1
|
Ryan CW, Peirent ER, Regan SL, Guxholli A, Bielas SL. H2A monoubiquitination: insights from human genetics and animal models. Hum Genet 2024; 143:511-527. [PMID: 37086328 DOI: 10.1007/s00439-023-02557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
Metazoan development arises from spatiotemporal control of gene expression, which depends on epigenetic regulators like the polycomb group proteins (PcG) that govern the chromatin landscape. PcG proteins facilitate the addition and removal of histone 2A monoubiquitination at lysine 119 (H2AK119ub1), which regulates gene expression, cell fate decisions, cell cycle progression, and DNA damage repair. Regulation of these processes by PcG proteins is necessary for proper development, as pathogenic variants in these genes are increasingly recognized to underly developmental disorders. Overlapping features of developmental syndromes associated with pathogenic variants in specific PcG genes suggest disruption of central developmental mechanisms; however, unique clinical features observed in each syndrome suggest additional non-redundant functions for each PcG gene. In this review, we describe the clinical manifestations of pathogenic PcG gene variants, review what is known about the molecular functions of these gene products during development, and interpret the clinical data to summarize the current evidence toward an understanding of the genetic and molecular mechanism.
Collapse
Affiliation(s)
- Charles W Ryan
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
- Medical Science Training Program, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA
| | - Emily R Peirent
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Samantha L Regan
- Department of Human Genetics, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA
| | - Alba Guxholli
- Department of Human Genetics, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48199-5618, USA
| | - Stephanie L Bielas
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA.
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA.
- Department of Human Genetics, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48199-5618, USA.
| |
Collapse
|
2
|
Zheng Y, Yang L, Niu M, Zhao S, Liang L, Wu Y, Li T, Yang F, Yang Z, Wang Y, Wang D. Identification of a de novo variant in the ASXL2 gene related to Shashi-Pena syndrome. Mol Genet Genomic Med 2023; 11:e2251. [PMID: 37493007 PMCID: PMC10655504 DOI: 10.1002/mgg3.2251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/06/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND ASXL2 encodes proteins involved in epigenetic regulation and the assembly of transcription factors at specific genomic loci. Germline de novo truncating variants in ASXL2 have been implicated in Shashi-Pena syndrome, which results in features of developmental delay (DD), glabellar nevus flammeus, hypotonia, and cardiac disorders. However, the variants are rare, and the clinical spectrum may be incomplete. METHODS The clinical data such as brain MRI were collect. The whole exome sequencing was performed for genetic etiology analysis. RESULTS Here, we report a patient with DD, hypotonia, early atrial septal defect, and abnormal white matter signal. She presented with Shashi-Pena syndrome with a truncated variant in ASXL2 (NM_018263.6, c.2142_2152del, p.Ser714Argfs*5). She died of a digestive tract infection when she was 1 year and 6 months old. CONCLUSIONS Our study further expanded the spectrum of phenotypes and genetic variations of the syndrome, and we believe that it is necessary to screen the ASXL2 gene in patients with DD and cardiac and bone disorders.
Collapse
Affiliation(s)
- Yanyan Zheng
- Department of NeurologyXi'an Children's HospitalXi'anChina
| | - Le Yang
- Department of NeurologyXi'an Children's HospitalXi'anChina
| | - Mengmeng Niu
- Department of NeurologyXi'an Children's HospitalXi'anChina
| | - Siyu Zhao
- Department of NeurologyXi'an Children's HospitalXi'anChina
| | - Lili Liang
- Department of NeurologyXi'an Children's HospitalXi'anChina
| | - Yan Wu
- Department of NeurologyXi'an Children's HospitalXi'anChina
| | - Taoli Li
- Department of NeurologyXi'an Children's HospitalXi'anChina
| | | | | | - Yan Wang
- Department of NeurologyXi'an Children's HospitalXi'anChina
| | - Dong Wang
- Department of NeurologyXi'an Children's HospitalXi'anChina
| |
Collapse
|
3
|
Yuan M, Shan Y, Xu F, Yang L, Sun C, Cheng R, Wu B, Zhang Z, Cao Y, Zhang R, Zhou W, Cheng G, Hu L. A newborn with a pathogenic variant in ASXL2 expanding the phenotype of SHAPNS: a case report and literature review. Transl Pediatr 2023; 12:86-96. [PMID: 36798937 PMCID: PMC9926125 DOI: 10.21037/tp-22-220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Shashi-Pena syndrome (SHAPNS) is a developmental disorder caused by mutations in additional sex combs-like Protein 2 (ASXL2). Since 2016, only 12 cases from 10 families have been reported. However, neonatal period characteristics remain largely unknown. Herein, we report a case with a pathogenic variant in ASXL2 in a newborn. CASE DESCRIPTION A newborn was diagnosed with a previously unreported de novo truncating mutation in ASXL2 (NM_018263.6) at 21 days and the clinical characteristics of all probands with ASXL2-related SHAPNS was reported in the literature. He had persistent hypoglycemia caused by inappropriate insulin levels and achieved stable glucose levels after octreotide treatment. Magnetic resonance imaging (MRI) revealed a small cerebellum, and fundoscopy showed bilateral retinal paving-stone-like white lesions. The results of trio-based whole exome sequencing (WES) were returned on the 21st day of life, and a heterozygous de novo truncating pathogenic c.1792C>T (p.Gln598*) variant in exon 11 of the ASXL2 gene was identified. The clinical features of our patient and another 10 probands with ASXL2-related SHAPNS reported in the literature were included in this review. More than half shared recognizable clinical features, including hypertelorism (11/11), broad nasal tip (10/11), arched eyebrows (9/11), a large V-shaped glabellar nevus flammeus on the forehead (9/11), low-set ears (8/11), posteriorly rotated ears (7/11), proptosis (6/11) and deep palm creases (6/11). Major clinical issues included feeding difficulties (10/11), developmental delay (10/11), skeletal and/or extremity abnormalities (8/11), progressive macrocephaly (8/11), hypotonia (8/11), hypoglycemia (6/11) and seizures (6/11). Neurodevelopmental regression was possible in patients (2/11) with normal MRI findings who later developed nonfebrile seizures. CONCLUSIONS We present a newborn diagnosing the SHAPNS by trio-WES, which is the earliest age of diagnosis. The application of octreotide for hypoglycemia, the small cerebellum and bilateral paving-stone-like white lesions of the retinas are described for the first time in an individual with ASXL2-related SHAPNS. Additional clinical reports of neonates with damaging ASXL2 variants are necessary to verify the mechanism and optimal treatment of ASXL2-related hypoglycemia, neurological damage and optic impairment. Neurological, endocrinological, ophthalmological, and rehabilitative follow-ups of these patients are necessary and important.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yuanyuan Shan
