M, Dodge-Kafka KL. Architectural and functional roles of A kinase-anchoring proteins in cAMP microdomains. ACTA ACUST UNITED AC 2014; 143:9-15. [PMID: 24378903 PMCID: PMC3874566 DOI: 10.1085/jgp.201311020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Michael S Kapiloff
- Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, 2 Department of Pediatrics, and 3 Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33101
| | | | | |
Collapse
|
41
|
Kritzer MD, Li J, Passariello CL, Gayanilo M, Thakur H, Dayan J, Dodge-Kafka K, Kapiloff MS. The scaffold protein muscle A-kinase anchoring protein β orchestrates cardiac myocyte hypertrophic signaling required for the development of heart failure. Circ Heart Fail 2014; 7:663-72. [PMID: 24812305 DOI: 10.1161/circheartfailure.114.001266] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Cardiac myocyte hypertrophy is regulated by an extensive intracellular signal transduction network. In vitro evidence suggests that the scaffold protein muscle A-kinase anchoring protein β (mAKAPβ) serves as a nodal organizer of hypertrophic signaling. However, the relevance of mAKAPβ signalosomes to pathological remodeling and heart failure in vivo remains unknown. METHODS AND RESULTS Using conditional, cardiac myocyte-specific gene deletion, we now demonstrate that mAKAPβ expression in mice is important for the cardiac hypertrophy induced by pressure overload and catecholamine toxicity. mAKAPβ targeting prevented the development of heart failure associated with long-term transverse aortic constriction, conferring a survival benefit. In contrast to 29% of control mice (n=24), only 6% of mAKAPβ knockout mice (n=31) died in the 16 weeks of pressure overload (P=0.02). Accordingly, mAKAPβ knockout inhibited myocardial apoptosis and the development of interstitial fibrosis, left atrial hypertrophy, and pulmonary edema. This improvement in cardiac status correlated with the attenuated activation of signaling pathways coordinated by the mAKAPβ scaffold, including the decreased phosphorylation of protein kinase D1 and histone deacetylase 4 that we reveal to participate in a new mAKAP signaling module. Furthermore, mAKAPβ knockout inhibited pathological gene expression directed by myocyte-enhancer factor-2 and nuclear factor of activated T-cell transcription factors that associate with the scaffold. CONCLUSIONS mAKAPβ orchestrates signaling that regulates pathological cardiac remodeling in mice. Targeting of the underlying physical architecture of signaling networks, including mAKAPβ signalosome formation, may constitute an effective therapeutic strategy for the prevention and treatment of pathological remodeling and heart failure.
Collapse
Affiliation(s)
- Michael D Kritzer
- From the Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, FL (M.D.K., J.L., C.L.P., M.G., H.T., J.D., M.S.K.); and Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington (K.D.-K.).
| | - Jinliang Li
- From the Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, FL (M.D.K., J.L., C.L.P., M.G., H.T., J.D., M.S.K.); and Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington (K.D.-K.)
| | - Catherine L Passariello
- From the Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, FL (M.D.K., J.L., C.L.P., M.G., H.T., J.D., M.S.K.); and Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington (K.D.-K.)
| | - Marjorie Gayanilo
- From the Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, FL (M.D.K., J.L., C.L.P., M.G., H.T., J.D., M.S.K.); and Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington (K.D.-K.)
| | - Hrishikesh Thakur
- From the Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, FL (M.D.K., J.L., C.L.P., M.G., H.T., J.D., M.S.K.); and Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington (K.D.-K.)
| | - Joseph Dayan
- From the Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, FL (M.D.K., J.L., C.L.P., M.G., H.T., J.D., M.S.K.); and Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington (K.D.-K.)
| | - Kimberly Dodge-Kafka
- From the Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, FL (M.D.K., J.L., C.L.P., M.G., H.T., J.D., M.S.K.); and Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington (K.D.-K.)
| | - Michael S Kapiloff
- From the Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, FL (M.D.K., J.L., C.L.P., M.G., H.T., J.D., M.S.K.); and Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington (K.D.-K.)
