1
|
Nakanishi T, Oyama K, Tanaka H, Kobirumaki-Shimozawa F, Ishii S, Terui T, Ishiwata S, Fukuda N. Effects of omecamtiv mecarbil on the contractile properties of skinned porcine left atrial and ventricular muscles. Front Physiol 2022; 13:947206. [PMID: 36082222 PMCID: PMC9445838 DOI: 10.3389/fphys.2022.947206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Omecamtiv mecarbil (OM) is a novel inotropic agent for heart failure with systolic dysfunction. OM prolongs the actomyosin attachment duration, which enhances thin filament cooperative activation and accordingly promotes the binding of neighboring myosin to actin. In the present study, we investigated the effects of OM on the steady-state contractile properties in skinned porcine left ventricular (PLV) and atrial (PLA) muscles. OM increased Ca2+ sensitivity in a concentration-dependent manner in PLV, by left shifting the mid-point (pCa50) of the force-pCa curve (ΔpCa50) by ∼0.16 and ∼0.33 pCa units at 0.5 and 1.0 μM, respectively. The Ca2+-sensitizing effect was likewise observed in PLA, but less pronounced with ΔpCa50 values of ∼0.08 and ∼0.22 pCa units at 0.5 and 1.0 μM, respectively. The Ca2+-sensitizing effect of OM (1.0 μM) was attenuated under enhanced thin filament cooperative activation in both PLV and PLA; this attenuation occurred directly via treatment with fast skeletal troponin (ΔpCa50: ∼0.16 and ∼0.10 pCa units in PLV and PLA, respectively) and indirectly by increasing the number of strongly bound cross-bridges in the presence of 3 mM MgADP (ΔpCa50: ∼0.21 and ∼0.08 pCa units in PLV and PLA, respectively). It is likely that this attenuation of the Ca2+-sensitizing effect of OM is due to a decrease in the number of “recruitable” cross-bridges that can potentially produce active force. When cross-bridge detachment was accelerated in the presence of 20 mM inorganic phosphate, the Ca2+-sensitizing effect of OM (1.0 μM) was markedly decreased in both types of preparations (ΔpCa50: ∼0.09 and ∼0.03 pCa units in PLV and PLA, respectively). The present findings suggest that the positive inotropy of OM is more markedly exerted in the ventricle than in the atrium, which results from the strongly bound cross-bridge-dependent allosteric activation of thin filaments.
Collapse
Affiliation(s)
- Tomohiro Nakanishi
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kotaro Oyama
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- Quantum Beam Science Research Directorate, National Institutes for Quantum Science and Technology, Gunma, Japan
| | - Hiroyuki Tanaka
- Laboratory of Marine Biotechnology and Microbiology, Hokkaido University, Hakodate, Japan
| | | | - Shuya Ishii
- Quantum Beam Science Research Directorate, National Institutes for Quantum Science and Technology, Gunma, Japan
| | - Takako Terui
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shin’ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- *Correspondence: Norio Fukuda,
| |
Collapse
|
2
|
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the general population. Energy metabolism disturbance is one of the early abnormalities in CVDs, such as coronary heart disease, diabetic cardiomyopathy, and heart failure. To explore the role of myocardial energy homeostasis disturbance in CVDs, it is important to understand myocardial metabolism in the normal heart and their function in the complex pathophysiology of CVDs. In this article, we summarized lipid metabolism/lipotoxicity and glucose metabolism/insulin resistance in the heart, focused on the metabolic regulation during neonatal and ageing heart, proposed potential metabolic mechanisms for cardiac regeneration and degeneration. We provided an overview of emerging molecular network among cardiac proliferation, regeneration, and metabolic disturbance. These novel targets promise a new era for the treatment of CVDs.
Collapse
Affiliation(s)
- Lu-Yun WANG
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Chen CHEN
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Alpha and beta myosin isoforms and human atrial and ventricular contraction. Cell Mol Life Sci 2021; 78:7309-7337. [PMID: 34704115 PMCID: PMC8629898 DOI: 10.1007/s00018-021-03971-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 01/15/2023]
Abstract
Human atrial and ventricular contractions have distinct mechanical characteristics including speed of contraction, volume of blood delivered and the range of pressure generated. Notably, the ventricle expresses predominantly β-cardiac myosin while the atrium expresses mostly the α-isoform. In recent years exploration of the properties of pure α- & β-myosin isoforms have been possible in solution, in isolated myocytes and myofibrils. This allows us to consider the extent to which the atrial vs ventricular mechanical characteristics are defined by the myosin isoform expressed, and how the isoform properties are matched to their physiological roles. To do this we Outline the essential feature of atrial and ventricular contraction; Explore the molecular structural and functional characteristics of the two myosin isoforms; Describe the contractile behaviour of myocytes and myofibrils expressing a single myosin isoform; Finally we outline the outstanding problems in defining the differences between the atria and ventricles. This allowed us consider what features of contraction can and cannot be ascribed to the myosin isoforms present in the atria and ventricles.
