1
|
The co-segregation of the MYL2 R58Q mutation in Chinese hypertrophic cardiomyopathy family and its pathological effect on cardiomyopathy disarray. Mol Genet Genomics 2019; 294:1241-1249. [PMID: 31104103 DOI: 10.1007/s00438-019-01578-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/08/2019] [Indexed: 01/19/2023]
Abstract
Hypertrophic cardiomyopathy (HCM), a major cause of sudden death in youth, is largely affected by genetic factors. The R58Q mutation in the MYL2 gene was identified in some HCM patients and was considered as a deleterious HCM mutation. However, the passing of R58Q between generations along with HCM symptoms was observed only in small families with only two or three members; thus, whether R58Q is as deleterious as previously claimed remains questionable. Here, we reported a large four-generation Chinese family, and found that R58Q existed in all six members with HCM and two healthy juveniles who had not yet developed HCM yet, and presumably in three deceased members who suffered from sudden death. In addition, we also found that compared with other mutations, R58Q had a more severe effect on the cellular level. Therefore, we confirmed that R58Q could be passed from generation to generation along with HCM symptoms and that it was indeed a deleterious mutation for HCM. However, further study is needed to identify additional factors that may determine the various symptoms shown in different family members within the same family.
Collapse
|
2
|
Zhou Z, Huang W, Liang J, Szczesna-Cordary D. Molecular and Functional Effects of a Splice Site Mutation in the MYL2 Gene Associated with Cardioskeletal Myopathy and Early Cardiac Death in Infants. Front Physiol 2016; 7:240. [PMID: 27378946 PMCID: PMC4911367 DOI: 10.3389/fphys.2016.00240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/03/2016] [Indexed: 12/26/2022] Open
Abstract
The homozygous appearance of the intronic mutation (IVS6-1) in the MYL2 gene encoding for myosin ventricular/slow-twitch skeletal regulatory light chain (RLC) was recently linked to the development of slow skeletal muscle fiber type I hypotrophy and early cardiac death. The IVS6-1 (c403-1G>C) mutation resulted from a cryptic splice site in MYL2 causing a frameshift and replacement of the last 32 codons by 19 different amino acids in the RLC mutant protein. Infants who were IVS6-1+∕+-positive died between 4 and 6 months of age due to cardiomyopathy and heart failure. In this report we have investigated the molecular mechanism and functional consequences associated with the IVS6-1 mutation using recombinant human cardiac IVS6-1 and wild-type (WT) RLC proteins. Recombinant proteins were reconstituted into RLC-depleted porcine cardiac muscle preparations and subjected to enzymatic and functional assays. IVS6-1-RLC showed decreased binding to the myosin heavy chain (MHC) compared with WT, and IVS6-1-reconstituted myosin displayed reduced binding to actin in rigor. The IVS6-1 myosin demonstrated a significantly lower Vmax of the actin-activated myosin ATPase activity compared with WT. In stopped-flow experiments, IVS6-1 myosin showed slower kinetics of the ATP induced dissociation of the acto-myosin complex and a significantly reduced slope of the kobs-[MgATP] relationship compared to WT. In skinned porcine cardiac muscles, RLC-depleted and IVS6-1 reconstituted muscle strips displayed a significant decrease in maximal contractile force and a significantly increased Ca2+ sensitivity, both hallmarks of hypertrophic cardiomyopathy-associated mutations in MYL2. Our results showed that the amino-acid changes in IVS6-1 were sufficient to impose significant conformational alterations in the RLC protein and trigger a series of abnormal protein-protein interactions in the cardiac muscle sarcomere. Notably, the mutation disrupted the RLC-MHC interaction and the steady-state and kinetics of the acto-myosin interaction. Specifically, slower myosin cross-bridge turnover rates and slower second-order MgATP binding rates of acto-myosin interactions were observed in IVS6-1 vs. WT reconstituted cardiac preparations. Our in vitro results suggest that when placed in vivo, IVS6-1 may lead to cardiomyopathy and early death of homozygous infants by severely compromising the ability of myosin to develop contractile force and maintain normal systolic and diastolic cardiac function.