| |
Collapse
|
42
|
CIP4 is required for the hypertrophic growth of neonatal cardiac myocytes. J Biomed Sci 2013; 20:56. [PMID: 23915320 PMCID: PMC3750294 DOI: 10.1186/1423-0127-20-56] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CIP4 is a scaffold protein that regulates membrane deformation and tubulation, organization of the actin cytoskeleton, endocytosis of growth factor receptors, and vesicle trafficking. Although expressed in the heart, CIP4 has not been studied with regards to its potential function in cardiac myocytes. RESULTS We now show using RNA interference that CIP4 expression in neonatal rat ventricular myocytes is required for the induction of non-mitotic, hypertrophic growth by the α-adrenergic agonist phenylephrine, the IL-6 cytokine leukemia inhibitor factor, and fetal bovine serum, as assayed using morphometry, immunocytochemistry for the hypertrophic marker atrial natriuretic factor and [3H]leucine incorporation for de novo protein synthesis. This requirement was consistent with the induction of CIP4 expression by hypertrophic stimulation. The inhibition of myocyte hypertrophy by CIP4 small interfering oligonucleotides (siRNA) was rescued by expression of a recombinant CIP4 protein, but not by a mutant lacking the N-terminal FCH domain responsible for CIP4 intracellular localization. CONCLUSIONS These results imply that CIP4 plays a significant role in the intracellular hypertrophic signal transduction network that controls the growth of cardiac myocytes in heart disease.
Collapse
|
43
|
A-kinase anchoring protein Lbc coordinates a p38 activating signaling complex controlling compensatory cardiac hypertrophy. Mol Cell Biol 2013; 33:2903-17. [PMID: 23716597 DOI: 10.1128/mcb.00031-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In response to stress, the heart undergoes a remodeling process associated with cardiac hypertrophy that eventually leads to heart failure. A-kinase anchoring proteins (AKAPs) have been shown to coordinate numerous prohypertrophic signaling pathways in cultured cardiomyocytes. However, it remains to be established whether AKAP-based signaling complexes control cardiac hypertrophy and remodeling in vivo. In the current study, we show that AKAP-Lbc assembles a signaling complex composed of the kinases PKN, MLTK, MKK3, and p38α that mediates the activation of p38 in cardiomyocytes in response to stress signals. To address the role of this complex in cardiac remodeling, we generated transgenic mice displaying cardiomyocyte-specific overexpression of a molecular inhibitor of the interaction between AKAP-Lbc and the p38-activating module. Our results indicate that disruption of the AKAP-Lbc/p38 signaling complex inhibits compensatory cardiomyocyte hypertrophy in response to aortic banding-induced pressure overload and promotes early cardiac dysfunction associated with increased myocardial apoptosis, stress gene activation, and ventricular dilation. Attenuation of hypertrophy results from a reduced protein synthesis capacity, as indicated by decreased phosphorylation of 4E-binding protein 1 and ribosomal protein S6. These results indicate that AKAP-Lbc enhances p38-mediated hypertrophic signaling in the heart in response to abrupt increases in the afterload.
Collapse
|
44
|
Li J, Vargas MAX, Kapiloff MS, Dodge-Kafka KL. Regulation of MEF2 transcriptional activity by calcineurin/mAKAP complexes. Exp Cell Res 2012; 319:447-54. [PMID: 23261540 DOI: 10.1016/j.yexcr.2012.12.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/28/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
The calcium/calmodulin-dependent protein phosphatase calcineurin is required for the induction of transcriptional events that initiate and promote myogenic differentiation. An important effector for calcineurin in striated muscle is the transcription factor myocyte enhancer factor 2 (MEF2). The targeting of the enzyme and substrate to specific intracellular compartments by scaffold proteins often confers specificity in phosphatase activity. We now show that the scaffolding protein mAKAP organizes a calcineurin/MEF2 signaling complex in myocytes, regulating gene transcription. A calcineurin/mAKAP/MEF2 complex can be isolated from C2C12 cells and cardiac myocytes, and the calcineurin/MEF2 association is dependent on mAKAP expression. We have identified a peptide comprising the calcineurin binding domain in mAKAP that can disrupt the binding of the phosphatase to the scaffold in vivo. Dominant interference of calcineurin/mAKAP binding blunts the increase in MEF2 transcriptional activity seen during myoblast differentiation, as well as the expression of endogenous MEF2-target genes. Furthermore, disruption of calcineurin binding to mAKAP in cardiac myocytes inhibits adrenergic-induced cellular hypertrophy. Together these data illustrate the importance of calcineurin anchoring by the mAKAP scaffold for MEF2 regulation.