Collapse
|
4
|
Chung CS. Move quickly to detach: Strain rate-dependent myosin detachment and cardiac relaxation. J Gen Physiol 2020; 152:151574. [PMID: 32197272 PMCID: PMC7141589 DOI: 10.1085/jgp.202012588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Charles S Chung
- Department of Physiology, Wayne State University, Detroit, MI
| |
Collapse
|
5
|
Kieu TT, Awinda PO, Tanner BCW. Omecamtiv Mecarbil Slows Myosin Kinetics in Skinned Rat Myocardium at Physiological Temperature. Biophys J 2019; 116:2149-2160. [PMID: 31103235 DOI: 10.1016/j.bpj.2019.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022] Open
Abstract
Heart failure is a life-threatening condition that occurs when the heart muscle becomes weakened and cannot adequately circulate blood and nutrients around the body. Omecamtiv mecarbil (OM) is a compound that has been developed to treat systolic heart failure via targeting the cardiac myosin heavy chain to increase myocardial contractility. Biophysical and biochemical studies have found that OM increases calcium (Ca2+) sensitivity of contraction by prolonging the myosin working stroke and increasing the actin-myosin cross-bridge duty ratio. Most in vitro studies probing the effects of OM on cross-bridge kinetics and muscle force production have been conducted at subphysiological temperature, even though temperature plays a critical role in enzyme activity and cross-bridge function. Herein, we used skinned, ventricular papillary muscle strips from rats to investigate the effects of [OM] on Ca2+-activated force production, cross-bridge kinetics, and myocardial viscoelasticity at physiological temperature (37°C). We find that OM only increases myocardial contractility at submaximal Ca2+ activation levels and not maximal Ca2+ activation levels. As [OM] increased, the kinetic rate constants for cross-bridge recruitment and detachment slowed for both submaximal and maximal Ca2+-activated conditions. These findings support a mechanism by which OM increases cardiac contractility at physiological temperature via increasing cross-bridge contributions to thin-filament activation as cross-bridge kinetics slow and the duration of cross-bridge attachment increases. Thus, force only increases at submaximal Ca2+ activation due to cooperative recruitment of neighboring cross-bridges, because thin-filament activation is not already saturated. In contrast, OM does not increase myocardial force production for maximal Ca2+-activated conditions at physiological temperature because cooperative activation of thin filaments may already be saturated.
Collapse
Affiliation(s)
- Thinh T Kieu
- Department of Integrative Physiology and Neuroscience
| | | | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience; Washington Center for Muscle Biology, Washington State University, Pullman, Washington.
| |
Collapse
|
6
|
Breithaupt JJ, Pulcastro HC, Awinda PO, DeWitt DC, Tanner BCW. Regulatory light chain phosphorylation augments length-dependent contraction in PTU-treated rats. J Gen Physiol 2018; 151:66-76. [PMID: 30523115 PMCID: PMC6314387 DOI: 10.1085/jgp.201812158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
Contraction of cardiac muscle is regulated by sarcomere length and proteins that comprise the sarcomeric filaments. Breithaupt et al. find that phosphorylation of myosin regulatory light chain augments length-dependent activation of contraction when β-cardiac myosin heavy chain predominates. Force production by actin–myosin cross-bridges in cardiac muscle is regulated by thin-filament proteins and sarcomere length (SL) throughout the heartbeat. Prior work has shown that myosin regulatory light chain (RLC), which binds to the neck of myosin heavy chain, increases cardiac contractility when phosphorylated. We recently showed that cross-bridge kinetics slow with increasing SLs, and that RLC phosphorylation amplifies this effect, using skinned rat myocardial strips predominantly composed of the faster α-cardiac myosin heavy chain isoform. In the present study, to assess how RLC phosphorylation influences length-dependent myosin function as myosin motor speed varies, we used a propylthiouracil (PTU) diet to induce >95% expression of the slower β-myosin heavy chain isoform in rat cardiac ventricles. We measured the effect of RLC phosphorylation on Ca2+-activated isometric contraction and myosin cross-bridge kinetics (via stochastic length perturbation analysis) in skinned rat papillary muscle strips at 1.9- and 2.2-µm SL. Maximum tension and Ca2+ sensitivity increased with SL, and RLC phosphorylation augmented this response at 2.2-µm SL. Subtle increases in viscoelastic myocardial stiffness occurred with RLC phosphorylation at 2.2-µm SL, but not at 1.9-µm SL, thereby suggesting that RLC phosphorylation increases β-myosin heavy chain binding or stiffness at longer SLs. The cross-bridge detachment rate slowed as SL increased, providing a potential mechanism for prolonged cross-bridge attachment to augment length-dependent activation of contraction at longer SLs. Length-dependent slowing of β-myosin heavy chain detachment rate was not affected by RLC phosphorylation. Together with our previous studies, these data suggest that both α- and β-myosin heavy chain isoforms show a length-dependent activation response and prolonged myosin attachment as SL increases in rat myocardial strips, and that RLC phosphorylation augments length-dependent activation at longer SLs. In comparing cardiac isoforms, however, we found that β-myosin heavy chain consistently showed greater length-dependent sensitivity than α-myosin heavy chain. Our work suggests that RLC phosphorylation is a vital contributor to the regulation of myocardial contractility in both cardiac myosin heavy chain isoforms.