Collapse
Affiliation(s)
- Zhiqun Zhou
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine Miami, FL, USA
| | - Wenrui Huang
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine Miami, FL, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine Miami, FL, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine Miami, FL, USA
| |
Collapse
|
3
|
Constitutive phosphorylation of cardiac myosin regulatory light chain prevents development of hypertrophic cardiomyopathy in mice. Proc Natl Acad Sci U S A 2015; 112:E4138-46. [PMID: 26124132 DOI: 10.1073/pnas.1505819112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Myosin light chain kinase (MLCK)-dependent phosphorylation of the regulatory light chain (RLC) of cardiac myosin is known to play a beneficial role in heart disease, but the idea of a phosphorylation-mediated reversal of a hypertrophic cardiomyopathy (HCM) phenotype is novel. Our previous studies on transgenic (Tg) HCM-RLC mice revealed that the D166V (Aspartate166 → Valine) mutation-induced changes in heart morphology and function coincided with largely reduced RLC phosphorylation in situ. We hypothesized that the introduction of a constitutively phosphorylated Serine15 (S15D) into the hearts of D166V mice would prevent the development of a deleterious HCM phenotype. In support of this notion, MLCK-induced phosphorylation of D166V-mutated hearts was found to rescue some of their abnormal contractile properties. Tg-S15D-D166V mice were generated with the human cardiac RLC-S15D-D166V construct substituted for mouse cardiac RLC and were subjected to functional, structural, and morphological assessments. The results were compared with Tg-WT and Tg-D166V mice expressing the human ventricular RLC-WT or its D166V mutant, respectively. Echocardiography and invasive hemodynamic studies demonstrated significant improvements of intact heart function in S15D-D166V mice compared with D166V, with the systolic and diastolic indices reaching those monitored in WT mice. A largely reduced maximal tension and abnormally high myofilament Ca(2+) sensitivity observed in D166V-mutated hearts were reversed in S15D-D166V mice. Low-angle X-ray diffraction study revealed that altered myofilament structures present in HCM-D166V mice were mitigated in S15D-D166V rescue mice. Our collective results suggest that expression of pseudophosphorylated RLC in the hearts of HCM mice is sufficient to prevent the development of the pathological HCM phenotype.
Collapse
|
4
|
Huang W, Liang J, Yuan CC, Kazmierczak K, Zhou Z, Morales A, McBride KL, Fitzgerald-Butt SM, Hershberger RE, Szczesna-Cordary D. Novel familial dilated cardiomyopathy mutation in MYL2 affects the structure and function of myosin regulatory light chain. FEBS J 2015; 282:2379-93. [PMID: 25825243 DOI: 10.1111/febs.13286] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/27/2015] [Accepted: 03/26/2015] [Indexed: 01/16/2023]
Abstract
Dilated cardiomyopathy (DCM) is a disease of the myocardium characterized by left ventricular dilatation and diminished contractile function. Here we describe a novel DCM mutation in the myosin regulatory light chain (RLC), in which aspartic acid at position 94 is replaced by alanine (D94A). The mutation was identified by exome sequencing of three adult first-degree relatives who met formal criteria for idiopathic DCM. To obtain insight into the functional significance of this pathogenic MYL2 variant, we cloned and purified the human ventricular RLC wild-type (WT) and D94A mutant proteins, and performed in vitro experiments using RLC-mutant or WT-reconstituted porcine cardiac preparations. The mutation induced a reduction in the α-helical content of the RLC, and imposed intra-molecular rearrangements. The phosphorylation of RLC by Ca²⁺/calmodulin-activated myosin light chain kinase was not affected by D94A. The mutation was seen to impair binding of RLC to the myosin heavy chain, and its incorporation into RLC-depleted porcine myosin. The actin-activated ATPase activity of mutant-reconstituted porcine cardiac myosin was significantly higher compared with ATPase of wild-type. No changes in the myofibrillar ATPase-pCa relationship were observed in wild-type- or D94A-reconstituted preparations. Measurements of contractile force showed a slightly reduced maximal tension per cross-section of muscle, with no change in the calcium sensitivity of force in D94A-reconstituted skinned porcine papillary muscle strips compared with wild-type. Our data indicate that subtle structural rearrangements in the RLC molecule, followed by its impaired interaction with the myosin heavy chain, may trigger functional abnormalities contributing to the DCM phenotype.
Collapse
Affiliation(s)
- Wenrui Huang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chen-Ching Yuan
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zhiqun Zhou
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ana Morales
- Division of Human Genetics, Department of Internal Medicine, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Kim L McBride
- Department of Pediatrics Ohio State University, Center for Cardiovascular and Pulmonary Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sara M Fitzgerald-Butt
- Department of Pediatrics Ohio State University, Center for Cardiovascular and Pulmonary Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Ray E Hershberger
- Division of Human Genetics, Department of Internal Medicine, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
5
|
Duggal D, Nagwekar J, Rich R, Huang W, Midde K, Fudala R, Das H, Gryczynski I, Szczesna-Cordary D, Borejdo J. Effect of a myosin regulatory light chain mutation K104E on actin-myosin interactions. Am J Physiol Heart Circ Physiol 2015; 308:H1248-57. [PMID: 25770245 DOI: 10.1152/ajpheart.00834.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/03/2015] [Indexed: 11/22/2022]
Abstract
Familial hypertrophic cardiomyopathy (FHC) is the most common cause of sudden cardiac death in young individuals. Molecular mechanisms underlying this disorder are largely unknown; this study aims at revealing how disruptions in actin-myosin interactions can play a role in this disorder. Cross-bridge (XB) kinetics and the degree of order were examined in contracting myofibrils from the ex vivo left ventricles of transgenic (Tg) mice expressing FHC regulatory light chain (RLC) mutation K104E. Because the degree of order and the kinetics are best studied when an individual XB makes a significant contribution to the overall signal, the number of observed XBs in an ex vivo ventricle was minimized to ∼20. Autofluorescence and photobleaching were minimized by labeling the myosin lever arm with a relatively long-lived red-emitting dye containing a chromophore system encapsulated in a cyclic macromolecule. Mutated XBs were significantly better ordered during steady-state contraction and during rigor, but the mutation had no effect on the degree of order in relaxed myofibrils. The K104E mutation increased the rate of XB binding to thin filaments and the rate of execution of the power stroke. The stopped-flow experiments revealed a significantly faster observed dissociation rate in Tg-K104E vs. Tg-wild-type (WT) myosin and a smaller second-order ATP-binding rate for the K104E compared with WT myosin. Collectively, our data indicate that the mutation-induced changes in the interaction of myosin with actin during the contraction-relaxation cycle may contribute to altered contractility and the development of FHC.
