1
|
Wang X, Wang H, Li J, Li L, Wang Y, Li A. Salt-induced phosphoproteomic changes in the subfornical organ in rats with chronic kidney disease. Ren Fail 2023; 45:2171886. [PMID: 36715439 PMCID: PMC9888458 DOI: 10.1080/0886022x.2023.2171886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVES Subfornical organ (SFO) is vital in chronic kidney disease (CKD) progression caused by high salt levels. The current study investigated the effects of high salt on phosphoproteomic changes in SFO in CKD rats. METHODS 5/6 nephrectomized rats were fed a normal-salt diet (0.4%) (NC group) or a high-salt diet (4%) (HC group) for three weeks, while sham-operated rats were fed a normal-salt diet (0.4%) (NS group). For phosphoproteomic analysis of SFO in different groups, TiO2 enrichment, isobaric tags for relative and absolute quantification (iTRAQ) labeling, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used. RESULTS There were 6808 distinct phosphopeptides found, which corresponded to 2661 phosphoproteins. NC group had 168 upregulated and 250 downregulated phosphopeptides compared to NS group. Comparison to NC group, HC group had 154 upregulated and 124 downregulated phosphopeptides. Growth associated protein 43 (GAP43) and heat shock protein 27 (Hsp27) were significantly upregulated phosphoproteins and may protect against high-salt damage. Differential phosphoproteins with tight functional connection were synapse proteins and microtubule-associated proteins, implying that high-salt diet disrupted brain's structure and function. Furthermore, differential phosphoproteins in HC/NC comparison group were annotated to participate in GABAergic synapse signaling pathway and aldosterone synthesis and secretion, which attenuated inhibitory neurotransmitter effects and increased sympathetic nerve activity (SNA). DISCUSSION This large scale phosphoproteomic profiling of SFO sheds light on how salt aggravates CKD via the central nervous system.
Collapse
Affiliation(s)
- Xin Wang
- National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huizhen Wang
- National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiawen Li
- Nephrology Division, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lanying Li
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yifan Wang
- Anshun People’s Hospital of Guizhou Province, Anshun, China
| | - Aiqing Li
- National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China,CONTACT Aiqing Li National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
2
|
Hazra J, Vijayakumar A, Mahapatra NR. Emerging role of heat shock proteins in cardiovascular diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:271-306. [PMID: 36858739 DOI: 10.1016/bs.apcsb.2022.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Heat Shock Proteins (HSPs) are evolutionarily conserved proteins from prokaryotes to eukaryotes. They are ubiquitous proteins involved in key physiological and cellular pathways (viz. inflammation, immunity and apoptosis). Indeed, the survivability of the cells under various stressful conditions depends on appropriate levels of HSP expression. There is a growing line of evidence for the role of HSPs in regulating cardiovascular diseases (CVDs) (viz. hypertension, atherosclerosis, atrial fibrillation, cardiomyopathy and heart failure). Furthermore, studies indicate that a higher concentration of circulatory HSP antibodies correlate to CVDs; some are even potential markers for CVDs. The multifaceted roles of HSPs in regulating cellular signaling necessitate unraveling their links to pathophysiology of CVDs. This review aims to consolidate our understanding of transcriptional (via multiple transcription factors including HSF-1, NF-κB, CREB and STAT3) and post-transcriptional (via microRNAs including miR-1, miR-21 and miR-24) regulation of HSPs. The cytoprotective nature of HSPs catapults them to the limelight as modulators of cell survival. Yet another attractive prospect is the development of new therapeutic strategies against cardiovascular diseases (from hypertension to heart failure) by targeting the regulation of HSPs. Moreover, this review provides insights into how genetic variation of HSPs can contribute to the manifestation of CVDs. It would also offer a bird's eye view of the evolving role of different HSPs in the modulation and manifestation of cardiovascular disease.
Collapse
Affiliation(s)
- Joyita Hazra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Anupama Vijayakumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
3
|
Schizothorax prenanti Heat Shock Protein 27 Gene: Cloning, Expression, and Comparison with Other Heat Shock Protein Genes after Poly (I:C) Induction. Animals (Basel) 2022; 12:ani12162034. [PMID: 36009624 PMCID: PMC9404436 DOI: 10.3390/ani12162034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
We identified and cloned cDNA encoding the heat shock protein (Hsp) 27 gene from Schizothorax prenanti (SpHsp27), and compared its expression with that of SpHsp60, SpHsp70, and SpHsp90 in the liver, head kidney, hindgut, and spleen of S. prenanti that were injected with polyinosinic-polycytidylic acid [Poly (I:C)]. The SpHsp27 partial cDNA (sequence length, 653 bp; estimated molecular mass, 5.31 kDa; theoretical isoelectric point, 5.09) contained an open reading frame of 636 bp and a gene encoding 211 amino acids. The SpHsp27 amino acid sequence shared 61.0−92.89% identity with Hsp27 sequences from other vertebrates and SpHsp27 was expressed in seven S. prenanti tissues. Poly (I:C) significantly upregulated most SpHsps genes in the tissues at 12 or 24 h (p < 0.05) compared with control fish that were injected with phosphate-buffered saline. However, the intensity of responses of the four SpHsps was organ-specifically increased. The expression of SpHsp27 was increased 163-fold in the head kidney and 26.6-fold SpHsp27 in the liver at 24 h after Poly (I:C) injection. In contrast, SpHsp60 was increased 0.97−1.46-fold in four tissues and SpHsp90 was increased 1.21- and 1.16-fold in the liver and spleen at 12 h after Poly (I:C) injection. Our findings indicated that Poly (I:C) induced SpHsp27, SpHsp60, SpHsp70, and SpHsp90 expression and these organ-specific SpHsps are potentially involved in S. prenanti antiviral immunity or mediate pathological process.
Collapse
|
4
|
Vahidinia Z, Mahdavi E, Talaei SA, Naderian H, Tamtaji A, Haddad Kashani H, Beyer C, Azami Tameh A. The effect of female sex hormones on Hsp27 phosphorylation and histological changes in prefrontal cortex after tMCAO. Pathol Res Pract 2021; 221:153415. [PMID: 33857717 DOI: 10.1016/j.prp.2021.153415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/13/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Female sex hormones are protective factors against many neurological disorders such as brain ischemia. Heat shock protein like HSP27 is activated after tissue injury. The main purpose of the present study is to determine the effect of a combined estrogen / progesterone cocktail on the morphology of astrocytes, neurons and Hsp27 phosphorylation after cerebral ischemia. METHODS One hour after the MCAO induction, a single dose of estrogen and progesterone was injected. The infarct volume was calculated by TTC staining 24 h after ischemia. Immunohistochemistry was used to show the effects of estrogen and progesterone on astrocyte and neuron morphology, as well as the Western blot technique used for the quantitation of phosphorylated Hsp27. RESULTS The combined dose of estrogen and progesterone significantly decreased astrocytosis after ischemia and increased neuron survival. There was a large increase in Hsp27 phosphorylation in the penumbra ischemic region after stroke, which was significantly reduced by hormone therapy. CONCLUSION Our results indicate that the neuroprotective effect of neurosteroids in the brain may be due to the modulation of heat shock proteins.