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Fanshu Xu
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Lin Yang
- Department of Endocrinology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Clinical Genetic Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, The Translational Medicine Center of Children Development and Disease of Fudan University, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Chengjun Sun
- Department of Endocrinology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Ruoqian Cheng
- Department of Endocrinology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Bingbing Wu
- Shanghai Key Laboratory of Birth Defects, The Translational Medicine Center of Children Development and Disease of Fudan University, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Zhehuan Zhang
- Department of Ophthalmology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yun Cao
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Rong Zhang
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Wenhao Zhou
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Clinical Genetic Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, The Translational Medicine Center of Children Development and Disease of Fudan University, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Guoqiang Cheng
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Liyuan Hu
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| |
Collapse
|
4
|
Hong L, Xu H, Ge C, Tao H, Shen X, Song X, Guan D, Zhang C. Prediction of low cardiac output syndrome in patients following cardiac surgery using machine learning. Front Med (Lausanne) 2022; 9:973147. [PMID: 36091676 PMCID: PMC9448978 DOI: 10.3389/fmed.2022.973147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThis study aimed to develop machine learning models to predict Low Cardiac Output Syndrome (LCOS) in patients following cardiac surgery using machine learning algorithms.MethodsThe clinical data of cardiac surgery patients in Nanjing First Hospital between June 2019 and November 2020 were retrospectively extracted from the electronic medical records. Six conventional machine learning algorithms, including logistic regression, support vector machine, decision tree, random forest, extreme gradient boosting and light gradient boosting machine, were employed to construct the LCOS predictive models with all predictive features (full models) and selected predictive features (reduced models). The discrimination of these models was evaluated by the area under the receiver operating characteristic curve (AUC) and the calibration of the models was assessed by the calibration curve. Shapley Additive explanation (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) were used to interpret the predictive models.ResultsData from 1,585 patients [982 (62.0%) were male, aged 18 to 88, 212 (13.4%) with LCOS] were employed to train and validate the LCOS models. Among the full models, the RF model (AUC: 0.909, 95% CI: 0.875–0.943; Sensitivity: 0.849, 95% CI: 0.724–0.933; Specificity: 0.835, 95% CI: 0.796–0.869) and the XGB model (AUC: 0.897, 95% CI: 0.859–0.935; Sensitivity: 0.830, 95% CI: 0.702–0.919; Specificity: 0.809, 95% CI: 0.768–0.845) exhibited well predictive power for LCOS. Eleven predictive features including left ventricular ejection fraction (LVEF), first post-operative blood lactate (Lac), left ventricular diastolic diameter (LVDd), cumulative time of mean artery blood pressure (MABP) lower than 65 mmHg (MABP < 65 time), hypertension history, platelets level (PLT), age, blood creatinine (Cr), total area under curve above threshold central venous pressure (CVP) 12 mmHg and 16 mmHg, and blood loss during operation were used to build the reduced models. Among the reduced models, RF model (AUC: 0.895, 95% CI: 0.857–0.933; Sensitivity: 0.830, 95% CI: 0.702–0.919; Specificity: 0.806, 95% CI: 0.765–0.843) revealed the best performance. SHAP and LIME plot showed that LVEF, Lac, LVDd and MABP < 65 time significantly contributed to the prediction model.ConclusionIn this study, we successfully developed several machine learning models to predict LCOS after surgery, which may avail to risk stratification, early detection and management of LCOS after cardiac surgery.
Collapse
Affiliation(s)
- Liang Hong
- Cardiovascular Intensive Care Unit, Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Huan Xu
- Cardiovascular Intensive Care Unit, Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chonglin Ge
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Hong Tao
- Cardiovascular Intensive Care Unit, Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao Shen
- Cardiovascular Intensive Care Unit, Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaochun Song
- Cardiovascular Intensive Care Unit, Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Donghai Guan
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Donghai Guan,
| | - Cui Zhang
- Cardiovascular Intensive Care Unit, Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Cui Zhang,
| |
Collapse
|
5
|
Jiao Z, Zhao X, Wang Y, Wei E, Mei S, Liu N, Kong X, Shi H. A de novo and novel nonsense variants in ASXL2 gene is associated with Shashi-Pena syndrome. Eur J Med Genet 2022; 65:104454. [PMID: 35182806 DOI: 10.1016/j.ejmg.2022.104454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 11/03/2022]
Abstract
This ASXL2 gene encodes a member of a family of epigenetic regulators that bind various histone-modifying enzymes and are involved in the assembly of transcription factors at specific genomic loci. Recent research has found that pathogenic variants in ASXL2 gene can lead to Shashi-Pena syndrome. However, clinical reports of individuals with damaging ASXL2 variants were limited and clinical phenotypic information may also be incomplete at present. Here, we reported a patient from Chinese family presenting with Shashi-Pena syndrome duo to a nonsense variant c.2485C > T; p. (Gln829*) in ASXL2 and analyzed the clinical phenotypes of the patient. In addition to the typical facial appearance, feeding difficulty, cardiac dysfunction and developmental delay, the patient also demonstrated multiple clinical problems not reported in other published cases, including granulocytopenia, thrombocytopenia and "simian line". Additionally, this is also the first case of premature death associated to Shashi-Pena syndrome induced by ASXL2 variants in a Chinese population. Our results provided important information for genetic counseling of the family and broaden the spectrum of phenotypes and genetic variations of the syndrome.