Collapse
Affiliation(s)
- D Duggal
- Department of Cell Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Fort Worth, Texas; and
| | - J Nagwekar
- Department of Cell Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Fort Worth, Texas; and
| | - R Rich
- Department of Cell Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Fort Worth, Texas; and
| | - W Huang
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida; and
| | - K Midde
- Department of Cell Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Fort Worth, Texas; and
| | - R Fudala
- Department of Cell Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Fort Worth, Texas; and
| | - H Das
- Department of Cell Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Fort Worth, Texas; and Department of Pharmacology and Neuroscience, Institute of Aging and Alzheimer's Disease Research, Institute of Cancer Research, Fort Worth, Texas
| | - I Gryczynski
- Department of Cell Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Fort Worth, Texas; and
| | - D Szczesna-Cordary
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida; and
| | - J Borejdo
- Department of Cell Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Fort Worth, Texas; and
| |
Collapse
|
6
|
Wang L, Ji X, Barefield D, Sadayappan S, Kawai M. Phosphorylation of cMyBP-C affects contractile mechanisms in a site-specific manner. Biophys J 2014; 106:1112-22. [PMID: 24606935 DOI: 10.1016/j.bpj.2014.01.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/18/2014] [Accepted: 01/23/2014] [Indexed: 01/05/2023] Open
Abstract
Cardiac myosin binding protein-C (cMyBP-C) is a cardiac-specific, thick-filament regulatory protein that is differentially phosphorylated at Ser(273), Ser(282), and Ser(302) by various kinases and modulates contraction. In this study, phosphorylation-site-specific effects of cMyBP-C on myocardial contractility and cross-bridge kinetics were studied by sinusoidal analysis in papillary and trabecular muscle fibers isolated from t/t (cMyBP-C-null) mice and in their counterparts in which cMyBP-C contains the ADA (Ala(273)-Asp(282)-Ala(302)), DAD (Asp(273)-Ala(282)-Asp(302)), and SAS (Ser(273)-Ala(282)-Ser(302)) mutations; the results were compared to those from mice expressing the wild-type (WT) transgene on the t/t background. Under standard activating conditions, DAD fibers showed significant decreases in tension (~50%), stiffness, the fast apparent rate constant 2πc, and its magnitude C, as well as its magnitude H, but an increase in the medium rate constant 2πb, with respect to WT. The t/t fibers showed a smaller drop in stiffness and a significant decrease in 2πc that can be explained by isoform shift of myosin heavy chain. In the pCa-tension study using the 8 mM phosphate (Pi) solution, there was hardly any difference in Ca(2+) sensitivity (pCa50) and cooperativity (nH) between the mutant and WT samples. However, in the solutions without Pi, DAD showed increased nH and slightly decreased pCa50. We infer from these observations that the nonphosphorylatable residue 282 combined with phosphomimetic residues Asp(273) and/or Asp(302) (in DAD) is detrimental to cardiomyocytes by lowering isometric tension and altering cross-bridge kinetics with decreased 2πc and increased 2πb. In contrast, a single change of residue 282 to nonphosphorylatable Ala (SAS), or to phosphomimetic Asps together with the changes of residues 273 and 302 to nonphosphorylatable Ala (ADA) causes minute changes in fiber mechanics.