Collapse
Affiliation(s)
- Jason J Breithaupt
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - Hannah C Pulcastro
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - David C DeWitt
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| |
Collapse
|
7
|
Reiser PJ. Current understanding of conventional and novel co-expression patterns of mammalian sarcomeric myosin heavy chains and light chains. Arch Biochem Biophys 2018; 662:129-133. [PMID: 30528779 DOI: 10.1016/j.abb.2018.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/31/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
Abstract
A central tenet of muscle physiology that has accrued from several decades of intense investigations is that myosin, and the vast set of isoforms that constitute its six subunits, is a major regulator of contractile properties of smooth, cardiac and skeletal muscle. Two frequent questions are (1) how many myosin heavy chain (MyHC) isoforms and myosin light chain (MLC) isoforms are expressed in mammalian striated muscles and (2) which isoforms of MyHC and MLC are expressed, at the protein level, with each other - that is, what patterns of co-expression exist in single striated muscle fibers? The answer to the former question is straightforward: eleven MyHC isoforms and nine MLC isoforms, are expressed in a developmentally-regulated and muscle-specific manner. The answer to the latter question, on the other hand, is not clear-cut. The observed number of MyHC and MLC isoform combinations among single fibers is far less than the total number of potential permutations, indicating strict regulation of expression in individual muscle cells. This article provides a review of the current and still evolving understanding of the complexity of muscle fiber types defined on the basis of expression patterns of MyHC and MLC isoforms that constitute an intact functioning molecule.
Collapse
Affiliation(s)
- Peter J Reiser
- Division of Biosciences, College of Dentistry, The Ohio State University, 305 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
8
|
Cerychova R, Pavlinkova G. HIF-1, Metabolism, and Diabetes in the Embryonic and Adult Heart. Front Endocrinol (Lausanne) 2018; 9:460. [PMID: 30158902 PMCID: PMC6104135 DOI: 10.3389/fendo.2018.00460] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
The heart is able to metabolize any substrate, depending on its availability, to satisfy its energy requirements. Under normal physiological conditions, about 95% of ATP is produced by oxidative phosphorylation and the rest by glycolysis. Cardiac metabolism undergoes reprograming in response to a variety of physiological and pathophysiological conditions. Hypoxia-inducible factor 1 (HIF-1) mediates the metabolic adaptation to hypoxia and ischemia, including the transition from oxidative to glycolytic metabolism. During embryonic development, HIF-1 protects the embryo from intrauterine hypoxia, its deletion as well as its forced expression are embryonically lethal. A decrease in HIF-1 activity is crucial during perinatal remodeling when the heart switches from anaerobic to aerobic metabolism. In the adult heart, HIF-1 protects against hypoxia, although its deletion in cardiomyocytes affects heart function even under normoxic conditions. Diabetes impairs HIF-1 activation and thus, compromises HIF-1 mediated responses under oxygen-limited conditions. Compromised HIF-1 signaling may contribute to the teratogenicity of maternal diabetes and diabetic cardiomyopathy in adults. In this review, we discuss the function of HIF-1 in the heart throughout development into adulthood, as well as the deregulation of HIF-1 signaling in diabetes and its effects on the embryonic and adult heart.
Collapse
Affiliation(s)
- Radka Cerychova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Gabriela Pavlinkova
| |
Collapse
|
9
|
Bohlooli Ghashghaee N, Tanner BCW, Dong WJ. Functional significance of C-terminal mobile domain of cardiac troponin I. Arch Biochem Biophys 2017; 634:38-46. [PMID: 28958680 DOI: 10.1016/j.abb.2017.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 09/08/2017] [Accepted: 09/24/2017] [Indexed: 01/22/2023]
Abstract
Ca2+-regulation of cardiac contractility is mediated through the troponin complex, which comprises three subunits: cTnC, cTnI, and cTnT. As intracellular [Ca2+] increases, cTnI reduces its binding interactions with actin to primarily interact with cTnC, thereby enabling contraction. A portion of this regulatory switching involves the mobile domain of cTnI (cTnI-MD), the role of which in muscle contractility is still elusive. To study the functional significance of cTnI-MD, we engineered two cTnI constructs in which the MD was truncated to various extents: cTnI(1-167) and cTnI(1-193). These truncations were exchanged for endogenous cTnI in skinned rat papillary muscle fibers, and their influence on Ca2+-activated contraction and cross-bridge cycling kinetics was assessed at short (1.9 μm) and long (2.2 μm) sarcomere lengths (SLs). Our results show that the cTnI(1-167) truncation diminished the SL-induced increase in Ca2+-sensitivity of contraction, but not the SL-dependent increase in maximal tension, suggesting an uncoupling between the thin and thick filament contributions to length dependent activation. Compared to cTnI(WT), both truncations displayed greater Ca2+-sensitivity and faster cross-bridge attachment rates at both SLs. Furthermore, cTnI(1-167) slowed MgADP release rate and enhanced cross-bridge binding. Our findings imply that cTnI-MD truncations affect the blocked-to closed-state transition(s) and destabilize the closed-state position of tropomyosin.