Collapse
Affiliation(s)
- Zhihui Jiao
- Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, Henan, 450052, China; The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, China.
| | - Xuechao Zhao
- Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, Henan, 450052, China.
| | - Yanhong Wang
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou, He Nan Province, China, No-33, Longhu Waihuan East Road, Zhengzhou, 450018, China.
| | - Erhu Wei
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, Henan, 450052, China.
| | - Shiyue Mei
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou, He Nan Province, China, No-33, Longhu Waihuan East Road, Zhengzhou, 450018, China.
| | - Ning Liu
- Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, Henan, 450052, China.
| | - Xiangdong Kong
- Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, Henan, 450052, China.
| | - Huirong Shi
- The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, China.
| |
Collapse
|
6
|
Li S, Yang P. Relationship between HSPA1A-regulated gene expression and alternative splicing in mouse cardiomyocytes and cardiac hypertrophy. J Thorac Dis 2021; 13:5517-5533. [PMID: 34659818 PMCID: PMC8482330 DOI: 10.21037/jtd-21-1222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022]
Abstract
Background Cardiac hypertrophy may be classified as either physiological or pathological. Pathological hypertrophy has a complex etiology and is genetically regulated. In this study, we used a mouse model of cardiac hypertrophy to explore the mechanisms of gene regulation, in particular, modulation of the expression of target genes through transcription factor activity, regulation of immune and inflammation-associated genes and regulation of the alternative splicing of transcription factors. Methods Mouse models of pathological cardiac hypertrophy were established by transverse aortic constriction (TAC). We overexpressed HSPA1A in mouse cardiac HL-1 cells. GO and KEGG pathway annotation database was used to analyze all DEGs. Results The expression of HSPA1A differed significantly between TAC + dantrolene vs. sham + dantrolene (Sham was the non-TAC group, and DMSO was the contrast agent), and TAC + DMSO vs. sham + DMSO. The RNA-binding protein Zfp36 was found to be differentially expressed between both TAC + dantrolene vs. sham + dantrolene and TAC + DMSO vs. sham + DMSO. The expression of mki67 and gm5619 was significantly different between TAC + dantrolene and TAC + DMSO. HSPA1A was found to selectively regulate the expression of non-coding RNAs related to cardiac hypertrophy, including Rn7sk and RMRP. The downregulated genes were mainly related to inflammation and the immune response. HSPA1A negatively regulated alternative splicing of Asxl2 and positively regulated alternative splicing of Runx1. Conclusions HSPA1A was closely related to cardiac hypertrophy. Zfp36 was also related to cardiac hypertrophy. Dantrolene may delay cardiac hypertrophy and ventricular remodeling by regulating the expression of the RNA-binding protein genes mki67 and gm5619. HSPA1A positively regulated the expression of the non-coding RNAs RN7SK and RMRP while negatively regulating the expression of inflammation- and immune response-related genes. HSPA1A can play a role in cardiac hypertrophy by regulating the alternative splicing of asxl2 and runx1.
Collapse
Affiliation(s)
- Shuai Li
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ping Yang
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
EZH2 as an epigenetic regulator of cardiovascular development and diseases. J Cardiovasc Pharmacol 2021; 78:192-201. [PMID: 34029268 DOI: 10.1097/fjc.0000000000001062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/29/2021] [Indexed: 02/04/2023]
Abstract
ABSTRACT Enhancer of zeste homolog 2(EZH2) is an enzymatic subunit of polycomb repressive complex 2 (PRC2) and is responsible for catalyzing mono-, di-, and trimethylation of histone H3 at lysine-27(H3K27me1/2/3). Many noncoding RNAs or signaling pathways are involved in EZH2 functional alterations. This new epigenetic regulation of target genes is able to silence downstream gene expression and modify physiological and pathological processes in heart development, cardiomyocyte regeneration and cardiovascular diseases such as hypertrophy, ischemic heart diseases, atherosclerosis and cardiac fibrosis. Targeting the function of EZH2 could be a potential therapeutic approach for cardiovascular diseases.
Collapse
|
8
|
Cui R, Yang L, Wang Y, Zhong M, Yu M, Chen B. Elevated Expression of ASXL2 is Associated with Poor Prognosis in Colorectal Cancer by Enhancing Tumorigenesis and Inducing Cell Proliferation. Cancer Manag Res 2020; 12:10221-10228. [PMID: 33116876 PMCID: PMC7585280 DOI: 10.2147/cmar.s266083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022] Open
Abstract
Objective Colorectal cancer is one of the most common malignant tumors worldwide. ASXL2 is an enhancer of the trithorax and polycomb genes, which have been proven to act in many tumor types. The role of ASXL2 in the occurrence and development of tumors has been extensively studied in recent years. However, the relationship between ASXL2 and the prognosis of CRC is still unclear. Materials and Methods In this study, quantitative real-time polymerase chain reaction (qRT-PCR), Western blot analysis and immunohistochemistry (IHC) were used to examine the expression of ASXL2 in CRC tissues. Cells were transfected with siRNAs or lentivirus to regulate the expression of ASXL2. The effects of ASXL2 on the proliferation of CRC cells were determined by CCK8 assay. Results This study demonstrated that ASXL2 was significantly more highly expressed in CRC specimens than in normal adjacent tissues. The upregulation of ASXL2 was related to advanced clinical stage. Patients who exhibited high expression levels of ASXL2 had poorer overall survival, whereas those with low expression of ASXL2 survived longer. Multivariate Cox regression analysis revealed that ASXL2 expression could be considered an independent prognostic factor for CRC. Inhibition or overexpression of ASXL2 markedly influenced the proliferation of CRC cells. Conclusion These results showed that ASXL2 could induce cell proliferation, which was associated with poor prognosis of CRC patients, suggesting that ASXL2 might be a new therapeutic target for CRC.