Collapse
Affiliation(s)
- Jinliang Li
- Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33101, United States
| | | | | | | |
Collapse
|
45
|
Li J, Kritzer MD, Michel JJC, Le A, Thakur H, Gayanilo M, Passariello CL, Negro A, Danial JB, Oskouei B, Sanders M, Hare JM, Hanauer A, Dodge-Kafka K, Kapiloff MS. Anchored p90 ribosomal S6 kinase 3 is required for cardiac myocyte hypertrophy. Circ Res 2012; 112:128-39. [PMID: 22997248 DOI: 10.1161/circresaha.112.276162] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
RATIONALE Cardiac myocyte hypertrophy is the main compensatory response to chronic stress on the heart. p90 ribosomal S6 kinase (RSK) family members are effectors for extracellular signal-regulated kinases that induce myocyte growth. Although increased RSK activity has been observed in stressed myocytes, the functions of individual RSK family members have remained poorly defined, despite being potential therapeutic targets for cardiac disease. OBJECTIVE To demonstrate that type 3 RSK (RSK3) is required for cardiac myocyte hypertrophy. METHODS AND RESULTS RSK3 contains a unique N-terminal domain that is not conserved in other RSK family members. We show that this domain mediates the regulated binding of RSK3 to the muscle A-kinase anchoring protein scaffold, defining a novel kinase anchoring event. Disruption of both RSK3 expression using RNA interference and RSK3 anchoring using a competing muscle A-kinase anchoring protein peptide inhibited the hypertrophy of cultured myocytes. In vivo, RSK3 gene deletion in the mouse attenuated the concentric myocyte hypertrophy induced by pressure overload and catecholamine infusion. CONCLUSIONS Taken together, these data demonstrate that anchored RSK3 transduces signals that modulate pathologic myocyte growth. Targeting of signaling complexes that contain select kinase isoforms should provide an approach for the specific inhibition of cardiac myocyte hypertrophy and for the development of novel strategies for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Jinliang Li
- Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Department of Pediatrics, University of Miami Leonard M. Miller School of Medicine, R198, P.O. Box 016960, Miami, FL 33101, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tröger J, Moutty MC, Skroblin P, Klussmann E. A-kinase anchoring proteins as potential drug targets. Br J Pharmacol 2012; 166:420-33. [PMID: 22122509 DOI: 10.1111/j.1476-5381.2011.01796.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) crucially contribute to the spatial and temporal control of cellular signalling. They directly interact with a variety of protein binding partners and cellular constituents, thereby directing pools of signalling components to defined locales. In particular, AKAPs mediate compartmentalization of cAMP signalling. Alterations in AKAP expression and their interactions are associated with or cause diseases including chronic heart failure, various cancers and disorders of the immune system such as HIV. A number of cellular dysfunctions result from mutations of specific AKAPs. The link between malfunctions of single AKAP complexes and a disease makes AKAPs and their interactions interesting targets for the development of novel drugs. LINKED ARTICLES This article is part of a themed section on Novel cAMP Signalling Paradigms. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-2.
Collapse
Affiliation(s)
- Jessica Tröger
- Max Delbrück Center for Molecular Medicine Berlin-Buch (MDC), Berlin, Germany Leibniz Institute for Molecular Pharmacology (FMP), Berlin, Germany
| | | | | | | |
Collapse
|
47
|
Blant A, Czubryt MP. Promotion and inhibition of cardiac hypertrophy by A-kinase anchor proteins. Can J Physiol Pharmacol 2012; 90:1161-70. [DOI: 10.1139/y2012-032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Originally identified as mediators of cyclic adenosine monophosphate (cAMP) and protein kinase A signaling, A-kinase anchor proteins (AKAPs) are now recognized as a diverse family of molecular scaffolds capable of interacting with many other proteins. Members of the AKAP family within the heart can take on either pro- or anti-hypertrophic roles by interacting with a myriad of protein kinases and phosphatases in the process. AKAPs often form the core of large signaling complexes (or signalosomes) that allow multiple pathways to converge and functionally intertwine. Approximately 30% of AKAPs discovered to date are expressed in the heart, but the functions of many of these remain to be discovered. This review focuses on AKAPs that have been demonstrated to play roles in mediating cardiac hypertrophy.