Collapse
Affiliation(s)
- Nazanin Bohlooli Ghashghaee
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Bertrand C W Tanner
- The Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Wen-Ji Dong
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; The Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
10
|
Kawai M, Johnston JR, Karam T, Wang L, Singh RK, Pinto JR. Myosin Rod Hypophosphorylation and CB Kinetics in Papillary Muscles from a TnC-A8V KI Mouse Model. Biophys J 2017; 112:1726-1736. [PMID: 28445763 DOI: 10.1016/j.bpj.2017.02.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 12/11/2022] Open
Abstract
The cardiac troponin C (TnC)-A8V mutation is associated with hypertrophic and restrictive cardiomyopathy (HCM and RCM) in human and mice. The residue affected lies in the N-helix, a region known to affect Ca2+-binding affinity to the N-terminal domain. Here we report on the functional effects of this mutation in skinned papillary muscle fibers from homozygous knock-in TnC-A8V mice. Muscle fibers from left ventricle were activated at 25°C under the ionic conditions of working cardiomyocytes. The pCa-tension relationship showed a 3× increase in Ca2+-sensitivity and a decrease (0.8×) in cooperativity (nH) in mutant fibers. The elementary steps of the cross-bridge (CB) cycle were investigated by sinusoidal analysis. The ATP study revealed that there is no significant change in the affinity of ATP (K1) for the myosin head. In TnC-A8V mutant fibers, the CB detachment rate (k2) and its equilibrium constant (K2) increased (1.5×). The phosphate study revealed that rate constant of the force-generation step (k4) decreased (0.5×), reversal step (k-4) increased (2×), and the phosphate-release step (1/K5) increased (2×). Pro-Q Diamond staining of the skinned fibers samples revealed no significant changes in total phosphorylation of multiple sarcomeric proteins. Further investigation using liquid chromatography-tandem mass spectrometry revealed hypophosphorylation of the rod domain of myosin heavy chain in TnC-A8V mutant fibers compared to wild-type. Immunoblotting confirmed the results observed in the mass spectrometry analysis. The results suggest perturbed CB kinetics-possibly caused by changes in the α-myosin heavy chain phosphorylation profile-as a novel mechanism, to our knowledge, by which a mutation in TnC can have rippling effects in the myofilament and contribute to the pathogenesis of HCM/RCM.
Collapse
Affiliation(s)
- Masataka Kawai
- Departments of Anatomy and Cell Biology, and Internal Medicine, College of Medicine, University of Iowa, Iowa City, Iowa.
| | - Jamie R Johnston
- Department of Biomedical Sciences, College of Medicine, The Florida State University, Tallahassee, Florida
| | - Tarek Karam
- Departments of Anatomy and Cell Biology, and Internal Medicine, College of Medicine, University of Iowa, Iowa City, Iowa
| | - Li Wang
- Departments of Anatomy and Cell Biology, and Internal Medicine, College of Medicine, University of Iowa, Iowa City, Iowa; School of Nursing, Soochow University, Suzhou, Jiangsu, China
| | - Rakesh K Singh
- Translational Science Laboratory, College of Medicine, The Florida State University, Tallahassee, Florida
| | - Jose R Pinto
- Department of Biomedical Sciences, College of Medicine, The Florida State University, Tallahassee, Florida
| |
Collapse
|
11
|
Myosin MgADP Release Rate Decreases as Sarcomere Length Increases in Skinned Rat Soleus Muscle Fibers. Biophys J 2017; 111:2011-2023. [PMID: 27806282 DOI: 10.1016/j.bpj.2016.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 11/21/2022] Open
Abstract
Actin-myosin cross-bridges use chemical energy from MgATP hydrolysis to generate force and shortening in striated muscle. Previous studies show that increases in sarcomere length can reduce thick-to-thin filament spacing in skinned muscle fibers, thereby increasing force production at longer sarcomere lengths. However, it is unclear how changes in sarcomere length and lattice spacing affect cross-bridge kinetics at fundamental steps of the cross-bridge cycle, such as the MgADP release rate. We hypothesize that decreased lattice spacing, achieved through increased sarcomere length or osmotic compression of the fiber via dextran T-500, could slow MgADP release rate and increase cross-bridge attachment duration. To test this, we measured cross-bridge cycling and MgADP release rates in skinned soleus fibers using stochastic length-perturbation analysis at 2.5 and 2.0 μm sarcomere lengths as pCa and [MgATP] varied. In the absence of dextran, the force-pCa relationship showed greater Ca2+ sensitivity for 2.5 vs. 2.0 μm sarcomere length fibers (pCa50 = 5.68 ± 0.01 vs. 5.60 ± 0.01). When fibers were compressed with 4% dextran, the length-dependent increase in Ca2+ sensitivity of force was attenuated, though the Ca2+ sensitivity of the force-pCa relationship at both sarcomere lengths was greater with osmotic compression via 4% dextran compared to no osmotic compression. Without dextran, the cross-bridge detachment rate slowed by ∼15% as sarcomere length increased, due to a slower MgADP release rate (11.2 ± 0.5 vs. 13.5 ± 0.7 s-1). In the presence of dextran, cross-bridge detachment was ∼20% slower at 2.5 vs. 2.0 μm sarcomere length due to a slower MgADP release rate (10.1 ± 0.6 vs. 12.9 ± 0.5 s-1). However, osmotic compression of fibers at either 2.5 or 2.0 μm sarcomere length produced only slight (and statistically insignificant) slowing in the rate of MgADP release. These data suggest that skeletal muscle exhibits sarcomere-length-dependent changes in cross-bridge kinetics and MgADP release that are separate from, or complementary to, changes in lattice spacing.