Collapse
Affiliation(s)
- Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Mahdavi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Homayoun Naderian
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Aboutaleb Tamtaji
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Cordian Beyer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Ammendola R, Parisi M, Esposito G, Cattaneo F. Pro-Resolving FPR2 Agonists Regulate NADPH Oxidase-Dependent Phosphorylation of HSP27, OSR1, and MARCKS and Activation of the Respective Upstream Kinases. Antioxidants (Basel) 2021; 10:antiox10010134. [PMID: 33477989 PMCID: PMC7835750 DOI: 10.3390/antiox10010134] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Formyl peptide receptor 2 (FPR2) is involved in the pathogenesis of chronic inflammatory diseases, being activated either by pro-resolving or proinflammatory ligands. FPR2-associated signal transduction pathways result in phosphorylation of several proteins and in NADPH oxidase activation. We, herein, investigated molecular mechanisms underlying phosphorylation of heat shock protein 27 (HSP27), oxidative stress responsive kinase 1 (OSR1), and myristolated alanine-rich C-kinase substrate (MARCKS) elicited by the pro-resolving FPR2 agonists WKYMVm and annexin A1 (ANXA1). Methods: CaLu-6 cells or p22phoxCrispr/Cas9 double nickase CaLu-6 cells were incubated for 5 min with WKYMVm or ANXA1, in the presence or absence of NADPH oxidase inhibitors. Phosphorylation at specific serine residues of HSP27, OSR1, and MARCKS, as well as the respective upstream kinases activated by FPR2 stimulation was analysed. Results: Blockade of NADPH oxidase functions prevents WKYMVm- and ANXA1-induced HSP-27(Ser82), OSR1(Ser339) and MARCKS(Ser170) phosphorylation. Moreover, NADPH oxidase inhibitors prevent WKYMVm- and ANXA1-dependent activation of p38MAPK, PI3K and PKCδ, the kinases upstream to HSP-27, OSR1 and MARCKS, respectively. The same results were obtained in p22phoxCrispr/Cas9 cells. Conclusions: FPR2 shows an immunomodulatory role by regulating proinflammatory and anti-inflammatory activities and NADPH oxidase is a key regulator of inflammatory pathways. The activation of NADPH oxidase-dependent pro-resolving downstream signals suggests that FPR2 signalling and NADPH oxidase could represent novel targets for inflammation therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | - Fabio Cattaneo
- Correspondence: ; Tel.: +39-081-746-2036; Fax: +39-081-746-4359
| |
Collapse
|
6
|
The Cardioprotective PKA-Mediated Hsp20 Phosphorylation Modulates Protein Associations Regulating Cytoskeletal Dynamics. Int J Mol Sci 2020; 21:ijms21249572. [PMID: 33339131 PMCID: PMC7765622 DOI: 10.3390/ijms21249572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
The cytoskeleton has a primary role in cardiomyocyte function, including the response to mechanical stimuli and injury. The small heat shock protein 20 (Hsp20) conveys protective effects in cardiac muscle that are linked to serine-16 (Ser16) Hsp20 phosphorylation by stress-induced PKA, but the link between Hsp20 and the cytoskeleton remains poorly understood. Herein, we demonstrate a physical and functional interaction of Hsp20 with the cytoskeletal protein 14-3-3. We show that, upon phosphorylation at Ser16, Hsp20 translocates from the cytosol to the cytoskeleton where it binds to 14-3-3. This leads to dissociation of 14-3-3 from the F-actin depolymerization regulator cofilin-2 (CFL2) and enhanced F-actin depolymerization. Importantly, we demonstrate that the P20L Hsp20 mutation associated with dilated cardiomyopathy exhibits reduced physical interaction with 14-3-3 due to diminished Ser16 phosphorylation, with subsequent failure to translocate to the cytoskeleton and inability to disassemble the 14-3-3/CFL2 complex. The topological sequestration of Hsp20 P20L ultimately results in impaired regulation of F-actin dynamics, an effect implicated in loss of cytoskeletal integrity and amelioration of the cardioprotective functions of Hsp20. These findings underscore the significance of Hsp20 phosphorylation in the regulation of actin cytoskeleton dynamics, with important implications in cardiac muscle physiology and pathophysiology.
Collapse
|
7
|
Barnum CE, Al Saai S, Patel SD, Cheng C, Anand D, Xu X, Dash S, Siddam AD, Glazewski L, Paglione E, Polson SW, Chuma S, Mason RW, Wei S, Batish M, Fowler VM, Lachke SA. The Tudor-domain protein TDRD7, mutated in congenital cataract, controls the heat shock protein HSPB1 (HSP27) and lens fiber cell morphology. Hum Mol Genet 2020; 29:2076-2097. [PMID: 32420594 PMCID: PMC7390939 DOI: 10.1093/hmg/ddaa096] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/10/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations of the RNA granule component TDRD7 (OMIM: 611258) cause pediatric cataract. We applied an integrated approach to uncover the molecular pathology of cataract in Tdrd7-/- mice. Early postnatal Tdrd7-/- animals precipitously develop cataract suggesting a global-level breakdown/misregulation of key cellular processes. High-throughput RNA sequencing integrated with iSyTE-bioinformatics analysis identified the molecular chaperone and cytoskeletal modulator, HSPB1, among high-priority downregulated candidates in Tdrd7-/- lens. A protein fluorescence two-dimensional difference in-gel electrophoresis (2D-DIGE)-coupled mass spectrometry screen also identified HSPB1 downregulation, offering independent support for its importance to Tdrd7-/- cataractogenesis. Lens fiber cells normally undergo nuclear degradation for transparency, posing a challenge: how is their cell morphology, also critical for transparency, controlled post-nuclear degradation? HSPB1 functions in cytoskeletal maintenance, and its reduction in Tdrd7-/- lens precedes cataract, suggesting cytoskeletal defects may contribute to Tdrd7-/- cataract. In agreement, scanning electron microscopy (SEM) revealed abnormal fiber cell morphology in Tdrd7-/- lenses. Further, abnormal phalloidin and wheat germ agglutinin (WGA) staining of Tdrd7-/- fiber cells, particularly those exhibiting nuclear degradation, reveals distinct regulatory mechanisms control F-actin cytoskeletal and/or membrane maintenance in post-organelle degradation maturation stage fiber cells. Indeed, RNA immunoprecipitation identified Hspb1 mRNA in wild-type lens lysate TDRD7-pulldowns, and single-molecule RNA imaging showed co-localization of TDRD7 protein with cytoplasmic Hspb1 mRNA in differentiating fiber cells, suggesting that TDRD7-ribonucleoprotein complexes may be involved in optimal buildup of key factors. Finally, Hspb1 knockdown in Xenopus causes eye/lens defects. Together, these data uncover TDRD7's novel upstream role in elevation of stress-responsive chaperones for cytoskeletal maintenance in post-nuclear degradation lens fiber cells, perturbation of which causes early-onset cataracts.
Collapse
Affiliation(s)
- Carrie E Barnum
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Salma Al Saai
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shaili D Patel
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Catherine Cheng
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Xiaolu Xu
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Soma Dash
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Archana D Siddam
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Lisa Glazewski
- Nemours Biomedical Research Department, Alfred I duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Emily Paglione
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shawn W Polson
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Shinichiro Chuma
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Robert W Mason
- Nemours Biomedical Research Department, Alfred I duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Shuo Wei
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Mona Batish
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Velia M Fowler
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
8
|
Collier MP, Benesch JLP. Small heat-shock proteins and their role in mechanical stress. Cell Stress Chaperones 2020; 25:601-613. [PMID: 32253742 PMCID: PMC7332611 DOI: 10.1007/s12192-020-01095-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
The ability of cells to respond to stress is central to health. Stress can damage folded proteins, which are vulnerable to even minor changes in cellular conditions. To maintain proteostasis, cells have developed an intricate network in which molecular chaperones are key players. The small heat-shock proteins (sHSPs) are a widespread family of molecular chaperones, and some sHSPs are prominent in muscle, where cells and proteins must withstand high levels of applied force. sHSPs have long been thought to act as general interceptors of protein aggregation. However, evidence is accumulating that points to a more specific role for sHSPs in protecting proteins from mechanical stress. Here, we briefly introduce the sHSPs and outline the evidence for their role in responses to mechanical stress. We suggest that sHSPs interact with mechanosensitive proteins to regulate physiological extension and contraction cycles. It is likely that further study of these interactions - enabled by the development of experimental methodologies that allow protein contacts to be studied under the application of mechanical force - will expand our understanding of the activity and functions of sHSPs, and of the roles played by chaperones in general.