Collapse
Affiliation(s)
- Ran Cui
- Department of Hepatopancreatobiliary Surgery, East Hospital Affiliated Tongji University, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Ludi Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yiwei Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Minhao Yu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Bo Chen
- Department of Hepatopancreatobiliary Surgery, East Hospital Affiliated Tongji University, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| |
Collapse
|
9
|
Fu F, Li R, Lei TY, Wang D, Yang X, Han J, Pan M, Zhen L, Li J, Li FT, Jing XY, Li DZ, Liao C. Compound heterozygous mutation of the ASXL3 gene causes autosomal recessive congenital heart disease. Hum Genet 2020; 140:333-348. [PMID: 32696347 DOI: 10.1007/s00439-020-02200-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/22/2020] [Indexed: 12/26/2022]
Abstract
To explore mutations in the additional sex combs-like 3 (ASXL3) gene in two Chinese families with congenital heart disease (CHD). Whole-exome sequencing (WES) was used to reveal a novel compound heterozygous mutation in the ASXL3 gene that was associated with CHD. Sanger sequencing of a further 122 CHD patients was used to determine an additional compound heterozygous mutation in the ASXL3 gene. Cell apoptosis was examined by MTS assay and flow cytometry. The cardiac structure was identified via hematoxylin-eosin (HE), Masson's trichrome, and ultrasound scanning. RNA sequencing was performed to identify a series of differentially expressed mRNAs. The mRNA and protein expressions were identified by quantitative real-time PCR and western blotting, respectively. A compound heterozygous mutation c.2168C > G (p.Pro723Arg) and c.5449C > G (p.Pro1817Ala) in the ASXL3 gene associated with CHD was identified. Overexpression of this compound heterozygous mutation in HL-1 cells resulted in increased apoptosis and reduced cell viability. Moreover, it affected cardiac structure and fibrosis in mice. There were 126 downregulated mRNAs and 117 upregulated mRNAs between the ASXL3 compound heterozygous mutation c.2168C > G (p.Pro723Arg) and c.5449C > G (p.Pro1817Ala) mice and wild-type mice. Ezh2, Slc6a4, and Socs3, which could interact with ASXL3 through proteins, were all upregulated. Another compound heterozygous mutation c.3526C > T (p.Arg1176Trp) and c.4643A > G (p.Asp1548Gly) in the ASXL3 gene was identified by screening a further 122 patients with CHD. The ASXL3 gene is important in cardiac development and may exert this influence by affecting the expression of mRNAs associated with cell apoptosis and cell proliferation.
Collapse
Affiliation(s)
- Fang Fu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Ru Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Ting-Ying Lei
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Dan Wang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Xin Yang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Jin Han
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Min Pan
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Li Zhen
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Jian Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Fa-Tao Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Xiang-Yi Jing
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Dong-Zhi Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Can Liao
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
10
|
Epigenetics, cardiovascular disease, and cellular reprogramming. J Mol Cell Cardiol 2019; 128:129-133. [PMID: 30690032 DOI: 10.1016/j.yjmcc.2019.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/22/2019] [Indexed: 12/29/2022]
Abstract
Under the seeming disorder of "junk" sequences the last decade has seen developments in our understanding of non-coding RNA's (ncRNAs). It's a complex revised order and nowhere is this more relevant than in the developing heart whereby old rules have been set aside to make room for new ones. The development of the mammalian heart has been studied at the genetic and cellular level for several decades because these areas were considered ideal control points. As such, detailed mechanisms governing cell lineages are well described. Emerging evidence suggests a complex new order regulated by epigenetic mechanisms mark cardiac cell lineage. Indeed, molecular cardiologists are in the process of shedding light on the roles played by ncRNAs, nucleic acid methylation and histone/chromatin modifications in specific pathologies of the heart. The aim of this article is to discuss some of the recent advances in the field of cardiovascular epigenetics that are related to direct cell reprogramming and repair. As such, we explore ncRNAs as nodes regulating signaling networks and attempt to make sense of regulatory disorder by reinforcing the importance of epigenetic components in the developmental program.
Collapse
|
11
|
Madan V, Han L, Hattori N, Teoh WW, Mayakonda A, Sun QY, Ding LW, Nordin HBM, Lim SL, Shyamsunder P, Dakle P, Sundaresan J, Doan NB, Sanada M, Sato-Otsubo A, Meggendorfer M, Yang H, Said JW, Ogawa S, Haferlach T, Liang DC, Shih LY, Nakamaki T, Wang QT, Koeffler HP. ASXL2 regulates hematopoiesis in mice and its deficiency promotes myeloid expansion. Haematologica 2018; 103:1980-1990. [PMID: 30093396 PMCID: PMC6269306 DOI: 10.3324/haematol.2018.189928] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
Chromosomal translocation t(8;21)(q22;q22) which leads to the generation of oncogenic RUNX1-RUNX1T1 (AML1-ETO) fusion is observed in approximately 10% of acute myelogenous leukemia (AML). To identify somatic mutations that co-operate with t(8;21)-driven leukemia, we performed whole and targeted exome sequencing of an Asian cohort at diagnosis and relapse. We identified high frequency of truncating alterations in ASXL2 along with recurrent mutations of KIT, TET2, MGA, FLT3, and DHX15 in this subtype of AML. To investigate in depth the role of ASXL2 in normal hematopoiesis, we utilized a mouse model of ASXL2 deficiency. Loss of ASXL2 caused progressive hematopoietic defects characterized by myeloid hyperplasia, splenomegaly, extramedullary hematopoiesis, and poor reconstitution ability in transplantation models. Parallel analyses of young and >1-year old Asxl2-deficient mice revealed age-dependent perturbations affecting, not only myeloid and erythroid differentiation, but also maturation of lymphoid cells. Overall, these findings establish a critical role for ASXL2 in maintaining steady state hematopoiesis, and provide insights into how its loss primes the expansion of myeloid cells.