Collapse
|
12
|
Comparison of elementary steps of the cross-bridge cycle in rat papillary muscle fibers expressing α- and β-myosin heavy chain with sinusoidal analysis. J Muscle Res Cell Motil 2016; 37:203-214. [PMID: 27942960 DOI: 10.1007/s10974-016-9456-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
In mammalian ventricles, two myosin heavy chain (MHC) isoforms have been identified. Small animals express α-MHC, whereas large animals express β-MHC, which contribute to a large difference in the heart rate. Sprague-Dawley rats possessing ~99% α-MHC were treated with propylthiouracil to result in 100% β-MHC. Papillary muscles were skinned, dissected into small fibers, and used for experiments. To understand the functional difference between α-MHC and β-MHC, skinned-fibers were activated under the intracellular ionic conditions: 5 mM MgATP, 1 mM Mg2+, 8 mM Pi, 200 mM ionic strength, pH 7.00 at 25 °C. Small amplitude sinusoidal length oscillations were applied in the frequency range 0.13-100 Hz (corresponding time domain: 1.6-1200 ms), and effects of Ca2+, Pi, and ATP were studied. The results show that Ca2+ sensitivity was slightly less (10-15%) in β-MHC than α-MHC containing fibers. Sinusoidal analysis at pCa 4.66 (full Ca2+ activation) demonstrated that, the apparent rate constants were 2-4× faster in α-MHC containing fibers. The ATP study demonstrated that, in β-MHC containing fibers, K 1 (ATP association constant) was greater (1.7×), k 2 and k -2 (cross-bridge detachment and its reversal rate constants) were smaller (×0.6). The Pi study demonstrated that, in β-MHC containing fibers, k 4 (rate constant of the force-generation step) and k -4 were smaller (0.75× and 0.25×, respectively), resulting in greater K 4 (3×). There were no differences in active tension, rigor stiffness, or K 2 (equilibrium constant of the cross-bridge detachment step). Our study further demonstrated that there were no differences in parameters between fibers obtained from left and right ventricles, but with an exception in K 5 (Pi association constant).
Collapse
|
13
|
Pulcastro HC, Awinda PO, Methawasin M, Granzier H, Dong W, Tanner BCW. Increased Titin Compliance Reduced Length-Dependent Contraction and Slowed Cross-Bridge Kinetics in Skinned Myocardial Strips from Rbm (20ΔRRM) Mice. Front Physiol 2016; 7:322. [PMID: 27524973 PMCID: PMC4966298 DOI: 10.3389/fphys.2016.00322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/14/2016] [Indexed: 01/12/2023] Open
Abstract
Titin is a giant protein spanning from the Z-disk to the M-band of the cardiac sarcomere. In the I-band titin acts as a molecular spring, contributing to passive mechanical characteristics of the myocardium throughout a heartbeat. RNA Binding Motif Protein 20 (RBM20) is required for normal titin splicing, and its absence or altered function leads to greater expression of a very large, more compliant N2BA titin isoform in Rbm20 homozygous mice (Rbm20ΔRRM) compared to wild-type mice (WT) that almost exclusively express the stiffer N2B titin isoform. Prior studies using Rbm20ΔRRM animals have shown that increased titin compliance compromises muscle ultrastructure and attenuates the Frank-Starling relationship. Although previous computational simulations of muscle contraction suggested that increasing compliance of the sarcomere slows the rate of tension development and prolongs cross-bridge attachment, none of the reported effects of Rbm20ΔRRM on myocardial function have been attributed to changes in cross-bridge cycling kinetics. To test the relationship between increased sarcomere compliance and cross-bridge kinetics, we used stochastic length-perturbation analysis in Ca2+-activated, skinned papillary muscle strips from Rbm20ΔRRM and WT mice. We found increasing titin compliance depressed maximal tension, decreased Ca2+-sensitivity of the tension-pCa relationship, and slowed myosin detachment rate in myocardium from Rbm20ΔRRM vs. WT mice. As sarcomere length increased from 1.9 to 2.2 μm, length-dependent activation of contraction was eliminated in the Rbm20ΔRRM myocardium, even though myosin MgADP release rate decreased ~20% to prolong strong cross-bridge binding at longer sarcomere length. These data suggest that increasing N2BA expression may alter cardiac performance in a length-dependent manner, showing greater deficits in tension production and slower cross-bridge kinetics at longer sarcomere length. This study also supports the idea that passive mechanical characteristics of the myocardium influence ensemble cross-bridge behavior and maintenance of tension generation throughout the sarcomere.