Collapse
Affiliation(s)
- Miranda P Collier
- Department of Biology, Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA
| | - Justin L P Benesch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
9
|
Martínez-Laorden E, Navarro-Zaragoza J, Milanés MV, Laorden ML, Almela P. Cardiac Protective Role of Heat Shock Protein 27 in the Stress Induced by Drugs of Abuse. Int J Mol Sci 2020; 21:E3623. [PMID: 32455528 PMCID: PMC7279295 DOI: 10.3390/ijms21103623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 11/16/2022] Open
Abstract
Heat shock proteins (HSP) are induced after different stress situations. Some of these proteins, particularly HSP-27, function as markers to indicate cellular stress or damage and protect the heart during addictive processes. Morphine withdrawal induces an enhancement of sympathetic activity in parallel with an increased HSP-27 expression and phosphorylation, indicating a severe situation of stress. HSP-27 can interact with different intracellular signaling pathways. Propranolol and SL-327 were able to antagonize the activation of hypothalamic-pituitary adrenal (HPA) axis and the phosphorylation of HSP-27 observed during morphine withdrawal. Therefore, β-adrenergic receptors and the extracellular signal-regulated kinase (ERK) pathway would be involved in HPA axis activity, and consequently, in HSP-27 activation. Finally, selective blockade of corticotrophin releasing factor (CRF)-1 receptor and the genetic deletion of CRF1 receptors antagonize cardiac adaptive changes. These changes are increased noradrenaline (NA) turnover, HPA axis activation and decreased HSP-27 expression and phosphorylation. This suggests a link between the HPA axis and HSP-27. On the other hand, morphine withdrawal increases µ-calpain expression, which in turn degrades cardiac troponin T (cTnT). This fact, together with a co-localization between cTnT and HSP-27, suggests that this chaperone avoids the degradation of cTnT by µ-calpain, correcting the cardiac contractility abnormalities observed during addictive processes. The aim of our research is to review the possible role of HSP-27 in the cardiac changes observed during morphine withdrawal and to understand the mechanisms implicated in its cardiac protective functions.
Collapse
Affiliation(s)
| | - Javier Navarro-Zaragoza
- Department of Pharmacology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain; (E.M.-L.); (M.V.M.); (M.L.L.); (P.A.)
| | | | | | | |
Collapse
|
10
|
Song H, Ma J, Bian Z, Chen S, Zhu J, Wang J, Huang N, Yin M, Sun F, Xu M, Pan Q. Global profiling of O-GlcNAcylated and/or phosphorylated proteins in hepatoblastoma. Signal Transduct Target Ther 2019; 4:40. [PMID: 31637018 PMCID: PMC6799812 DOI: 10.1038/s41392-019-0067-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/28/2019] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
O-linked-β-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation) and phosphorylation are critical posttranslational modifications that are involved in regulating the functions of proteins involved in tumorigenesis and the development of various solid tumors. However, a detailed characterization of the patterns of these modifications at the peptide or protein level in hepatoblastoma (HB), a highly malignant primary hepatic tumor with an extremely low incidence in children, has not been performed. Here, we examined O-GlcNAc-modified or phospho-modified peptides and proteins in HB through quantitative proteomic analysis of HB tissues and paired normal liver tissues. Our results identified 114 O-GlcNAcylated peptides belonging to 78 proteins and 3494 phosphorylated peptides in 2088 proteins. Interestingly, 41 proteins were modified by both O-GlcNAcylation and phosphorylation. These proteins are involved in multiple molecular and cellular processes, including chromatin remodeling, transcription, translation, transportation, and organelle organization. In addition, we verified the accuracy of the proteomics results and found a competitive inhibitory effect between O-GlcNAcylation and phosphorylation of HSPB1. Further, O-GlcNAcylation modification of HSPB1 promoted proliferation and enhanced the chemotherapeutic resistance of HB cell lines in vitro. Collectively, our research suggests that O-GlcNAc-modified and/or phospho-modified proteins may play a crucial role in the pathogenesis of HB.
Collapse
Affiliation(s)
- Hang Song
- Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiaotong University, 200127 Shanghai, China
| | - Ji Ma
- Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiaotong University, 200127 Shanghai, China
| | - Zhixuan Bian
- Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiaotong University, 200127 Shanghai, China
| | - Shuhua Chen
- Department of Laboratory Medicine, Yunfu People’s Hospital, 527300 Guangdong, China
| | - Jiabei Zhu
- Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiaotong University, 200127 Shanghai, China
| | - Jing Wang
- Department of Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiaotong University, 200127 Shanghai, China
| | - Nan Huang
- Department of Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, 200072 Shanghai, China
| | - Minzhi Yin
- Department of Pathology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiaotong University, 200127 Shanghai, China
| | - Fenyong Sun
- Department of Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, 200072 Shanghai, China
| | - Min Xu
- Department of Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiaotong University, 200127 Shanghai, China
| | - Qiuhui Pan
- Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiaotong University, 200127 Shanghai, China
| |
Collapse
|
11
|
Dorsch LM, Schuldt M, dos Remedios CG, Schinkel AFL, de Jong PL, Michels M, Kuster DWD, Brundel BJJM, van der Velden J. Protein Quality Control Activation and Microtubule Remodeling in Hypertrophic Cardiomyopathy. Cells 2019; 8:E741. [PMID: 31323898 PMCID: PMC6678711 DOI: 10.3390/cells8070741] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disorder. It is mainly caused by mutations in genes encoding sarcomere proteins. Mutant forms of these highly abundant proteins likely stress the protein quality control (PQC) system of cardiomyocytes. The PQC system, together with a functional microtubule network, maintains proteostasis. We compared left ventricular (LV) tissue of nine donors (controls) with 38 sarcomere mutation-positive (HCMSMP) and 14 sarcomere mutation-negative (HCMSMN) patients to define HCM and mutation-specific changes in PQC. Mutations in HCMSMP result in poison polypeptides or reduced protein levels (haploinsufficiency, HI). The main findings were 1) several key PQC players were more abundant in HCM compared to controls, 2) after correction for sex and age, stabilizing heat shock protein (HSP)B1, and refolding, HSPD1 and HSPA2 were increased in HCMSMP compared to controls, 3) α-tubulin and acetylated α-tubulin levels were higher in HCM compared to controls, especially in HCMHI, 4) myosin-binding protein-C (cMyBP-C) levels were inversely correlated with α-tubulin, and 5) α-tubulin levels correlated with acetylated α-tubulin and HSPs. Overall, carrying a mutation affects PQC and α-tubulin acetylation. The haploinsufficiency of cMyBP-C may trigger HSPs and α-tubulin acetylation. Our study indicates that proliferation of the microtubular network may represent a novel pathomechanism in cMyBP-C haploinsufficiency-mediated HCM.
Collapse
Affiliation(s)
- Larissa M Dorsch
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands.
| | - Maike Schuldt
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands
| | - Cristobal G dos Remedios
- Sydney Heart Bank, Discipline of Anatomy, Bosch Institute, University of Sydney, Sydney 2006, Australia
| | - Arend F L Schinkel
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Peter L de Jong
- Department of Cardiothoracic Surgery, Thoraxcenter, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Michelle Michels
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands
- Netherlands Heart Institute, 3511 EP Utrecht, The Netherlands
| |
Collapse
|
12
|
Collier MP, Alderson TR, de Villiers CP, Nicholls D, Gastall HY, Allison TM, Degiacomi MT, Jiang H, Mlynek G, Fürst DO, van der Ven PFM, Djinovic-Carugo K, Baldwin AJ, Watkins H, Gehmlich K, Benesch JLP. HspB1 phosphorylation regulates its intramolecular dynamics and mechanosensitive molecular chaperone interaction with filamin C. SCIENCE ADVANCES 2019; 5:eaav8421. [PMID: 31131323 PMCID: PMC6530996 DOI: 10.1126/sciadv.aav8421] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/16/2019] [Indexed: 05/13/2023]
Abstract
Mechanical force-induced conformational changes in proteins underpin a variety of physiological functions, typified in muscle contractile machinery. Mutations in the actin-binding protein filamin C (FLNC) are linked to musculoskeletal pathologies characterized by altered biomechanical properties and sometimes aggregates. HspB1, an abundant molecular chaperone, is prevalent in striated muscle where it is phosphorylated in response to cues including mechanical stress. We report the interaction and up-regulation of both proteins in three mouse models of biomechanical stress, with HspB1 being phosphorylated and FLNC being localized to load-bearing sites. We show how phosphorylation leads to increased exposure of the residues surrounding the HspB1 phosphosite, facilitating their binding to a compact multidomain region of FLNC proposed to have mechanosensing functions. Steered unfolding of FLNC reveals that its extension trajectory is modulated by the phosphorylated region of HspB1. This may represent a posttranslationally regulated chaperone-client protection mechanism targeting over-extension during mechanical stress.