Collapse
Affiliation(s)
- Vikas Madan
- Cancer Science Institute of Singapore, National University of Singapore
| | - Lin Han
- Cancer Science Institute of Singapore, National University of Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
| | - Norimichi Hattori
- Cancer Science Institute of Singapore, National University of Singapore .,Division of Hematology, Department of Medicine, School of Medicine, Showa University, Shinagawa-Ku, Tokyo, Japan
| | - Weoi Woon Teoh
- Cancer Science Institute of Singapore, National University of Singapore
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore
| | - Qiao-Yang Sun
- Cancer Science Institute of Singapore, National University of Singapore
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore
| | | | - Su Lin Lim
- Cancer Science Institute of Singapore, National University of Singapore
| | | | - Pushkar Dakle
- Cancer Science Institute of Singapore, National University of Singapore
| | - Janani Sundaresan
- Cancer Science Institute of Singapore, National University of Singapore
| | - Ngan B Doan
- Department of Pathology and Laboratory Medicine, Santa Monica-University of California-Los Angeles Medical Center, Los Angeles, CA, USA
| | - Masashi Sanada
- Department of Advanced Diagnosis, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Japan.,Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Japan
| | - Aiko Sato-Otsubo
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Japan
| | | | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore
| | - Jonathan W Said
- Department of Pathology and Laboratory Medicine, Santa Monica-University of California-Los Angeles Medical Center, Los Angeles, CA, USA
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Japan
| | | | - Der-Cherng Liang
- Division of Pediatric Hematology-Oncology, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Tsuyoshi Nakamaki
- Division of Hematology, Department of Medicine, School of Medicine, Showa University, Shinagawa-Ku, Tokyo, Japan
| | - Q Tian Wang
- Department of Biological Sciences, University of Illinois at Chicago, IL, USA
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore.,Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, Los Angeles, CA, USA.,Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), National University Hospital, Singapore
| |
Collapse
|
12
|
Li J, He F, Zhang P, Chen S, Shi H, Sun Y, Guo Y, Yang H, Man N, Greenblatt S, Li Z, Guo Z, Zhou Y, Wang L, Morey L, Williams S, Chen X, Wang QT, Nimer SD, Yu P, Wang QF, Xu M, Yang FC. Loss of Asxl2 leads to myeloid malignancies in mice. Nat Commun 2017; 8:15456. [PMID: 28593990 PMCID: PMC5472177 DOI: 10.1038/ncomms15456] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/30/2017] [Indexed: 11/28/2022] Open
Abstract
ASXL2 is frequently mutated in acute myeloid leukaemia patients with t(8;21). However, the roles of ASXL2 in normal haematopoiesis and the pathogenesis of myeloid malignancies remain unknown. Here we show that deletion of Asxl2 in mice leads to the development of myelodysplastic syndrome (MDS)-like disease. Asxl2−/− mice have an increased bone marrow (BM) long-term haematopoietic stem cells (HSCs) and granulocyte–macrophage progenitors compared with wild-type controls. Recipients transplanted with Asxl2−/− and Asxl2+/− BM cells have shortened lifespan due to the development of MDS-like disease or myeloid leukaemia. Paired daughter cell assays demonstrate that Asxl2 loss enhances the self-renewal of HSCs. Deletion of Asxl2 alters the expression of genes critical for HSC self-renewal, differentiation and apoptosis in Lin−cKit+ cells. The altered gene expression is associated with dysregulated H3K27ac and H3K4me1/2. Our study demonstrates that ASXL2 functions as a tumour suppressor to maintain normal HSC function. ASXL2 mutations are mostly found in a subset of leukemia patients with certain genetic aberrations; however the role of this protein in normal hematopoiesis and related malignancies is still unclear. Here the authors use a knock-out mouse model to uncover the role of Asxl2 in hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Jianping Li
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Fuhong He
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Zhang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Shi Chen
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Hui Shi
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yanling Sun
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Guo
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Hui Yang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Na Man
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Sarah Greenblatt
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Zhaomin Li
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Zhengyu Guo
- Department of Electrical and Computer Engineering, and TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Lan Wang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Sion Williams
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Xi Chen
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA.,Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Qun-Tian Wang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Peng Yu
- Department of Electrical and Computer Engineering, and TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Qian-Fei Wang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| |
Collapse
|
13
|
Brunner R, Lai HL, Deliu Z, Melman E, Geenen DL, Wang QT. Asxl2 -/- Mice Exhibit De Novo Cardiomyocyte Production during Adulthood. J Dev Biol 2016; 4:jdb4040032. [PMID: 29615595 PMCID: PMC5831801 DOI: 10.3390/jdb4040032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/20/2022] Open
Abstract
Heart attacks affect more than seven million people worldwide each year. A heart attack, or myocardial infarction, may result in the death of a billion cardiomyocytes within hours. The adult mammalian heart does not have an effective mechanism to replace lost cardiomyocytes. Instead, lost muscle is replaced with scar tissue, which decreases blood pumping ability and leads to heart failure over time. Here, we report that the loss of the chromatin factor ASXL2 results in spontaneous proliferation and cardiogenic differentiation of a subset of interstitial non-cardiomyocytes. The adult Asxl2-/- heart displays spontaneous overgrowth without cardiomyocyte hypertrophy. Thymidine analog labeling and Ki67 staining of 12-week-old hearts revealed 3- and 5-fold increases of proliferation rate for vimentin⁺ non-cardiomyocytes in Asxl2-/- over age- and sex-matched wildtype controls, respectively. Approximately 10% of proliferating non-cardiomyocytes in the Asxl2-/- heart express the cardiogenic marker NKX2-5, a frequency that is ~7-fold higher than that observed in the wildtype. EdU lineage tracing experiments showed that ~6% of pulsed-labeled non-cardiomyocytes in Asxl2-/- hearts differentiate into mature cardiomyocytes after a four-week chase, a phenomenon not observed for similarly pulse-chased wildtype controls. Taken together, these data indicate de novo cardiomyocyte production in the Asxl2-/- heart due to activation of a population of proliferative cardiogenic non-cardiomyocytes. Our study suggests the existence of an epigenetic barrier to cardiogenicity in the adult heart and raises the intriguing possibility of unlocking regenerative potential via transient modulation of epigenetic activity.