Collapse
Affiliation(s)
- Hannah C Pulcastro
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| | - Mei Methawasin
- Department of Cellular and Molecular Medicine, University of Arizona Tucson, AZ, USA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona Tucson, AZ, USA
| | - Wenji Dong
- Department of Integrative Physiology and Neuroscience, Washington State UniversityPullman, WA, USA; Voiland School of Chemical Engineering and Bioengineering, Washington State UniversityPullman, WA, USA
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| |
Collapse
|
14
|
Tewari SG, Bugenhagen SM, Palmer BM, Beard DA. Dynamics of cross-bridge cycling, ATP hydrolysis, force generation, and deformation in cardiac muscle. J Mol Cell Cardiol 2016; 96:11-25. [PMID: 25681584 PMCID: PMC4532654 DOI: 10.1016/j.yjmcc.2015.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/29/2015] [Accepted: 02/04/2015] [Indexed: 11/27/2022]
Abstract
Despite extensive study over the past six decades the coupling of chemical reaction and mechanical processes in muscle dynamics is not well understood. We lack a theoretical description of how chemical processes (metabolite binding, ATP hydrolysis) influence and are influenced by mechanical processes (deformation and force generation). To address this need, a mathematical model of the muscle cross-bridge (XB) cycle based on Huxley's sliding filament theory is developed that explicitly accounts for the chemical transformation events and the influence of strain on state transitions. The model is identified based on elastic and viscous moduli data from mouse and rat myocardial strips over a range of perturbation frequencies, and MgATP and inorganic phosphate (Pi) concentrations. Simulations of the identified model reproduce the observed effects of MgATP and MgADP on the rate of force development. Furthermore, simulations reveal that the rate of force re-development measured in slack-restretch experiments is not directly proportional to the rate of XB cycling. For these experiments, the model predicts that the observed increase in the rate of force generation with increased Pi concentration is due to inhibition of cycle turnover by Pi. Finally, the model captures the observed phenomena of force yielding suggesting that it is a result of rapid detachment of stretched attached myosin heads.
Collapse
Affiliation(s)
- Shivendra G Tewari
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott M Bugenhagen
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Bradley M Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | - Daniel A Beard
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
15
|
Pulcastro HC, Awinda PO, Breithaupt JJ, Tanner BCW. Effects of myosin light chain phosphorylation on length-dependent myosin kinetics in skinned rat myocardium. Arch Biochem Biophys 2016; 601:56-68. [PMID: 26763941 DOI: 10.1016/j.abb.2015.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/14/2015] [Accepted: 12/29/2015] [Indexed: 11/19/2022]
Abstract
Myosin force production is Ca(2+)-regulated by thin-filament proteins and sarcomere length, which together determine the number of cross-bridge interactions throughout a heartbeat. Ventricular myosin regulatory light chain-2 (RLC) binds to the neck of myosin and modulates contraction via its phosphorylation state. Previous studies reported regional variations in RLC phosphorylation across the left ventricle wall, suggesting that RLC phosphorylation could alter myosin behavior throughout the heart. We found that RLC phosphorylation varied across the left ventricle wall and that RLC phosphorylation was greater in the right vs. left ventricle. We also assessed functional consequences of RLC phosphorylation on Ca(2+)-regulated contractility as sarcomere length varied in skinned rat papillary muscle strips. Increases in RLC phosphorylation and sarcomere length both led to increased Ca(2+)-sensitivity of the force-pCa relationship, and both slowed cross-bridge detachment rate. RLC-phosphorylation slowed cross-bridge rates of MgADP release (∼30%) and MgATP binding (∼50%) at 1.9 μm sarcomere length, whereas RLC phosphorylation only slowed cross-bridge MgATP binding rate (∼55%) at 2.2 μm sarcomere length. These findings suggest that RLC phosphorylation influences cross-bridge kinetics differently as sarcomere length varies and support the idea that RLC phosphorylation could vary throughout the heart to meet different contractile demands between the left and right ventricles.
Collapse
Affiliation(s)
- Hannah C Pulcastro
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA
| | - Jason J Breithaupt
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA.