Collapse
Affiliation(s)
- Miranda P. Collier
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - T. Reid Alderson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Carin P. de Villiers
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Headington, Oxford OX3 9DU, UK
| | - Daisy Nicholls
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Heidi Y. Gastall
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Timothy M. Allison
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
- Biomolecular Interaction Centre and School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Matteo T. Degiacomi
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK
| | - He Jiang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Headington, Oxford OX3 9DU, UK
| | - Georg Mlynek
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Dieter O. Fürst
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, D53121 Bonn, Germany
| | - Peter F. M. van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, D53121 Bonn, Germany
| | - Kristina Djinovic-Carugo
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Andrew J. Baldwin
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Headington, Oxford OX3 9DU, UK
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Headington, Oxford OX3 9DU, UK
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Corresponding author. (J.L.P.B.); (K.G.)
| | - Justin L. P. Benesch
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
- Corresponding author. (J.L.P.B.); (K.G.)
| |
Collapse
|
13
|
Navarro-Zaragoza J, Ros-Simó C, Milanés MV, Valverde O, Laorden ML. Binge ethanol and MDMA combination exacerbates HSP27 and Trx-1 (biomarkers of toxic cardiac effects) expression in right ventricle. Life Sci 2019; 220:50-57. [DOI: 10.1016/j.lfs.2019.01.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 01/16/2023]
|
14
|
Zhang HL, Jia KY, Sun D, Yang M. Protective effect of HSP27 in atherosclerosis and coronary heart disease by inhibiting reactive oxygen species. J Cell Biochem 2018; 120:2859-2868. [PMID: 29232010 DOI: 10.1002/jcb.26575] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/01/2017] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To clarify the mechanism of heat shock protein 27 (HSP27) as a diagnostic biomarker in coronary heart disease (CHD) and atherosclerosis (AS). METHOD Expressions of HSP27 in patients with CHD and healthy controls were determined by enzyme-linked immunosorbent assay and the expressions of HSP27 in aortas of patients with CHD and healthy controls were measured by immunohistochemistry. Receiver operating characteristic curve was applied to assess the diagnostic performance of HSP27 in CHD. ApoE-/- mice were included and accordingly grouped. The expressions of HSP27 in AS plaque were measured by quantitative real-time polymerase chain reaction, immunohistochemistry, and Western blot analysis. AS plaque was observed using hematoxylin and eosin staining. DHE was used to detect reactive oxygen species (ROS) levels in aortas. The expressions of mitochondrial apoptosis-related proteins were measured by Western blot analysis. Cell apoptosis was determined by TUNEL staining. RESULTS HSP27 was highly expressed in patients with CHD than in healthy controls ( P < 0.01). In comparison to the normal group, the model group had increased the relative positive area of HSP27 and higher expressions of HSP27, Bax, caspase-3, and apoptosis index (AI) but decreased Bcl-2 expression in AS plaque, as well as larger plaque areas and elevated ROS levels in the aorta (all P < 0.05). The HSP27-small interfering RNA group had increased expressions of Bax, caspase-3, and AI but decreased Bcl-2 and HSP27 expressions in AS plaque, as well as larger plaque areas, the relative positive area of HSP27 and higher ROS levels in aorta when compared with those in the model group (all P < 0.05). CONCLUSION HSP27 exerts its protective role by suppressing ROS and AS progression by inhibiting mitochondria apoptosis pathway in CHD.
Collapse
Affiliation(s)
- Hong-Li Zhang
- Department of Geriatric Cardiology, Beijing Shijitan Hospital (affiliated to Capital Medical University), Beijing, China
| | - Kai-Ying Jia
- Department of Geriatric Cardiology, Beijing Shijitan Hospital (affiliated to Capital Medical University), Beijing, China
| | - Da Sun
- Department of Geriatric Cardiology, Beijing Shijitan Hospital (affiliated to Capital Medical University), Beijing, China
| | - Min Yang
- Department of Geriatric Cardiology, Beijing Shijitan Hospital (affiliated to Capital Medical University), Beijing, China
| |
Collapse
|
15
|
Huang P, Wang S, Weng D, Xu L. Alpha4-overexpressing HL7702 cells can counteract microcystin-LR effects on cytoskeletal structure. ENVIRONMENTAL TOXICOLOGY 2018; 33:978-987. [PMID: 29984889 DOI: 10.1002/tox.22585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
Our previous studies indicated that α4 was involved in the toxicity of MC-LR on the cytoskeleton via the change of PP2A activity in HEK 293. To explore the role of α4 in MC-LR toxicity via PP2A regulation in different cell lines, the HL7702 cell overexpressing α4 protein was exposed to MC-LR, and the change of PP2A, cytoskeletal structure, and cytoskeleton-related proteins were investigated. The results showed that PP2A activity was decreased, PP2A/C subunit expression and phosphorylation (Tyr307) increased significantly, but methylation (Leu 309)clearly decreased. The structure of the actin filaments and microtubules (MTs) remained unchanged, and the expression and phosphorylation of the cytoskeleton-related proteins showed different changes. In addition, the main components of the MAPK pathway, JNK, P38, and ERK1/2, were activated together. Our results indicated that elevated α4 expression did confer some resistance to MC-LR-induced cytoskeletal changes, but the responses of different cell lines to MC-LR, under the α4-overexpression condition, are not exactly the same.
Collapse
Affiliation(s)
- Pu Huang
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sha Wang
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dengpo Weng
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Xu
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Non-sarcomeric causes of heart failure: a Sydney Heart Bank perspective. Biophys Rev 2018; 10:949-954. [PMID: 30022358 DOI: 10.1007/s12551-018-0441-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022] Open
|
17
|
Methamphetamine withdrawal induces activation of CRF neurons in the brain stress system in parallel with an increased activity of cardiac sympathetic pathways. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:423-434. [PMID: 29383398 DOI: 10.1007/s00210-018-1470-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/18/2018] [Indexed: 12/24/2022]
Abstract
Methamphetamine (METH) addiction is a major public health problem in some countries. There is evidence to suggest that METH use is associated with increased risk of developing cardiovascular problems. Here, we investigated the effects of chronic METH administration and withdrawal on the activation of the brain stress system and cardiac sympathetic pathways. Mice were treated with METH (2 mg/kg, i.p.) for 10 days and left to spontaneous withdraw for 7 days. The number of corticotrophin-releasing factor (CRF), c-Fos, and CRF/c-Fos neurons was measured by immunohistochemistry in the paraventricular nucleus of the hypothalamus (PVN) and the oval region of the bed nucleus of stria terminalis (ovBNST), two regions associated with cardiac sympathetic control. In parallel, levels of catechol-o-methyl-transferase (COMT), tyrosine hydroxylase (TH), and heat shock protein 27 (Hsp27) were measured in the heart. In the brain, chronic-METH treatment enhanced the number of c-Fos neurons and the CRF neurons with c-Fos signal (CRF+/c-Fos+) in PVN and ovBNST. METH withdrawal increased the number of CRF+ neurons. In the heart, METH administration induced an increase in soluble (S)-COMT and membrane-bound (MB)-COMT without changes in phospho (p)-TH, Hsp27, or pHsp27. Similarly, METH withdrawal increased the expression of S- and MB-COMT. In contrast to chronic treatment, METH withdrawal enhanced levels of (p)TH and (p)Hsp27 in the heart. Overall, our results demonstrate that chronic METH administration and withdrawal activate the brain CRF systems associated with the heart sympathetic control and point towards a METH withdrawal induced activation of sympathetic pathways in the heart. Our findings provide further insight in the mechanism underlining the cardiovascular risk associated with METH use and proposes targets for its treatment.