Collapse
Affiliation(s)
- Li Wang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa; School of Nursing, Soochow University, Suzhou, Jiangsu, China
| | - Xiang Ji
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois
| | - David Barefield
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois
| | - Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois
| | - Masakata Kawai
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
7
|
Farman GP, Muthu P, Kazmierczak K, Szczesna-Cordary D, Moore JR. Impact of familial hypertrophic cardiomyopathy-linked mutations in the NH2 terminus of the RLC on β-myosin cross-bridge mechanics. J Appl Physiol (1985) 2014; 117:1471-7. [PMID: 25324513 DOI: 10.1152/japplphysiol.00798.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (HCM) is associated with mutations in sarcomeric proteins, including the myosin regulatory light chain (RLC). Here we studied the impact of three HCM mutations located in the NH2 terminus of the RLC on the molecular mechanism of β-myosin heavy chain (MHC) cross-bridge mechanics using the in vitro motility assay. To generate mutant β-myosin, native RLC was depleted from porcine cardiac MHC and reconstituted with mutant (A13T, F18L, and E22K) or wild-type (WT) human cardiac RLC. We characterized the mutant myosin force and motion generation capability in the presence of a frictional load. Compared with WT, all three mutants exhibited reductions in maximal actin filament velocity when tested under low or no frictional load. The actin-activated ATPase showed no significant difference between WT and HCM-mutant-reconstituted myosins. The decrease in velocity has been attributed to a significantly increased duty cycle, as was measured by the dependence of actin sliding velocity on myosin surface density, for all three mutant myosins. These results demonstrate a mutation-induced alteration in acto-myosin interactions that may contribute to the pathogenesis of HCM.
Collapse
Affiliation(s)
- Gerrie P Farman
- Department of Physiology and Biophysics, Boston University, Boston, Massachusetts; and
| | - Priya Muthu
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, Florida
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, Florida
| | | | - Jeffrey R Moore
- Department of Physiology and Biophysics, Boston University, Boston, Massachusetts; and
| |
Collapse
|
8
|
Wang L, Muthu P, Szczesna-Cordary D, Kawai M. Diversity and similarity of motor function and cross-bridge kinetics in papillary muscles of transgenic mice carrying myosin regulatory light chain mutations D166V and R58Q. J Mol Cell Cardiol 2013; 62:153-63. [PMID: 23727233 PMCID: PMC3809071 DOI: 10.1016/j.yjmcc.2013.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/16/2013] [Accepted: 05/19/2013] [Indexed: 10/26/2022]
Abstract
Mechanical properties of skinned papillary muscle fibers from transgenic mice expressing familial hypertrophic cardiomyopathy associated mutations D166V and R58Q in myosin regulatory light chain were investigated. Elementary steps and the apparent rate constants of the cross-bridge cycle were characterized from the tension transients induced by sinusoidal length changes during maximal Ca(2+) activation, together with ATP, ADP, and Pi studies. The tension-pCa relation was also tested in two sets of solutions with differing Pi and ionic strength. Our results showed that in both mutants the fast apparent rate constant 2πc and the rate constants of the cross-bridge detachment step (k2) were smaller than those of wild type (WT), demonstrating the slower cross-bridge kinetics. D166V showed significantly smaller ATP (K1) and ADP (K0) association constants than WT, displaying weaker ATP binding and easier ADP release, whereas those of R58Q were not significantly different from WT. In tension-pCa study, both D166V and R58Q mutations exhibited increased Ca(2+) sensitivity and less cooperativity. We conclude that, while the two FHC mutations have similar clinical manifestations and prognosis, some of the mechanical parameters of cross-bridges (K0, K1) are differently modified, whereas some others (Ca(2+)-sensitivity, cooperativity, k2) are similarly modified by these two FHC associated mutations.
Collapse
Affiliation(s)
- Li Wang
- Departments of Anatomy and Cell Biology, and Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Priya Muthu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Masataka Kawai
- Departments of Anatomy and Cell Biology, and Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
9
|
Kazmierczak K, Paulino EC, Huang W, Muthu P, Liang J, Yuan CC, Rojas AI, Hare JM, Szczesna-Cordary D. Discrete effects of A57G-myosin essential light chain mutation associated with familial hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 2013; 305:H575-89. [PMID: 23748425 DOI: 10.1152/ajpheart.00107.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The functional consequences of the familial hypertrophic cardiomyopathy A57G (alanine-to-glycine) mutation in the myosin ventricular essential light chain (ELC) were assessed in vitro and in vivo using previously generated transgenic (Tg) mice expressing A57G-ELC mutant vs. wild-type (WT) of human cardiac ELC and in recombinant A57G- or WT-protein-exchanged porcine cardiac muscle strips. Compared with the Tg-WT, there was a significant increase in the Ca²⁺ sensitivity of force (ΔpCa₅₀ ≅ 0.1) and an ~1.3-fold decrease in maximal force per cross section of muscle observed in the mutant preparations. In addition, a significant increase in passive tension in response to stretch was monitored in Tg-A57G vs. Tg-WT strips indicating a mutation-induced myocardial stiffness. Consistently, the hearts of Tg-A57G mice demonstrated a high level of fibrosis and hypertrophy manifested by increased heart weight-to-body weight ratios and a decreased number of nuclei indicating an increase in the two-dimensional size of Tg-A57G vs. Tg-WT myocytes. Echocardiography examination showed a phenotype of eccentric hypertrophy in Tg-A57G mice, enhanced left ventricular (LV) cavity dimension without changes in LV posterior/anterior wall thickness. Invasive hemodynamics data revealed significantly increased end-systolic elastance, defined by the slope of the pressure-volume relationship, indicating a mutation-induced increase in cardiac contractility. Our results suggest that the A57G allele causes disease by means of a discrete modulation of myofilament function, increased Ca²⁺ sensitivity, and decreased maximal tension followed by compensatory hypertrophy and enhanced contractility. These and other contributing factors such as increased myocardial stiffness and fibrosis most likely activate cardiomyopathic signaling pathways leading to pathologic cardiac remodeling.