| |
Collapse
|
16
|
Tanner BCW, Breithaupt JJ, Awinda PO. Myosin MgADP release rate decreases at longer sarcomere length to prolong myosin attachment time in skinned rat myocardium. Am J Physiol Heart Circ Physiol 2015; 309:H2087-97. [PMID: 26475586 DOI: 10.1152/ajpheart.00555.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/05/2015] [Indexed: 11/22/2022]
Abstract
Cardiac contractility increases as sarcomere length increases, suggesting that intrinsic molecular mechanisms underlie the Frank-Starling relationship to confer increased cardiac output with greater ventricular filling. The capacity of myosin to bind with actin and generate force in a muscle cell is Ca(2+) regulated by thin-filament proteins and spatially regulated by sarcomere length as thick-to-thin filament overlap varies. One mechanism underlying greater cardiac contractility as sarcomere length increases could involve longer myosin attachment time (ton) due to slowed myosin kinetics at longer sarcomere length. To test this idea, we used stochastic length-perturbation analysis in skinned rat papillary muscle strips to measure ton as [MgATP] varied (0.05-5 mM) at 1.9 and 2.2 μm sarcomere lengths. From this ton-MgATP relationship, we calculated cross-bridge MgADP release rate and MgATP binding rates. As MgATP increased, ton decreased for both sarcomere lengths, but ton was roughly 70% longer for 2.2 vs. 1.9 μm sarcomere length at maximally activated conditions. These ton differences were driven by a slower MgADP release rate at 2.2 μm sarcomere length (41 ± 3 vs. 74 ± 7 s(-1)), since MgATP binding rate was not different between the two sarcomere lengths. At submaximal activation levels near the pCa50 value of the tension-pCa relationship for each sarcomere length, length-dependent increases in ton were roughly 15% longer for 2.2 vs. 1.9 μm sarcomere length. These changes in cross-bridge kinetics could amplify cooperative cross-bridge contributions to force production and thin-filament activation at longer sarcomere length and suggest that length-dependent changes in myosin MgADP release rate may contribute to the Frank-Starling relationship in the heart.
Collapse
Affiliation(s)
- Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Jason J Breithaupt
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
17
|
Affiliation(s)
- Martin M LeWinter
- From the Cardiology Unit and the Department of Molecular Physiology and Biophysics, University of Vermont College of Medicine, Burlington.
| | - Bradley M Palmer
- From the Cardiology Unit and the Department of Molecular Physiology and Biophysics, University of Vermont College of Medicine, Burlington
| |
Collapse
|
18
|
Cardiac myosin binding protein C phosphorylation affects cross-bridge cycle's elementary steps in a site-specific manner. PLoS One 2014; 9:e113417. [PMID: 25420047 PMCID: PMC4242647 DOI: 10.1371/journal.pone.0113417] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 10/23/2014] [Indexed: 01/04/2023] Open
Abstract
Based on our recent finding that cardiac myosin binding protein C (cMyBP-C) phosphorylation affects muscle contractility in a site-specific manner, we further studied the force per cross-bridge and the kinetic constants of the elementary steps in the six-state cross-bridge model in cMyBP-C mutated transgenic mice for better understanding of the influence of cMyBP-C phosphorylation on contractile functions. Papillary muscle fibres were dissected from cMyBP-C mutated mice of ADA (Ala273-Asp282-Ala302), DAD (Asp273-Ala282-Asp302), SAS (Ser273-Ala282-Ser302), and t/t (cMyBP-C null) genotypes, and the results were compared to transgenic mice expressing wide-type (WT) cMyBP-C. Sinusoidal analyses were performed with serial concentrations of ATP, phosphate (Pi), and ADP. Both t/t and DAD mutants significantly reduced active tension, force per cross-bridge, apparent rate constant (2πc), and the rate constant of cross-bridge detachment. In contrast to the weakened ATP binding and enhanced Pi and ADP release steps in t/t mice, DAD mice showed a decreased ADP release without affecting the ATP binding and the Pi release. ADA showed decreased ADP release, and slightly increased ATP binding and cross-bridge detachment steps, whereas SAS diminished the ATP binding step and accelerated the ADP release step. t/t has the broadest effects with changes in most elementary steps of the cross-bridge cycle, DAD mimics t/t to a large extent, and ADA and SAS predominantly affect the nucleotide binding steps. We conclude that the reduced tension production in DAD and t/t is the result of reduced force per cross-bridge, instead of the less number of strongly attached cross-bridges. We further conclude that cMyBP-C is an allosteric activator of myosin to increase cross-bridge force, and its phosphorylation status modulates the force, which is regulated by variety of protein kinases.
Collapse
|
19
|
Wang L, Ji X, Barefield D, Sadayappan S, Kawai M. Phosphorylation of cMyBP-C affects contractile mechanisms in a site-specific manner. Biophys J 2014; 106:1112-22. [PMID: 24606935 DOI: 10.1016/j.bpj.2014.01.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/18/2014] [Accepted: 01/23/2014] [Indexed: 01/05/2023] Open
Abstract
Cardiac myosin binding protein-C (cMyBP-C) is a cardiac-specific, thick-filament regulatory protein that is differentially phosphorylated at Ser(273), Ser(282), and Ser(302) by various kinases and modulates contraction. In this study, phosphorylation-site-specific effects of cMyBP-C on myocardial contractility and cross-bridge kinetics were studied by sinusoidal analysis in papillary and trabecular muscle fibers isolated from t/t (cMyBP-C-null) mice and in their counterparts in which cMyBP-C contains the ADA (Ala(273)-Asp(282)-Ala(302)), DAD (Asp(273)-Ala(282)-Asp(302)), and SAS (Ser(273)-Ala(282)-Ser(302)) mutations; the results were compared to those from mice expressing the wild-type (WT) transgene on the t/t background. Under standard activating conditions, DAD fibers showed significant decreases in tension (~50%), stiffness, the fast apparent rate constant 2πc, and its magnitude C, as well as its magnitude H, but an increase in the medium rate constant 2πb, with respect to WT. The t/t fibers showed a smaller drop in stiffness and a significant decrease in 2πc that can be explained by isoform shift of myosin heavy chain. In the pCa-tension study using the 8 mM phosphate (Pi) solution, there was hardly any difference in Ca(2+) sensitivity (pCa50) and cooperativity (nH) between the mutant and WT samples. However, in the solutions without Pi, DAD showed increased nH and slightly decreased pCa50. We infer from these observations that the nonphosphorylatable residue 282 combined with phosphomimetic residues Asp(273) and/or Asp(302) (in DAD) is detrimental to cardiomyocytes by lowering isometric tension and altering cross-bridge kinetics with decreased 2πc and increased 2πb. In contrast, a single change of residue 282 to nonphosphorylatable Ala (SAS), or to phosphomimetic Asps together with the changes of residues 273 and 302 to nonphosphorylatable Ala (ADA) causes minute changes in fiber mechanics.