Collapse
|
18
|
Le Y, Jia P, Jin Y, Liu W, Jia K, Yi M. The antiviral role of heat shock protein 27 against red spotted grouper nervous necrosis virus infection in sea perch. FISH & SHELLFISH IMMUNOLOGY 2017; 70:185-194. [PMID: 28860076 DOI: 10.1016/j.fsi.2017.08.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/17/2017] [Accepted: 08/27/2017] [Indexed: 05/07/2023]
Abstract
Heat shock protein 27 (HSP27), functioning as a stress induced protective protein, has been reported to participate in various biological processes, including apoptosis, thermal protection, and virus infection. In this study, a HSP27-like gene from the seawater fish sea perch, designated as LjHSP27, was characterized. The 1361 bp full-length cDNA of LjHSP27 encoded a 221 amino acid protein containing a conserved α-crystallin domain, two variable amino- and carboxy-terminal extensions, a WD/EPF motif, two serine phosphorylation sites, and two putative actin binding regions. Phylogenetic analysis showed that LjHSP27 shared the closest genetic relationship with HSP27 of the Asian seabass Lates calcarifer. LjHSP27 mRNA was ubiquitously expressed in all tissues examined, but significantly up-regulated in spleen and kidney and down-regulated in brain post red spotted grouper nervous necrosis virus (RGNNV) infection. In vitro, LjHSP27 transcript was remarkably reduced post RGNNV infection, but rapidly increased after polyinosinic-polycytidylic acid treatment. Up-regulation and down-regulation of LjHSP27 inhibited and promoted RGNNV replication in cultured LJB cells, respectively. Luciferase assay indicated that LjHSP27 could enhance the promoter activities of zebrafish interferon (IFN)1 and IFN3, suggesting its potential role in innate immune responses. Moreover, overexpression of LjHSP27 inhibited RGNNV-induced apoptosis, as indicated by the up-regulation of anti-apoptotic genes and down-regulation of pro-apoptotic genes, while KNK437 caused down-regulation of LjHSP27 dramatically led to opposite results, suggesting that LjHSP27 might exert its anti-RGNNV activities by regulating the apoptosis signaling pathway. Our results would provide a new insight into the underlying molecular mechanism of HSP and RGNNV interaction.
Collapse
Affiliation(s)
- Yao Le
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Peng Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Yilin Jin
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Kuntong Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Meisheng Yi
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| |
Collapse
|
19
|
Dos Remedios CG, Lal SP, Li A, McNamara J, Keogh A, Macdonald PS, Cooke R, Ehler E, Knöll R, Marston SB, Stelzer J, Granzier H, Bezzina C, van Dijk S, De Man F, Stienen GJM, Odeberg J, Pontén F, Linke WA, Linke W, van der Velden J. The Sydney Heart Bank: improving translational research while eliminating or reducing the use of animal models of human heart disease. Biophys Rev 2017; 9:431-441. [PMID: 28808947 DOI: 10.1007/s12551-017-0305-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 01/09/2023] Open
Abstract
The Sydney Heart Bank (SHB) is one of the largest human heart tissue banks in existence. Its mission is to provide high-quality human heart tissue for research into the molecular basis of human heart failure by working collaboratively with experts in this field. We argue that, by comparing tissues from failing human hearts with age-matched non-failing healthy donor hearts, the results will be more relevant than research using animal models, particularly if their physiology is very different from humans. Tissue from heart surgery must generally be used soon after collection or it significantly deteriorates. Freezing is an option but it raises concerns that freezing causes substantial damage at the cellular and molecular level. The SHB contains failing samples from heart transplant patients and others who provided informed consent for the use of their tissue for research. All samples are cryopreserved in liquid nitrogen within 40 min of their removal from the patient, and in less than 5-10 min in the case of coronary arteries and left ventricle samples. To date, the SHB has collected tissue from about 450 failing hearts (>15,000 samples) from patients with a wide range of etiologies as well as increasing numbers of cardiomyectomy samples from patients with hypertrophic cardiomyopathy. The Bank also has hearts from over 120 healthy organ donors whose hearts, for a variety of reasons (mainly tissue-type incompatibility with waiting heart transplant recipients), could not be used for transplantation. Donor hearts were collected by the St Vincent's Hospital Heart and Lung transplantation team from local hospitals or within a 4-h jet flight from Sydney. They were flushed with chilled cardioplegic solution and transported to Sydney where they were quickly cryopreserved in small samples. Failing and/or donor samples have been used by more than 60 research teams around the world, and have resulted in more than 100 research papers. The tissues most commonly requested are from donor left ventricles, but right ventricles, atria, interventricular system, and coronary arteries vessels have also been reported. All tissues are stored for long-term use in liquid N or vapor (170-180 °C), and are shipped under nitrogen vapor to avoid degradation of sensitive molecules such as RNAs and giant proteins. We present evidence that the availability of these human heart samples has contributed to a reduction in the use of animal models of human heart failure.
Collapse
Affiliation(s)
- C G Dos Remedios
- Sydney Heart Bank, Discipline of Anatomy & Histology, University of Sydney, Sydney, Australia.
| | - S P Lal
- Sydney Heart Bank, Discipline of Anatomy & Histology, University of Sydney, Sydney, Australia
| | - A Li
- Sydney Heart Bank, Discipline of Anatomy & Histology, University of Sydney, Sydney, Australia.,Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | - J McNamara
- Sydney Heart Bank, Discipline of Anatomy & Histology, University of Sydney, Sydney, Australia
| | - A Keogh
- Heart Transplant Unit, St Vincent's Hospital, Sydney, Australia
| | - P S Macdonald
- Heart Transplant Unit, St Vincent's Hospital, Sydney, Australia
| | - R Cooke
- Cardiovascular Research Institute, University of California San Francisco, California, USA
| | - E Ehler
- Cardiovascular Division, Randall Division of Cell and Molecular Biophysics, London, UK
| | - R Knöll
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - S B Marston
- National Heart and Lung Institute, Imperial College London, London, UK
| | - J Stelzer
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - H Granzier
- Molecular Cardiovascular Research Program, University of Arizona, Tucson, USA
| | - C Bezzina
- Department of Experimental Cardiology, Heart Failure Research Center, Amsterdam, The Netherlands
| | - S van Dijk
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - F De Man
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - G J M Stienen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - J Odeberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - F Pontén
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | | | - W Linke
- Ruhr University, Bochum, Germany
| | - J van der Velden
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Batulan Z, Pulakazhi Venu VK, Li Y, Koumbadinga G, Alvarez-Olmedo DG, Shi C, O'Brien ER. Extracellular Release and Signaling by Heat Shock Protein 27: Role in Modifying Vascular Inflammation. Front Immunol 2016; 7:285. [PMID: 27507972 PMCID: PMC4960997 DOI: 10.3389/fimmu.2016.00285] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/14/2016] [Indexed: 12/31/2022] Open
Abstract
Heat shock protein 27 (HSP27) is traditionally viewed as an intracellular chaperone protein with anti-apoptotic properties. However, recent data indicate that a number of heat shock proteins, including HSP27, are also found in the extracellular space where they may signal via membrane receptors to alter gene transcription and cellular function. Therefore, there is increasing interest in better understanding how HSP27 is released from cells, its levels and composition in the extracellular space, and the cognate cell membrane receptors involved in effecting cell signaling. In this paper, the knowledge to date, as well as some emerging paradigms about the extracellular function of HSP27 is presented. Of particular interest is the role of HSP27 in attenuating atherogenesis by modifying lipid uptake and inflammation in the plaque. Moreover, the abundance of HSP27 in serum is an emerging new biomarker for ischemic events. Finally, HSP27 replacement therapy may represent a novel therapeutic opportunity for chronic inflammatory disorders, such as atherosclerosis.