Collapse
Affiliation(s)
- Alexandra Blant
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and University of Manitoba, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Michael P. Czubryt
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and University of Manitoba, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
48
|
Diviani D, Maric D, Pérez López I, Cavin S, Del Vescovo CD. A-kinase anchoring proteins: molecular regulators of the cardiac stress response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:901-8. [PMID: 22889610 DOI: 10.1016/j.bbamcr.2012.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/26/2012] [Accepted: 07/29/2012] [Indexed: 12/29/2022]
Abstract
In response to stress or injury the heart undergoes a pathological remodeling process, associated with hypertrophy, cardiomyocyte death and fibrosis, that ultimately causes cardiac dysfunction and heart failure. It has become increasingly clear that signaling events associated with these pathological cardiac remodeling events are regulated by scaffolding and anchoring proteins, which allow coordination of pathological signals in space and time. A-kinase anchoring proteins (AKAPs) constitute a family of functionally related proteins that organize multiprotein signaling complexes that tether the cAMP-dependent protein kinase (PKA) as well as other signaling enzymes to ensure integration and processing of multiple signaling pathways. This review will discuss the role of AKAPs in the cardiac response to stress. Particular emphasis will be given to the adaptative process associated with cardiac hypoxia as well as the remodeling events linked to cardiac hypertrophy and heart failure. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
Affiliation(s)
- Dario Diviani
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et Médecine, Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
49
|
Abstract
Directed protein phosphorylation is indisputably critical for a multitude of cellular processes. A growing body of research demonstrates A kinase anchoring proteins (AKAPs) to mediate a significant number of phosphorylation events in the heart. By acting as molecular tethers for the regulatory subunit of protein kinase A, AKAPs focus kinase activity onto specific substrate. In the time since their discovery, the AKAP model has evolved in appreciation of the broader role these scaffolds play in coordinating multiple signaling enzymes to efficiently regulate dynamic cellular processes. The focus of this review is on the emerging role of AKAPs in regulating the 3 main cardiac phosphatases: Protein Phosphatase 1 by AKAP18 and Yotiao, and Protein Phosphatases 2A and 2B by muscle specific A-kinase anchoring protein.
Collapse
|
50
|
Ho TJ, Huang CC, Huang CY, Lin WT. Fasudil, a Rho-kinase inhibitor, protects against excessive endurance exercise training-induced cardiac hypertrophy, apoptosis and fibrosis in rats. Eur J Appl Physiol 2011; 112:2943-55. [PMID: 22160250 DOI: 10.1007/s00421-011-2270-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 11/28/2011] [Indexed: 01/08/2023]
Abstract
Excessive endurance exercise training (EEET) is accompanied by cardiac remodeling, changes in ventricular function and increased heart failure risk. Fasudil, a potent Rho-kinase inhibitor, has been demonstrated to blunt cardiomyocyte hypertrophy, cardiac remodeling, and heart failure progression in pre-clinical trials and has been approved for clinical use in Japan. We examined the in vivo bioefficacy of fasudil against EEET-induced cardiac remodeling and the underlying molecular mechanisms. Male Sprague-Dawley rats were randomly divided into three groups: sedentary control (SC), EEET, and EEET with fasudil treatment (EEET-F). Rats in EEET and EEET-F groups ran on a motorized treadmill for 12 weeks. The results revealed that EEET increased myocardial hypertrophy (LV weight/tibial length), myocyte cross-sectional area, hypertrophy-related pathways (IL6/STAT3-MEK5-ERK5, calcineurin-NFATc3, p38 and JNK MAPK), hypertrophic markers (ANP/BNP), pro-apoptotic molecules (cytochrome C, cleaved caspase-3 and PARP), and fibrosis-related pathways (FGF-2-ERK1/2) and fibrosis markers (uPA, MMP-9 and -2). These pathways were then expressed lower in the EEET-F group when compared with the EEET group. The cardiac hypertrophic level, apoptotic pathway and fibrosis signaling were further inhibited in the fasudil-treated group. We systematically investigated the possible signaling pathways leading to EEET-induced cardiac hypertrophy, apoptosis and fibrosis. We also provide evidence for the novel function of fasudil in suppressing EEET-induced cardiac remodeling and impairment by multiple mechanisms, which suggests that the RhoA signaling pathway contributes to EEET-induced cardiac remodeling and dysfunction.
Collapse
Affiliation(s)
- Tsung-Jung Ho
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan, ROC
| | | | | | | |
Collapse
|