Collapse
Affiliation(s)
- Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida; and
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Weterman MAJ, Barth PG, van Spaendonck-Zwarts KY, Aronica E, Poll-The BT, Brouwer OF, van Tintelen JP, Qahar Z, Bradley EJ, de Wissel M, Salviati L, Angelini C, van den Heuvel L, Thomasse YEM, Backx AP, Nürnberg G, Nürnberg P, Baas F. Recessive MYL2 mutations cause infantile type I muscle fibre disease and cardiomyopathy. ACTA ACUST UNITED AC 2013; 136:282-93. [PMID: 23365102 DOI: 10.1093/brain/aws293] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A cardioskeletal myopathy with onset and death in infancy, morphological features of muscle type I hypotrophy with myofibrillar disorganization and dilated cardiomyopathy was previously reported in three Dutch families. Here we report the genetic cause of this disorder. Multipoint parametric linkage analysis of six Dutch patients identified a homozygous region of 2.1 Mb on chromosome 12, which was shared between all Dutch patients, with a log of odds score of 10.82. Sequence analysis of the entire linkage region resulted in the identification of a homozygous mutation in the last acceptor splice site of the myosin regulatory light chain 2 gene (MYL2) as the genetic cause. MYL2 encodes a myosin regulatory light chain (MLC-2V). The myosin regulatory light chains bind, together with the essential light chains, to the flexible neck region of the myosin heavy chain in the hexameric myosin complex and have a structural and regulatory role in muscle contraction. The MYL2 mutation results in use of a cryptic splice site upstream of the last exon causing a frameshift and replacement of the last 32 codons by 20 different codons. Whole exome sequencing of an Italian patient with similar clinical features showed compound heterozygosity for two other mutations affecting the same exon of MYL2, also resulting in mutant proteins with altered C-terminal tails. As a consequence of these mutations, the second EF-hand domain is disrupted. EF-hands, assumed to function as calcium sensors, can undergo a conformational change upon binding of calcium that is critical for interactions with downstream targets. Immunohistochemical staining of skeletal muscle tissue of the Dutch patients showed a diffuse and weak expression of the mutant protein without clear fibre specificity, while normal protein was absent. Heterozygous missense mutations in MYL2 are known to cause dominant hypertrophic cardiomyopathy; however, none of the parents showed signs of cardiomyopathy. In conclusion, the mutations in the last exon of MYL2 are responsible for a novel autosomal recessive lethal myosinopathy due to defects changing the C-terminal tail of the ventricular form of the myosin regulatory light chain. We propose 'light chain myopathy' as a name for this MYL2-associated myopathy.
Collapse
Affiliation(s)
- Marian A J Weterman
- Department of Genome Analysis k2-213, Academic Medical Centre Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Burghardt TP, Sikkink LA. Regulatory light chain mutants linked to heart disease modify the cardiac myosin lever arm. Biochemistry 2013; 52:1249-59. [PMID: 23343568 DOI: 10.1021/bi301500d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Myosin is the chemomechanical energy transducer in striated heart muscle. The myosin cross-bridge applies impulsive force to actin while consuming ATP chemical energy to propel myosin thick filaments relative to actin thin filaments in the fiber. Transduction begins with ATP hydrolysis in the cross-bridge driving rotary movement of a lever arm converting torque into linear displacement. Myosin regulatory light chain (RLC) binds to the lever arm and modifies its ability to translate actin. Gene sequencing implicated several RLC mutations in heart disease, and three of them are investigated here using photoactivatable GFP-tagged RLC (RLC-PAGFP) exchanged into permeabilized papillary muscle fibers. A single-lever arm probe orientation is detected in the crowded environment of the muscle fiber by using RLC-PAGFP with dipole orientation deduced from the three-spatial dimension fluorescence emission pattern of the single molecule. Symmetry and selection rules locate dipoles in their half-sarcomere, identify those at the minimal free energy, and specify active dipole contraction intermediates. Experiments were performed in a microfluidic chamber designed for isometric contraction, total internal reflection fluorescence detection, and two-photon excitation second harmonic generation to evaluate sarcomere length. The RLC-PAGFP reports apparently discretized lever arm orientation intermediates in active isometric fibers that on average produce the stall force. Disease-linked mutants introduced into RLC move intermediate occupancy further down the free energy gradient, implying lever arms rotate more to reach stall force because mutant RLC increases lever arm shear strain. A lower free energy intermediate occupancy involves a lower energy conversion efficiency in the fiber relating a specific myosin function modification to the disease-implicated mutant.