Collapse
Affiliation(s)
- Rachel Brunner
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Hsiao-Lei Lai
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
- PTM Biolabs Inc., Chicago, IL 60612, USA.
| | - Zane Deliu
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Elan Melman
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
- The School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA.
| | - David L Geenen
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Physician Assistant Studies, Grand Valley State University, Grand Rapids, MI 49503, USA.
| | - Q Tian Wang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
- Congressionally Directed Medical Research Programs, Frederick, MD 21702, USA.
| |
Collapse
|
14
|
Shashi V, Pena LD, Kim K, Burton B, Hempel M, Schoch K, Walkiewicz M, McLaughlin HM, Cho M, Stong N, Hickey SE, Shuss CM, Freemark MS, Bellet JS, Keels MA, Bonner MJ, El-Dairi M, Butler M, Kranz PG, Stumpel CT, Klinkenberg S, Oberndorff K, Alawi M, Santer R, Petrovski S, Kuismin O, Korpi-Heikkilä S, Pietilainen O, Aarno P, Kurki MI, Hoischen A, Need AC, Goldstein DB, Kortüm F, Bacino A, Lee BH, Balasubramanyam A, Burrage LC, Clark GD, Craigen WJ, Dhar SU, Emrick LT, Graham BH, Jain M, Lalani SR, Lewis RA, Moretti PM, Nicholas SK, Orange JS, Posey JE, Potocki L, Rosenfeld JA, Scott DA, Hanchard NA, Alyssa TA, Mercedes AE, Mashid AS, Bellen HJ, Yamamoto S, Wangler MF, Westerfield M, Postlethwait JH, Eng CM, Yang Y, Muzny DM, Ward PA, Ramoni RB, McCray AT, Kohane IS, Holm IA, Might M, Mazur P, Splinter K, Esteves C, Shashi V, Jiang YH, Pena LD, McConkie-Rosell A, Schoch K, Spillmann RC, Sullivan JA, Walley NM, Goldstein DB, Stong N, Beggs AH, Loscalzo J, MacRae CA, Silverman EK, Stoler JM, Sweetser DA, Maas RL, Krier JB, Rodan LH, Walsh CA, Cooper CM, Pallais JC, Donnell-Fink LA, Krieg EL, Lincoln SA, Briere LC, Jacob HJ, Worthey EA, Lazar J, Strong KA, Handley LH, Newberry JS, Bick DP, Schroeder MC, Brown DM, Birch CL, Levy SE, Boone BE, Dorset DC, Jones AL, Manolio TA, Mulvihill JJ, Wise AL, Dayal JG, Eckstein DJ, Krasnewich DM, Loomis CR, Mamounas LA, Iglesias B, Martin C, Koeller DM, Metz TO, Ashley EA, Fisher PG, Bernstein JA, Wheeler MT, Zornio PA, Waggott DM, Dries AM, Kohler JN, Dipple KM, Nelson SF, Palmer CG, Vilain E, Allard P, Dell Angelica EC, Lee H, Sinsheimer JS, Papp JC, Dorrani N, Herzog MR, Barseghyan H, Adams DR, Adams CJ, Burke EA, Chao KR, Davids M, Draper DD, Estwick T, Frisby TS, Frost K, Gahl WA, Gartner V, Godfrey RA, Goheen M, Golas GA, Gordon MG, Groden CA, Gropman AL, Hackbarth ME, Hardee I, Johnston JM, Koehler AE, Latham L, Latour YL, Lau CYC, Lee PR, Levy DJ, Liebendorder AP, Macnamara EF, Maduro VV, Malicdan MV, Markello TC, McCarty AJ, Murphy JL, Nehrebecky ME, Novacic D, Pusey BN, Sadozai S, Schaffer KE, Sharma P, Soldatos AG, Thomas SP, Tifft CJ, Tolman NJ, Toro C, Valivullah ZM, Wahl CE, Warburton M, Weech AA, Wolfe LA, Yu G, Hamid R, Newman JH, Phillips JA, Cogan JD. De Novo Truncating Variants in ASXL2 Are Associated with a Unique and Recognizable Clinical Phenotype. Am J Hum Genet 2016; 99:991-999. [PMID: 27693232 PMCID: PMC5065681 DOI: 10.1016/j.ajhg.2016.08.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/24/2016] [Indexed: 12/14/2022] Open
Abstract
The ASXL genes (ASXL1, ASXL2, and ASXL3) participate in body patterning during embryogenesis and encode proteins involved in epigenetic regulation and assembly of transcription factors to specific genomic loci. Germline de novo truncating variants in ASXL1 and ASXL3 have been respectively implicated in causing Bohring-Opitz and Bainbridge-Ropers syndromes, which result in overlapping features of severe intellectual disability and dysmorphic features. ASXL2 has not yet been associated with a human Mendelian disorder. In this study, we performed whole-exome sequencing in six unrelated probands with developmental delay, macrocephaly, and dysmorphic features. All six had de novo truncating variants in ASXL2. A careful review enabled the recognition of a specific phenotype consisting of macrocephaly, prominent eyes, arched eyebrows, hypertelorism, a glabellar nevus flammeus, neonatal feeding difficulties, hypotonia, and developmental disabilities. Although overlapping features with Bohring-Opitz and Bainbridge-Ropers syndromes exist, features that distinguish the ASXL2-associated condition from ASXL1- and ASXL3-related disorders are macrocephaly, absence of growth retardation, and more variability in the degree of intellectual disabilities. We were also able to demonstrate with mRNA studies that these variants are likely to exert a dominant-negative effect, given that both alleles are expressed in blood and the mutated ASXL2 transcripts escape nonsense-mediated decay. In conclusion, de novo truncating variants in ASXL2 underlie a neurodevelopmental syndrome with a clinically recognizable phenotype. This report expands the germline disorders that are linked to the ASXL genes.
Collapse
|
15
|
Micol JB, Abdel-Wahab O. The Role of Additional Sex Combs-Like Proteins in Cancer. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026526. [PMID: 27527698 DOI: 10.1101/cshperspect.a026526] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Additional sex combs-like (ASXL) proteins are mammalian homologs of Addition of sex combs (Asx), a protein that regulates the balance of trithorax and Polycomb function in Drosophila. All three ASXL family members (ASXL1, ASXL2, and ASXL3) are affected by somatic or de novo germline mutations in cancer or rare developmental syndromes, respectively. Although Asx is characterized as a catalytic partner for the deubiquitinase Calypso (or BAP1), there are domains of ASXL proteins that are distinct from Asx and the roles and redundancies of ASXL members are not yet well understood. Moreover, it is not yet fully clarified if commonly encountered ASXL1 mutations result in a loss of protein or stable expression of a truncated protein with dominant-negative or gain-of-function properties. This review summarizes our current knowledge of the biological and functional roles of ASXL members in development, cancer, and transcription.