Collapse
Affiliation(s)
- Zarah Batulan
- Vascular Biology Laboratory, Health Research Innovation Centre, Libin Cardiovascular Institute of Alberta, University of Calgary Cumming School of Medicine , Calgary, AB , Canada
| | - Vivek Krishna Pulakazhi Venu
- Vascular Biology Laboratory, Health Research Innovation Centre, Libin Cardiovascular Institute of Alberta, University of Calgary Cumming School of Medicine , Calgary, AB , Canada
| | - Yumei Li
- Vascular Biology Laboratory, Health Research Innovation Centre, Libin Cardiovascular Institute of Alberta, University of Calgary Cumming School of Medicine , Calgary, AB , Canada
| | - Geremy Koumbadinga
- Vascular Biology Laboratory, Health Research Innovation Centre, Libin Cardiovascular Institute of Alberta, University of Calgary Cumming School of Medicine , Calgary, AB , Canada
| | - Daiana Gisela Alvarez-Olmedo
- Oncology Laboratory, Institute for Experimental Medicine and Biology of Cuyo (IMBECU), CCT CONICET , Mendoza , Argentina
| | - Chunhua Shi
- Vascular Biology Laboratory, Health Research Innovation Centre, Libin Cardiovascular Institute of Alberta, University of Calgary Cumming School of Medicine , Calgary, AB , Canada
| | - Edward R O'Brien
- Vascular Biology Laboratory, Health Research Innovation Centre, Libin Cardiovascular Institute of Alberta, University of Calgary Cumming School of Medicine , Calgary, AB , Canada
| |
Collapse
|
21
|
Shafi S, Codrington R, Gidden LM, Ferns GAA. Increased expression of phosphorylated forms of heat-shock protein-27 and p38MAPK in macrophage-rich regions of fibro-fatty atherosclerotic lesions in the rabbit. Int J Exp Pathol 2016; 97:56-65. [PMID: 26853073 DOI: 10.1111/iep.12167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 12/15/2015] [Indexed: 11/30/2022] Open
Abstract
We aimed to assess the expression and distribution of Hsp27, pHsp27 (Ser82), p38MAPK and p-p38MAPK in fibro-fatty atherosclerotic lesions and the myocardium of hypercholesterolaemic rabbits. Male New Zealand white rabbits were fed a high-cholesterol diet for 18 weeks, maintaining serum cholesterol at approximately 20 mmol/l over this period. Aortic arch and myocardial tissues were analysed by Western blot, immunohistochemistry and double immunofluorescence. Plasma Hsp27 levels were measured by ELISA. There was a significant increase in the expression of monomeric and dimeric forms of Hsp27, together with pHsp27 (Ser82), p38MAPK and p-p38MAPK in the fibro-fatty atherosclerotic lesions (P < 0.01; P < 0.05; P < 0.001; and P < 0.001, respectively) and the myocardial tissues (P < 0.001) from the cholesterol-fed rabbits compared with equivalent tissues from controls when the plasma concentration was low. Immunohistochemical analysis of the fibro-fatty lesions showed marked increases in Hsp27 and pHsp27 (Ser82) immunoreactivity. Double immunostaining showed intense expression of pHsp27 and p-p38MAPK in regions that were rich in macrophages, suggesting a close association with these inflammatory cells, whereas, in regions rich in smooth muscle cells, only p-p38MAPK was found to be strongly expressed. An increased expression of pHsp27 (Ser82) was spatially associated with increased p-p38MAPK within fibro-fatty atherosclerotic lesions and was colocalized to regions rich in macrophages. The initial increase in plasma Hsp27 levels may reflect the increase in systemic inflammation and oxidative stress in the early phases of disease. The falling concentrations subsequently may be coincident with the development of the advanced atherosclerotic lesions.
Collapse
Affiliation(s)
- Shahida Shafi
- Faculty of Health and Medical Sciences, Department of Biochemistry and Physiology, University of Surrey, Guildford, Surrey, UK
| | | | - Lewis Michael Gidden
- Faculty of Health and Medical Sciences, Department of Biochemistry and Physiology, University of Surrey, Guildford, Surrey, UK
| | | |
Collapse
|
22
|
Navarro-Zaragoza J, Ros-Simó C, Milanés MV, Valverde O, Laorden ML. Binge Ethanol and MDMA Combination Exacerbates Toxic Cardiac Effects by Inducing Cellular Stress. PLoS One 2015; 10:e0141502. [PMID: 26509576 PMCID: PMC4624901 DOI: 10.1371/journal.pone.0141502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/08/2015] [Indexed: 01/06/2023] Open
Abstract
Binge drinking is a common pattern of ethanol consumption among young people. Binge drinkers are especially susceptible to brain damage when other substances are co-administered, in particular 3,4 methylendioxymethamphetamine (MDMA). The aim of the present work was to study the mechanisms implicated in the adaptive changes observed after administration of these drugs of abuse. So, we have evaluated the cardiac sympathetic activity and the expression and activation of heat shock protein 27 (HSP27), after voluntary binge ethanol consumption, alone and in combination with MDMA. Both parameters are markers of stressful situations and they could be modified inducing several alterations in different systems. Adolescent mice received MDMA, ethanol or both (ethanol plus MDMA). Drinking in the dark (DID) procedure was used as a model of binge. Noradrenaline (NA) turnover, tyrosine hydroxylase (TH), TH phosphorylated at serine 31 and HSP27 expression and its phosphorylation at serine 82 were evaluated in adolescent mice 48 h, 72 h, and 7 days after treatments in the left ventricle. NA and normetanephrine (NMN) were determined by high-performance liquid chromatography (HPLC); TH and HSP27 expression and phosphorylation were measured by quantitative blot immunollabeling using specific antibodies. Ethanol and MDMA co-administration increased NA turnover and TH expression and phosphorylation versus the consumption of each one of these drugs. In parallel with the described modifications in the cardiac sympathetic activity, our results showed that binge ethanol+MDMA exposure is associated with an increase in HSP27 expression and phosphorylation in the left ventricle, supporting the idea that the combination of both drugs exacerbates the cellular stress induced by ethanol or MDMA alone.
Collapse
Affiliation(s)
- Javier Navarro-Zaragoza
- Department of Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
- * E-mail:
| | - Clara Ros-Simó
- Grup de Recerca en Neurobiologia del Comportament (GRNC), Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Olga Valverde
- Grup de Recerca en Neurobiologia del Comportament (GRNC), Universitat Pompeu Fabra, Barcelona, Spain
| | - María-Luisa Laorden
- Department of Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
23
|
Martínez-Laorden E, Almela P, Milanés MV, Laorden ML. Expression of heat shock protein 27 and troponin T and troponin I after naloxone-precipitated morphine withdrawal. Eur J Pharmacol 2015; 766:142-50. [PMID: 26452515 DOI: 10.1016/j.ejphar.2015.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/10/2015] [Accepted: 10/02/2015] [Indexed: 10/22/2022]
Abstract
Heat shock protein (Hsp27) renders cardioprotection from stress situations but little is known about its role in myofilaments. In this study we have evaluated the relationship between Hsp27 and troponin response after naloxone-induced morphine withdrawal. Rats were treated with two morphine (75 mg) pellets during six days. Precipitated withdrawal was induced by naloxone on day seven. Hsp27 expression, Hsp27 phosphorylated at serine 82 (Ser82), cardiac troponin T (cTnT), cardiac troponin I (cTnI) and µ-calpain were evaluated by immunoblotting in left ventricle. Hsp, cTnT and cTnI was also evaluated by immunofluorescence procedure. Our results show that enhancement in Hsp27 expression and phosphorylation induced by naloxone-precipitated morphine withdrawal occurs with concomitant increases of cTnT and µ-calpain expression, whereas cTnI was decreased. We also observed co-localization of Hsp27 with cTnT in cardiac tissues. These findings provide new information into the possible role of Hsp27 in the protection of cTnT degradation by µ-calpain (a protease mediating proteolysis of cTnT and cTnI) after morphine withdrawal.