Collapse
Affiliation(s)
- Thomas P Burghardt
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, MN 55905, USA.
| | | |
Collapse
|
12
|
Muthu P, Kazmierczak K, Jones M, Szczesna-Cordary D. The effect of myosin RLC phosphorylation in normal and cardiomyopathic mouse hearts. J Cell Mol Med 2012; 16:911-9. [PMID: 21696541 PMCID: PMC3193868 DOI: 10.1111/j.1582-4934.2011.01371.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Phosphorylation of the myosin regulatory light chain (RLC) by Ca(2+)-calmodulin-activated myosin light chain kinase (MLCK) is known to be essential for the inotropic function of the heart. In this study, we have examined the effects of MLCK-phosphorylation of transgenic (Tg) mouse cardiac muscle preparations expressing the D166V (aspartic acid to valine)-RLC mutation, identified to cause familial hypertrophic cardiomyopathy with malignant outcomes. Our previous work with Tg-D166V mice demonstrated a large increase in the Ca(2+) sensitivity of contraction, reduced maximal ATPase and force and a decreased level of endogenous RLC phosphorylation. Based on studies demonstrating the beneficial and/or protective effects of cardiac myosin phosphorylation for heart function, we hypothesized that an ex vivo phosphorylation of Tg-D166V cardiac muscle may rescue the detrimental contractile phenotypes observed earlier at the level of single myosin molecules and in Tg-D166V papillary muscle fibres. We showed that MLCK-induced phosphorylation of Tg-D166V cardiac myofibrils and muscle fibres was able to increase the reduced myofibrillar ATPase and reverse an abnormally increased Ca(2+) sensitivity of force to the level observed for Tg-wild-type (WT) muscle. However, in contrast to Tg-WT, which displayed a phosphorylation-induced increase in steady-state force, the maximal tension in Tg-D166V papillary muscle fibres decreased upon phosphorylation. With the exception of force generation data, our results support the notion that RLC phosphorylation works as a rescue mechanism alleviating detrimental functional effects of a disease causing mutation. Further studies are necessary to elucidate the mechanism of this unexpected phosphorylation-induced decrease in maximal tension in Tg-D166V-skinned muscle fibres.
Collapse
Affiliation(s)
- Priya Muthu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
13
|
Kazmierczak K, Muthu P, Huang W, Jones M, Wang Y, Szczesna-Cordary D. Myosin regulatory light chain mutation found in hypertrophic cardiomyopathy patients increases isometric force production in transgenic mice. Biochem J 2012; 442:95-103. [PMID: 22091967 PMCID: PMC6589164 DOI: 10.1042/bj20111145] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
FHC (familial hypertrophic cardiomyopathy) is a heritable form of cardiac hypertrophy caused by mutations in genes encoding sarcomeric proteins. The present study focuses on the A13T mutation in the human ventricular myosin RLC (regulatory light chain) that is associated with a rare FHC variant defined by mid-ventricular obstruction and septal hypertrophy. We generated heart-specific Tg (transgenic) mice with ~10% of human A13T-RLC mutant replacing the endogenous mouse cardiac RLC. Histopathological examinations of longitudinal heart sections from Tg-A13T mice showed enlarged interventricular septa and profound fibrotic lesions compared with Tg-WT (wild-type), expressing the human ventricular RLC, or non-Tg mice. Functional studies revealed an abnormal A13T mutation-induced increase in isometric force production, no change in the force-pCa relationship and a decreased Vmax of the acto-myosin ATPase. In addition, a fluorescence-based assay showed a 3-fold lower binding affinity of the recombinant A13T mutant for the RLC-depleted porcine myosin compared with WT-RLC. These results suggest that the A13T mutation triggers a hypertrophic response through changes in cardiac sarcomere organization and myosin cross-bridge function leading to abnormal remodelling of the heart. The significant functional changes observed, despite a low level of A13T mutant incorporation into myofilaments, suggest a 'poison-peptide' mechanism of disease.