Collapse
Affiliation(s)
- Jean-Baptiste Micol
- Hematology Department, INSERM UMR1170, Gustave Roussy Cancer Campus Grand Paris, Villejuif, France Université Paris-Sud, Faculté de Médecine, Le Kremlin-Bicêtre, Paris, France Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
16
|
ASXL2 promotes proliferation of breast cancer cells by linking ERα to histone methylation. Oncogene 2015; 35:3742-52. [PMID: 26640146 DOI: 10.1038/onc.2015.443] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/10/2015] [Accepted: 10/11/2015] [Indexed: 12/20/2022]
Abstract
Estrogen receptor alpha (ERα) has a pivotal role in breast carcinogenesis by associating with various cellular factors. Selective expression of additional sex comb-like 2 (ASXL2) in ERα-positive breast cancer cells prompted us to investigate its role in chromatin modification required for ERα activation and breast carcinogenesis. Here, we observed that ASXL2 interacts with ligand E2-bound ERα and mediates ERα activation. Chromatin immunoprecipitation-sequencing analysis supports a positive role of ASXL2 at ERα target gene promoters. ASXL2 forms a complex with histone methylation modifiers including LSD1, UTX and MLL2, which all are recruited to the E2-responsive genes via ASXL2 and regulate methylations at histone H3 lysine 4, 9 and 27. The preferential binding of the PHD finger of ASXL2 to the dimethylated H3 lysine 4 may account for its requirement for ERα activation. On ASXL2 depletion, the proliferative potential of MCF7 cells and tumor size of xenograft mice decreased. Together with our finding on the higher ASXL2 expression in ERα-positive patients, we propose that ASXL2 could be a novel prognostic marker in breast cancer.
Collapse
|
17
|
Chromatin methylation and cardiovascular aging. J Mol Cell Cardiol 2015; 83:21-31. [DOI: 10.1016/j.yjmcc.2015.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/20/2015] [Accepted: 02/12/2015] [Indexed: 12/26/2022]
|
18
|
Khan FF, Li Y, Balyan A, Wang QT. WTIP interacts with ASXL2 and blocks ASXL2-mediated activation of retinoic acid signaling. Biochem Biophys Res Commun 2014; 451:101-6. [PMID: 25065743 DOI: 10.1016/j.bbrc.2014.07.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
Abstract
The Asx-like (ASXL) family proteins are chromatin factors that play dual roles in transcriptional activation and repression. ASXL2 is highly expressed in the heart and is required for proper heart development and function. Here, we identify a novel ASXL2-binding partner, the LIM domain-containing protein WTIP. Genetic and biochemical assays show a direct interaction between ASXL2 and WTIP. In HeLa cells, ASXL2 enhances retinoic acid-dependent luciferase activity, while WTIP represses it. Furthermore, WTIP blocks ASXL2's stimulatory effect on transcription. In addition, we found that ASXL2 and WTIP are expressed in mouse embryonic epicardial cells, a tissue that is regulated by retinoic acid signaling. Together, these results implicate ASXL2 and WTIP in regulation of retinoic acid signaling during heart development.
Collapse
Affiliation(s)
- Farida F Khan
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, IL 60607, USA
| | - Yanyang Li
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, IL 60607, USA
| | - Arjun Balyan
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, IL 60607, USA
| | - Q Tian Wang
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, IL 60607, USA.
| |
Collapse
|
19
|
McGinley AL, Li Y, Deliu Z, Wang QT. Additional sex combs-likefamily genes are required for normal cardiovascular development. Genesis 2014; 52:671-86. [DOI: 10.1002/dvg.22793] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 01/23/2023]
Affiliation(s)
- Andrea L. McGinley
- Department of Biological Sciences; University of Illinois at Chicago; Chicago Illinois
| | - Yanyang Li
- Department of Biological Sciences; University of Illinois at Chicago; Chicago Illinois
| | - Zane Deliu
- Department of Biological Sciences; University of Illinois at Chicago; Chicago Illinois
| | - Q. Tian Wang
- Department of Biological Sciences; University of Illinois at Chicago; Chicago Illinois
| |
Collapse
|
20
|
Mathiyalagan P, Keating ST, Du XJ, El-Osta A. Chromatin modifications remodel cardiac gene expression. Cardiovasc Res 2014; 103:7-16. [PMID: 24812277 DOI: 10.1093/cvr/cvu122] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Signalling and transcriptional control involve precise programmes of gene activation and suppression necessary for cardiovascular physiology. Deep sequencing of DNA-bound transcription factors reveals a remarkable complexity of co-activators or co-repressors that serve to alter chromatin modification and regulate gene expression. The regulated complexes characterized by genome-wide mapping implicate the recruitment and exchange of proteins with specific enzymatic activities that include roles for histone acetylation and methylation in key developmental programmes of the heart. As for transcriptional changes in response to pathological stress, co-regulatory complexes are also differentially utilized to regulate genes in cardiac disease. Members of the histone deacetylase (HDAC) family catalyse the removal of acetyl groups from proteins whose pharmacological inhibition has profound effects preventing heart failure. HDACs interact with a complex co-regulatory network of transcription factors, chromatin-remodelling complexes, and specific histone modifiers to regulate gene expression in the heart. For example, the histone methyltransferase (HMT), enhancer of zeste homolog 2 (Ezh2), is regulated by HDAC inhibition and associated with pathological cardiac hypertrophy. The challenge now is to target the activity of enzymes involved in protein modification to prevent or reverse the expression of genes implicated with cardiac hypertrophy. In this review, we discuss the role of HDACs and HMTs with a focus on chromatin modification and gene function as well as the clinical treatment of heart failure.