Collapse
Affiliation(s)
| | - Pilar Almela
- Department of Pharmacology, School of Medicine, University of Murcia, Spain.
| | | | | |
Collapse
|
24
|
Martínez-Laorden E, García-Carmona JA, Baroja-Mazo A, Romecín P, Atucha NM, Milanés MV, Laorden ML. Corticotropin-releasing factor (CRF) receptor-1 is involved in cardiac noradrenergic activity observed during naloxone-precipitated morphine withdrawal. Br J Pharmacol 2014; 171:688-700. [PMID: 24490859 DOI: 10.1111/bph.12511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/27/2013] [Accepted: 10/03/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE The negative affective states of withdrawal involve the recruitment of brain and peripheral stress circuitry [noradrenergic activity, induction of the hypothalamic-pituitary-adrenocortical (HPA) axis and activation of heat shock proteins (Hsps)]. Corticotropin-releasing factor (CRF) pathways are important mediators in the negative symptoms of opioid withdrawal. We performed a series of experiments to characterize the role of the CRF₁ receptor in the response of stress systems to morphine withdrawal and its effect in the heart using genetically engineered mice lacking functional CRF₁ receptors. EXPERIMENTAL APPROACH Wild-type and CRF₁ receptor-knockout mice were treated with increasing doses of morphine. Precipitated withdrawal was induced by naloxone. Plasma adrenocorticotropic hormone (ACTH) and corticosterone levels, the expression of myocardial Hsp27, Hsp27 phosphorylated at Ser⁸², membrane (MB)- COMT, soluble (S)-COMT protein and NA turnover were evaluated by RIA, immunoblotting and HPLC. KEY RESULTS During morphine withdrawal we observed an enhancement of NA turnover in parallel with an increase in mean arterial blood pressure (MAP) and heart rate (HR) in wild-type mice. In addition, naloxone-precipitated morphine withdrawal induced an activation of HPA axis and Hsp27. The principal finding of the present study was that plasma ACTH and corticosterone levels, MB-COMT, S-COMT, NA turnover, and Hsp27 expression and activation observed during morphine withdrawal were significantly inhibited in the CRF₁ receptor-knockout mice. CONCLUSION AND IMPLICATIONS Our results demonstrate that CRF/CRF₁ receptor activation may contribute to stress-induced cardiovascular dysfunction after naloxone-precipitated morphine withdrawal and suggest that CRF/CRF₁ receptor pathways could contribute to cardiovascular disease associated with opioid addiction.
Collapse
|
25
|
Abstract
Supplemental digital content is available in the text. Background Rejection is the major obstacle to survival after cardiac transplantation. We investigated whether overexpression of heat shock protein (Hsp)-27 in mouse hearts protects against acute rejection and the mechanisms of such protection. Methods Hearts from B10.A mice overexpressing human Hsp-27 (Hsp-27tg), or Hsp-27–negative hearts from littermate controls (LCs) were transplanted into allogeneic C57BL/6 mice. The immune response to B10.A hearts was investigated using quantitative polymerase chain reaction for CD3+, CD4+, CD8+ T cells, and CD14+ monocytes and cytokines (interferon-γ, interleukin [IL]-2, tumor necrosis factor-α, IL-1β, IL-4, IL-5, IL-10, transforming growth factor-β) in allografts at days 2, 5, and 12 after transplantation. The effect of Hsp-27 on ischemia-induced caspase activation and immune activation was investigated. Results Survival of Hsp-27tg hearts (35±10.37 days, n=10) was significantly prolonged compared with LCs (13.6±3.06 days, n=10, P=0.0004). Hsp-27tg hearts expressed significantly more messenger RNA (mRNA) markers of CD14+ monocytes at day 2 and less mRNA markers of CD3+ and CD8+T cells at day 5 compared with LCs. There was more IL-4 mRNA in Hsp-27tg hearts at day 2 and less interferon-γ mRNA at day 5 compared with LCs. Heat shock protein-27tg hearts subjected to ischemia or to 24 hr ischemia-reperfusion injury demonstrated significantly less apoptosis and activation of caspases 3, 9, and 1 than LCs. T cells removed from C57BL/6 recipients of Hsp-27tg hearts produced a vigorous memory response to B10.A antigens, suggesting immune activation was not inhibited by Hsp-27. Conclusion Heat shock protein-27 delays allograft rejection, by inhibiting tissue damage, through probably an antiapoptotic pathway. It may also promote an anti-inflammatory subset of monocytes.
Collapse
|
26
|
Binker MG, Cosen-Binker LI. Acute pancreatitis: The stress factor. World J Gastroenterol 2014; 20:5801-5807. [PMID: 24914340 PMCID: PMC4024789 DOI: 10.3748/wjg.v20.i19.5801] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/12/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis is an inflammatory disorder of the pancreas that may cause life-threatening complications. Etiologies of pancreatitis vary, with gallstones accounting for the majority of all cases, followed by alcohol. Other causes of pancreatitis include trauma, ischemia, mechanical obstruction, infections, autoimmune, hereditary, and drugs. The main events occurring in the pancreatic acinar cell that initiate and propagate acute pancreatitis include inhibition of secretion, intracellular activation of proteases, and generation of inflammatory mediators. Small cytokines known as chemokines are released from damaged pancreatic cells and attract inflammatory cells, whose systemic action ultimately determined the severity of the disease. Indeed, severe forms of pancreatitis may result in systemic inflammatory response syndrome and multiorgan dysfunction syndrome, characterized by a progressive physiologic failure of several interdependent organ systems. Stress occurs when homeostasis is threatened, and stressors can include physical or mental forces, or combinations of both. Depending on the timing and duration, stress can result in beneficial or harmful consequences. While it is well established that a previous acute-short-term stress decreases the severity of experimentally-induced pancreatitis, the worsening effects of chronic stress on the exocrine pancreas have received relatively little attention. This review will focus on the influence of both prior acute-short-term and chronic stress in acute pancreatitis.
Collapse
|
27
|
Distinct patterns of HSP30 and HSP70 degradation in Xenopus laevis A6 cells recovering from thermal stress. Comp Biochem Physiol A Mol Integr Physiol 2013; 168:1-10. [PMID: 24231468 DOI: 10.1016/j.cbpa.2013.10.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 11/22/2022]
Abstract
Heat shock proteins (HSPs) are molecular chaperones that assist in protein synthesis, folding and degradation and prevent stress-induced protein aggregation. In this study, we examined the pattern of accumulation of HSP30 and HSP70 in Xenopus laevis A6 kidney epithelial cells recovering from heat shock. Immunoblot analysis revealed the presence of elevated levels of HSP30 after 72h of recovery. However, the relative levels of HSP70 declined to near control levels after 24h. The relative levels of both hsp30 and hsp70 mRNA were reduced to low levels after 24h of recovery from heat shock. Pretreatment of cells with cycloheximide, a translational inhibitor, produced a rapid decline in HSP70 but not HSP30. The cycloheximide-associated decline of HSP70 was blocked by the proteasomal inhibitor, MG132, but had little effect on the relative level of HSP30. Also, treatment of cells with the phosphorylation inhibitor, SB203580, in addition to cycloheximide treatment enhanced the stability of HSP30 compared to cycloheximide alone. Immunocytochemical studies detected the presence of HSP30 accumulation in a granular pattern in the cytoplasm of recovering cells and its association with aggresome-like structures, which was enhanced in the presence of SB203580. This study has shown that the relative levels of heat shock-induced HSP30 persist during recovery in contrast to HSP70. While HSP70 is degraded by the ubiquitin-proteasome system, it is likely that the presence of HSP30 multimeric complexes that are known to associate with unfolded protein as well as its association with aggresome-like structures may delay its degradation.