Collapse
Affiliation(s)
- Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| | - Priya Muthu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| | - Wenrui Huang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| | - Michelle Jones
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| | - Yingcai Wang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| |
Collapse
|
14
|
Mettikolla P, Calander N, Luchowski R, Gryczynski I, Gryczynski Z, Zhao J, Szczesna-Cordary D, Borejdo J. Cross-bridge kinetics in myofibrils containing familial hypertrophic cardiomyopathy R58Q mutation in the regulatory light chain of myosin. J Theor Biol 2011; 284:71-81. [PMID: 21723297 PMCID: PMC3152379 DOI: 10.1016/j.jtbi.2011.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/09/2011] [Accepted: 06/14/2011] [Indexed: 12/16/2022]
Abstract
Familial hypertrophic cardiomyopathy (FHC) is a heritable form of cardiac hypertrophy caused by single-point mutations in genes encoding sarcomeric proteins including ventricular myosin regulatory light chain (RLC). FHC often leads to malignant outcomes and sudden cardiac death. The FHC mutations are believed to alter the kinetics of the interaction between actin and myosin resulting in inefficient energy utilization and compromised function of the heart. We studied the effect of the FHC-linked R58Q-RLC mutation on the kinetics of transgenic (Tg)-R58Q cardiac myofibrils. Kinetics was determined from the rate of change of orientation of actin monomers during muscle contraction. Actin monomers change orientation because myosin cross-bridges deliver periodic force impulses to it. An individual impulse (but not time average of impulses) carries the information about the kinetics of actomyosin interaction. To observe individual impulses it was necessary to scale down the experiments to the level of a few molecules. A small population (∼4 molecules) was selected by using (deliberately) inefficient fluorescence labeling and observing fluorescent molecules by a confocal microscope. We show that the kinetic rates are significantly smaller in the contracting cardiac myofibrils from Tg-R58Q mice then in control Tg-wild type (WT). We also demonstrate a lower force per cross-section of muscle fiber in Tg-R58Q versus Tg-WT mice. We conclude that the R58Q mutation-induced decrease in cross-bridge kinetics underlines the mechanism by which Tg-R58Q fibers develop low force and thus compromise the ability of the mutated heart to efficiently pump blood.
Collapse
Affiliation(s)
- P. Mettikolla
- Dept of Molecular Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107
| | - N. Calander
- Dept of Molecular Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107
- Dept of Physics, Macquarie University, Balaclava Rd, NSW 2109, Australia
| | - R. Luchowski
- Dept of Molecular Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107
| | - I. Gryczynski
- Dept of Cell Biology & Genetics and Center for Commercialization of FluorescenceTechnologies, University of North Texas, Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107
| | - Z. Gryczynski
- Dept of Molecular Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107
| | - J. Zhao
- Dept of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10Ave., Miami, FL 33136
| | - D. Szczesna-Cordary
- Dept of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10Ave., Miami, FL 33136
| | - J. Borejdo
- Dept of Molecular Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107
| |
Collapse
|
15
|
Abstract
In the 20 years since the discovery of the first mutation linked to familial hypertrophic cardiomyopathy (HCM), an astonishing number of mutations affecting numerous sarcomeric proteins have been described. Among the most prevalent of these are mutations that affect thick filament binding proteins, including the myosin essential and regulatory light chains and cardiac myosin binding protein (cMyBP)-C. However, despite the frequency with which myosin binding proteins, especially cMyBP-C, have been linked to inherited cardiomyopathies, the functional consequences of mutations in these proteins and the mechanisms by which they cause disease are still only partly understood. The purpose of this review is to summarize the known disease-causing mutations that affect the major thick filament binding proteins and to relate these mutations to protein function. Conclusions emphasize the impact that discovery of HCM-causing mutations has had on fueling insights into the basic biology of thick filament proteins and reinforce the idea that myosin binding proteins are dynamic regulators of the activation state of the thick filament that contribute to the speed and force of myosin-driven muscle contraction. Additional work is still needed to determine the mechanisms by which individual mutations induce hypertrophic phenotypes.
Collapse
Affiliation(s)
- Samantha P Harris
- Department of Neurobiology, Physiology, and Behavior College of Biological Sciences, University of California, One Shields Ave, Davis, CA 95616, USA.
| | | | | |
Collapse
|
16
|
Midde K, Luchowski R, Das HK, Fedorick J, Dumka V, Gryczynski I, Gryczynski Z, Borejdo J. Evidence for pre- and post-power stroke of cross-bridges of contracting skeletal myofibrils. Biophys J 2011; 100:1024-33. [PMID: 21320447 DOI: 10.1016/j.bpj.2011.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 12/28/2010] [Accepted: 01/05/2011] [Indexed: 11/30/2022] Open
Abstract
We examined the orientational fluctuations of a small number of myosin molecules (approximately three) in working skeletal muscle myofibrils. Myosin light chain 1 (LC1) was labeled with a fluorescent dye and exchanged with the native LC1 of skeletal muscle myofibrils cross-linked with 1-ethyl-3-[3(dimethylamino) propyl] carbodiimide to prevent shortening. We observed a small volume within the A-band (∼10(-15) L) by confocal microscopy, and measured cyclic fluctuations in the orientation of the myosin neck (containing LC1) by recording the parallel and perpendicular components of fluorescent light emitted by the fluorescently labeled myosin LC1. Histograms of orientational fluctuations from fluorescent molecules in rigor were represented by a single Gaussian distribution. In contrast, histograms from contracting muscles were best fit by at least two Gaussians. These results provide direct evidence that cross-bridges in working skeletal muscle assume two distinct conformations, presumably corresponding to the pre- and post-power-stroke states.