Collapse
Affiliation(s)
- Prabhu Mathiyalagan
- Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia
| | - Samuel T Keating
- Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia
| | - Xiao-Jun Du
- Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia Central Clinical School, Faculty of Medicine, Monash University, Victoria, Australia
| | - Assam El-Osta
- Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia Central Clinical School, Faculty of Medicine, Monash University, Victoria, Australia Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
21
|
Mathiyalagan P, Keating ST, Du XJ, El-Osta A. Interplay of chromatin modifications and non-coding RNAs in the heart. Epigenetics 2013; 9:101-12. [PMID: 24247090 DOI: 10.4161/epi.26405] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Precisely regulated patterns of gene expression are dependent on the binding of transcription factors and chromatin-associated determinants referred to as co-activators and co-repressors. These regulatory components function with the core transcriptional machinery to serve in critical activities to alter chromatin modification and regulate gene expression. While we are beginning to understand that cell-type specific patterns of gene expression are necessary to achieve selective cardiovascular developmental programs, we still do not know the molecular machineries that localize these determinants in the heart. With clear implications for the epigenetic control of gene expression signatures, the ENCODE (Encyclopedia of DNA Elements) Project Consortium determined that about 90% of the human genome is transcribed while only 1-2% of transcripts encode proteins. Emerging evidence suggests that non-coding RNA (ncRNA) serves as a signal for decoding chromatin modifications and provides a potential molecular basis for cell type-specific and promoter-specific patterns of gene expression. The discovery of the histone methyltransferase enzyme EZH2 in the regulation of gene expression patterns implicated in cardiac hypertrophy suggests a novel role for chromatin-associated ncRNAs and is the focus of this article.
Collapse
Affiliation(s)
- Prabhu Mathiyalagan
- Epigenetics in Human Health and Disease Laboratory; Baker IDI Heart and Diabetes Institute; The Alfred Medical Research and Education Precinct; Melbourne, VIC Australia
| | - Samuel T Keating
- Epigenetics in Human Health and Disease Laboratory; Baker IDI Heart and Diabetes Institute; The Alfred Medical Research and Education Precinct; Melbourne, VIC Australia
| | - Xiao-Jun Du
- Experimental Cardiology Laboratory; Baker IDI Heart and Diabetes Institute; Melbourne, VIC Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory; Baker IDI Heart and Diabetes Institute; The Alfred Medical Research and Education Precinct; Melbourne, VIC Australia; Epigenomics Profiling Facility; Baker IDI Heart and Diabetes Institute; The Alfred Medical Research and Education Precinct; Melbourne, VIC Australia; Department of Pathology; The University of Melbourne; Melbourne, VIC Australia; Faculty of Medicine; Monash University; Melbourne, VIC Australia
| |
Collapse
|
22
|
Lai HL, Wang QT. Additional sex combs-like 2 is required for polycomb repressive complex 2 binding at select targets. PLoS One 2013; 8:e73983. [PMID: 24040135 PMCID: PMC3767597 DOI: 10.1371/journal.pone.0073983] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/25/2013] [Indexed: 12/23/2022] Open
Abstract
Polycomb Group (PcG) proteins are epigenetic repressors of gene expression. The Drosophila Additional sex combs (Asx) gene and its mammalian homologs exhibit PcG function in genetic assays; however, the mechanism by which Asx family proteins mediate gene repression is not well understood. ASXL2, one of three mammalian homologs for Asx, is highly expressed in the mammalian heart and is required for the maintenance of cardiac function. We have previously shown that Asxl2 deficiency results in a reduction in the bulk level of histone H3 lysine 27 trimethylation (H3K27me3), a repressive mark generated by the Polycomb Repressive Complex 2 (PRC2). Here we identify several ASXL2 target genes in the heart and investigate the mechanism by which ASXL2 facilitates their repression. We show that the Asxl2-deficient heart is defective in converting H3K27me2 to H3K27me3 and in removing ubiquitin from mono-ubiquitinated histone H2A. ASXL2 and PRC2 interact in the adult heart and co-localize to target promoters. ASXL2 is required for the binding of PRC2 and for the enrichment of H3K27me3 at target promoters. These results add a new perspective to our understanding of the mechanisms that regulate PcG activity and gene repression.
Collapse
Affiliation(s)
- Hsiao-Lei Lai
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Q. Tian Wang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
23
|
Koczor CA, Lee EK, Torres RA, Boyd A, Vega JD, Uppal K, Yuan F, Fields EJ, Samarel AM, Lewis W. Detection of differentially methylated gene promoters in failing and nonfailing human left ventricle myocardium using computation analysis. Physiol Genomics 2013; 45:597-605. [PMID: 23695888 DOI: 10.1152/physiolgenomics.00013.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Human dilated cardiomyopathy (DCM) is characterized by congestive heart failure and altered myocardial gene expression. Epigenetic changes, including DNA methylation, are implicated in the development of DCM but have not been studied extensively. Clinical human DCM and nonfailing control left ventricle samples were individually analyzed for DNA methylation and expressional changes. Expression microarrays were used to identify 393 overexpressed and 349 underexpressed genes in DCM (GEO accession number: GSE43435). Gene promoter microarrays were utilized for DNA methylation analysis, and the resulting data were analyzed by two different computational methods. In the first method, we utilized subtractive analysis of DNA methylation peak data to identify 158 gene promoters exhibiting DNA methylation changes that correlated with expression changes. In the second method, a two-stage approach combined a particle swarm optimization feature selection algorithm and a discriminant analysis via mixed integer programming classifier to identify differentially methylated gene promoters. This analysis identified 51 hypermethylated promoters and six hypomethylated promoters in DCM with 100% cross-validation accuracy in the group assignment. Generation of a composite list of genes identified by subtractive analysis and two-stage computation analysis revealed four genes that exhibited differential DNA methylation by both methods in addition to altered gene expression. Computationally identified genes (AURKB, BTNL9, CLDN5, and TK1) define a central set of differentially methylated gene promoters that are important in classifying DCM. These genes have no previously reported role in DCM. This study documents that rigorous computational analysis applied to microarray analysis of healthy and diseased human heart samples helps to define clinically relevant DNA methylation and expressional changes in DCM.
Collapse
|