Collapse
|
28
|
Expression of Hsp27 correlated with rat detrusor contraction after acute urinary retention. Mol Cell Biochem 2013; 381:257-65. [DOI: 10.1007/s11010-013-1709-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/24/2013] [Indexed: 12/19/2022]
|
29
|
Seit-Nebi AS, Datskevich P, Gusev NB. Commentary on paper: Small heat shock proteins and the cytoskeleton: An essential interplay for cell integrity? (Wettstein et al.). Int J Biochem Cell Biol 2013. [DOI: 10.1016/j.biocel.2012.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Drastichova Z, Skrabalova J, Jedelsky P, Neckar J, Kolar F, Novotny J. Global changes in the rat heart proteome induced by prolonged morphine treatment and withdrawal. PLoS One 2012; 7:e47167. [PMID: 23056601 PMCID: PMC3467212 DOI: 10.1371/journal.pone.0047167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/10/2012] [Indexed: 12/18/2022] Open
Abstract
Morphine belongs among the most commonly used opioids in medical practice due to its strong analgesic effects. However, sustained administration of morphine leads to the development of tolerance and dependence and may cause long-lasting alterations in nervous tissue. Although proteomic approaches enabled to reveal changes in multiple gene expression in the brain as a consequence of morphine treatment, there is lack of information about the effect of this drug on heart tissue. Here we studied the effect of 10-day morphine exposure and subsequent drug withdrawal (3 or 6 days) on the rat heart proteome. Using the iTRAQ technique, we identified 541 proteins in the cytosol, 595 proteins in the plasma membrane-enriched fraction and 538 proteins in the mitochondria-enriched fraction derived from the left ventricles. Altogether, the expression levels of 237 proteins were altered by morphine treatment or withdrawal. The majority of changes (58 proteins) occurred in the cytosol after a 3-day abstinence period. Significant alterations were found in the expression of heat shock proteins (HSP27, α-B crystallin, HSP70, HSP10 and HSP60), whose levels were markedly up-regulated after morphine treatment or withdrawal. Besides that morphine exposure up-regulated MAPK p38 (isoform CRA_b) which is a well-known up-stream mediator of phosphorylation and activation of HSP27 and α-B crystallin. Whereas there were no alterations in the levels of proteins involved in oxidative stress, several changes were determined in the levels of pro- and anti-apoptotic proteins. These data provide a complex view on quantitative changes in the cardiac proteome induced by morphine treatment or withdrawal and demonstrate great sensitivity of this organ to morphine.
Collapse
Affiliation(s)
- Zdenka Drastichova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jitka Skrabalova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Petr Jedelsky
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jan Neckar
- Department of Developmental Cardiology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Frantisek Kolar
- Department of Developmental Cardiology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
31
|
Martínez-Laorden E, Hurle MA, Milanés MV, Laorden ML, Almela P. Morphine withdrawal activates hypothalamic-pituitary-adrenal axis and heat shock protein 27 in the left ventricle: the role of extracellular signal-regulated kinase. J Pharmacol Exp Ther 2012; 342:665-75. [PMID: 22647273 DOI: 10.1124/jpet.112.193581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The negative affective states of withdrawal involve the recruitment of brain and peripheral stress circuitry [e.g., noradrenergic activity, induction of the hypothalamo-pituitary-adrenocortical (HPA) axis, and the expression and activation of heat shock proteins (Hsps)]. The present study investigated the role of extracellular signal-regulated protein kinase (ERK) and β-adrenoceptor on the response of stress systems to morphine withdrawal by the administration of [amino[(4-aminophenyl)thio]methylene]-2-(trifluoromethyl)benzeneacetonitrile (SL327), a selective inhibitor of ERK activation, or propranolol (a β-adrenoceptor antagonist). Dependence on morphine was induced by a 7-day subcutaneous implantation of morphine pellets. Morphine withdrawal was precipitated on day 8 by the injection of naloxone (2 mg/kg s.c.). Plasma concentrations of adrenocorticotropin and corticosterone were determined by radioimmunoassay; noradrenaline (NA) turnover in left ventricle was determined by high-performance liquid chromatography; and catechol-O-methyl transferase (COMT) and Hsp27 expression and phosphorylation at Ser82 were determined by quantitative blot immunolabeling. Morphine-withdrawn rats showed an increase of NA turnover and COMT expression in parallel with an enhancement of adrenocorticotropin and plasma corticosterone concentrations. In addition, we observed an enhancement of Hsp27 expression and phosphorylation. Pretreatment with SL327 or propranolol significantly reduced morphine withdrawal-induced increases of plasma adrenocorticotropin and Hsp27 phosphorylation at Ser82 without any changes in plasma corticosterone levels. The present findings demonstrate that morphine withdrawal is capable of inducing the activation of HPA axis in parallel with an enhancement of Hsp27 expression and Hsp27 phosphorylation at Ser82 and suggest a role for β-adrenoceptors and ERK pathways in mediating morphine-withdrawal activation of the HPA axis and cellular stress response.
Collapse
Affiliation(s)
- E Martínez-Laorden
- Department of Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | | | | | | | | |
Collapse
|
32
|
Malaud E, Piquer D, Merle D, Molina L, Guerrier L, Boschetti E, Saussine M, Marty-Ané C, Albat B, Fareh J. Carotid atherosclerotic plaques: Proteomics study after a low-abundance protein enrichment step. Electrophoresis 2012; 33:470-82. [DOI: 10.1002/elps.201100395] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Mymrikov EV, Seit-Nebi AS, Gusev NB. Large potentials of small heat shock proteins. Physiol Rev 2011; 91:1123-59. [PMID: 22013208 DOI: 10.1152/physrev.00023.2010] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Modern classification of the family of human small heat shock proteins (the so-called HSPB) is presented, and the structure and properties of three members of this family are analyzed in detail. Ubiquitously expressed HSPB1 (HSP27) is involved in the control of protein folding and, when mutated, plays a significant role in the development of certain neurodegenerative disorders. HSPB1 directly or indirectly participates in the regulation of apoptosis, protects the cell against oxidative stress, and is involved in the regulation of the cytoskeleton. HSPB6 (HSP20) also possesses chaperone-like activity, is involved in regulation of smooth muscle contraction, has pronounced cardioprotective activity, and seems to participate in insulin-dependent regulation of muscle metabolism. HSPB8 (HSP22) prevents accumulation of aggregated proteins in the cell and participates in the regulation of proteolysis of unfolded proteins. HSPB8 also seems to be directly or indirectly involved in regulation of apoptosis and carcinogenesis, contributes to cardiac cell hypertrophy and survival and, when mutated, might be involved in development of neurodegenerative diseases. All small heat shock proteins play important "housekeeping" roles and regulate many vital processes; therefore, they are considered as attractive therapeutic targets.
Collapse
Affiliation(s)
- Evgeny V Mymrikov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russian Federation
| | | | | |
Collapse
|
34
|
Regulation of heat shock protein 27 phosphorylation during microcystin-LR-induced cytoskeletal reorganization in a human liver cell line. Toxicol Lett 2011; 207:270-7. [DOI: 10.1016/j.toxlet.2011.09.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 11/24/2022]
|
35
|
A cross-sectional study of the association between heat shock protein 27 antibody titers, pro-oxidant–antioxidant balance and metabolic syndrome in patients with angiographically-defined coronary artery disease. Clin Biochem 2011; 44:1390-5. [DOI: 10.1016/j.clinbiochem.2011.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 09/10/2011] [Accepted: 09/14/2011] [Indexed: 02/07/2023]
|
36
|
Naloxone-precipitated morphine withdrawal evokes phosphorylation of heat shock protein 27 in rat heart through extracellular signal-regulated kinase. J Mol Cell Cardiol 2011; 51:129-39. [DOI: 10.1016/j.yjmcc.2011.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 04/04/2011] [Accepted: 04/05/2011] [Indexed: 02/04/2023]
|
37
|
Ghayour-Mobarhan M, Saber H, Ferns GAA. The potential role of heat shock protein 27 in cardiovascular disease. Clin Chim Acta 2011; 413:15-24. [PMID: 21514288 DOI: 10.1016/j.cca.2011.04.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 04/03/2011] [Accepted: 04/05/2011] [Indexed: 12/13/2022]
Abstract
Heat shock proteins (Hsps) comprise several families of proteins expressed by a number of cell types following exposure to stressful environmental conditions that include heat, free radicals, toxins and ischemia, and are particularly involved in the recognition and renaturation of mis-folded proteins. Heat shock protein-27 (Hsp27) is a member of the small Hsp (sHsp) family with a molecular weight of approximately 27 KDa. In addition to its chaperoning functions, Hsp27 also appears to be involved in a diverse range of cellular functions, promoting cell survival through effects on the apoptotic pathway and plays important roles in cytoskeleton dynamics, cell differentiation and embryogenesis. Over the past two decades there has been an increasing interest in the relationship between Hsp27 and cardiovascular disease. Hsp27 is thought to exert an important role in the atherosclerotic process. Serum Hsp27 concentrations appear to be a biomarker of myocardial ischemia. In this review, we will focus on the possible protective and immuno-modulatory roles of Hsp27 in atherogenesis with special emphasis on their changes following acute coronary events and their potential as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Majid Ghayour-Mobarhan
- Biochemistry and Nutrition Research Center and Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | |
Collapse
|