Collapse
Affiliation(s)
- K Midde
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Burghardt TP, Ajtai K. Single-molecule fluorescence characterization in native environment. Biophys Rev 2010; 2:159-167. [PMID: 21179385 PMCID: PMC3004222 DOI: 10.1007/s12551-010-0038-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 10/12/2010] [Indexed: 11/29/2022] Open
Abstract
Single-molecule detection (SMD) with fluorescence is a widely used microscopic technique for biomolecule structure and function characterization. The modern light microscope with high numerical aperture objective and sensitive CCD camera can image the brightly emitting organic and fluorescent protein tags with reasonable time resolution. Single-molecule imaging gives an unambiguous bottom-up biomolecule characterization that avoids the "missing information" problem characteristic of ensemble measurements. It has circumvented the diffraction limit by facilitating single-particle localization to ~1 nm. Probes developed specifically for SMD applications extend the advantages of single-molecule imaging to high probe density regions of cells and tissues. These applications perform under conditions resembling the native biomolecule environment and have been used to detect both probe position and orientation. Native, high density SMD may have added significance if molecular crowding impacts native biomolecule behavior as expected inside the cell.
Collapse
Affiliation(s)
- Thomas P. Burghardt
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, MN 55905 USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, Rochester, MN 55905 USA
| | - Katalin Ajtai
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, MN 55905 USA
| |
Collapse
|
18
|
Borejdo J, Szczesna-Cordary D, Muthu P, Calander N. Familial hypertrophic cardiomyopathy can be characterized by a specific pattern of orientation fluctuations of actin molecules . Biochemistry 2010; 49:5269-77. [PMID: 20509708 DOI: 10.1021/bi1006749] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A single-point mutation in the gene encoding the ventricular myosin regulatory light chain (RLC) is sufficient to cause familial hypertrophic cardiomyopathy (FHC). Most likely, the underlying cause of this disease is an inefficient energy utilization by the mutated cardiac muscle. We set out to devise a simple method to characterize two FHC phenotypes caused by the R58Q and D166V mutations in RLC. The method is based on the ability to observe a few molecules of actin in working ex vivo heart myofibril. Actin is labeled with extremely diluted fluorescent dye, and a small volume within the I-band ( approximately 10(-16) L), containing on average three actin molecules, is observed by confocal microscopy. During muscle contraction, myosin cross-bridges deliver cyclic impulses to actin. As a result, actin molecules undergo periodic fluctuations of orientation. We measured these fluctuations by recording the parallel and perpendicular components of fluorescent light emitted by an actin-bound fluorophore. The histograms of fluctuations of fluorescent actin molecules in wild-type (WT) hearts in rigor were represented by perfect Gaussian curves. In contrast, histograms of contracting heart muscle were peaked and asymmetric, suggesting that contraction occurred in at least two steps. Furthermore, the differences between histograms of contracting FHC R58Q and D166V hearts versus corresponding contracting WT hearts were statistically significant. On the basis of our results, we suggest a simple new method of distinguishing between healthy and FHC R58Q and D166V hearts by analyzing the probability distribution of polarized fluorescence intensity fluctuations of sparsely labeled actin molecules.
Collapse
Affiliation(s)
- J Borejdo
- Department of Molecular Biology and Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, USA.
| | | | | | | |
Collapse
|
19
|
Mettikolla P, Calander N, Luchowski R, Gryczynski I, Gryczynski Z, Borejdo J. Kinetics of a single cross-bridge in familial hypertrophic cardiomyopathy heart muscle measured by reverse Kretschmann fluorescence. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:017011. [PMID: 20210485 PMCID: PMC2847936 DOI: 10.1117/1.3324871] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/04/2010] [Accepted: 01/06/2010] [Indexed: 05/28/2023]
Abstract
Familial hypertrophic cardiomyopathy (FHC) is a serious heart disease that often leads to a sudden cardiac death of young athletes. It is believed that the alteration of the kinetics of interaction between actin and myosin causes FHC by making the heart to pump blood inefficiently. We set out to check this hypothesis ex vivo. During contraction of heart muscle, a myosin cross-bridge imparts periodic force impulses to actin. The impulses are analyzed by fluorescence correlation spectroscopy (FCS) of fluorescently labeled actin. To minimize observation volume and background fluorescence, we carry out FCS measurements in surface plasmon coupled emission mode in a reverse Kretschmann configuration. Fluorescence is a result of near-field coupling of fluorophores excited in the vicinity of the metal-coated surface of a coverslip with the surface plasmons propagating in the metal. Surface plasmons decouple on opposite sides of the metal film and emit in a directional manner as far-field p-polarized radiation. We show that the rate of changes of orientation is significantly faster in contracting cardiac myofibrils of transgenic mice than wild type. These results are consistent with the fact that mutated heart muscle myosin translates actin faster in in vitro motility assays.
Collapse
Affiliation(s)
- Prasad Mettikolla
- University of North Texas Health Science Center, Department of Molecular Biology and Immunology, Fort Worth, Texas 76107, USA
| | | | | | | | | | | |
Collapse
|