Collapse
Affiliation(s)
- Li Wang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa; School of Nursing, Soochow University, Suzhou, Jiangsu, China
| | - Xiang Ji
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois
| | - David Barefield
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois
| | - Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois
| | - Masakata Kawai
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
20
|
Tanner BCW, Wang Y, Robbins J, Palmer BM. Kinetics of cardiac myosin isoforms in mouse myocardium are affected differently by presence of myosin binding protein-C. J Muscle Res Cell Motil 2014; 35:267-78. [PMID: 25287107 DOI: 10.1007/s10974-014-9390-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022]
Abstract
We tested whether cardiac myosin binding protein-C (cMyBP-C) affects myosin cross-bridge kinetics in the two cardiac myosin heavy chain (MyHC) isoforms. Mice lacking cMyBP-C (t/t) and transgenic controls (WT(t/t)) were fed L-thyroxine (T4) to induce 90/10% expression of α/β-MyHC. Non-transgenic (NTG) and t/t mice were fed 6-n-propyl-2-thiouracil (PTU) to induce 100% expression of β-MyHC. Ca(2+)-activated, chemically-skinned myocardium underwent length perturbation analysis with varying [MgATP] to estimate the MgADP release rate (k(-ADP)) and MgATP binding rate (k(+ATP)). Values for (k(-ADP)) were not significantly different between t/t(T4) (102.2 ± 7.0 s(-1)) and WT(t/t)(T4) (91.3 ± 8.9 s(-1)), but k(+ATP)) was lower in t/t(T4) (165.9 ± 12.5 mM(-1) s(-1)) compared to WT(t/t)(T4) (298.6 ± 15.7 mM(-1) s(-1), P < 0.01). In myocardium expressing β-MyHC, values for k(-ADP) were higher in t/t(PTU) (24.8 ± 1.0 s(-1)) compared to NTG(PTU) (15.6 ± 1.3 s(-1), P < 0.01), and k(+ATP) was not different. At saturating [MgATP], myosin detachment rate approximates k(-ADP), and detachment rate decreased as sarcomere length (SL) was increased in both t/t(T4) and WT(t/t)(T4) with similar sensitivities to SL. In myocardium expressing β-MyHC, detachment rate decreased more as SL increased in t/t(PTU) (21.5 ± 1.3 s(-1) at 2.2 μm and 13.3 ± 0.9 s(-1) at 3.3 μm) compared to NTGPTU (15.8 ± 0.3 s(-1) at 2.2 μm and 10.9 ± 0.3 s(-1) at 3.3 μm) as detected by repeated-measures ANOVA (P < 0.01). These findings suggest that cMyBP-C reduces MgADP release rate for β-MyHC, but not for α-MyHC, even as the number of cMyBP-C that overlap with the thin filament is reduced to zero. Therefore, cMyBP-C appears to affect β-MyHC kinetics independent of its interaction with the thin filament.
Collapse
Affiliation(s)
- Bertrand C W Tanner
- Department of Molecular Physiology and Biophysics, University of Vermont, 122 HSRF, 149 Beaumont Ave., Burlington, VT, 05405, USA
| | | | | | | |
Collapse
|
21
|
Miller MS, Callahan DM, Toth MJ. Skeletal muscle myofilament adaptations to aging, disease, and disuse and their effects on whole muscle performance in older adult humans. Front Physiol 2014; 5:369. [PMID: 25309456 PMCID: PMC4176476 DOI: 10.3389/fphys.2014.00369] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/07/2014] [Indexed: 12/02/2022] Open
Abstract
Skeletal muscle contractile function declines with aging, disease, and disuse. In vivo muscle contractile function depends on a variety of factors, but force, contractile velocity and power generating capacity ultimately derive from the summed contribution of single muscle fibers. The contractile performance of these fibers are, in turn, dependent upon the isoform and function of myofilament proteins they express, with myosin protein expression and its mechanical and kinetic characteristics playing a predominant role. Alterations in myofilament protein biology, therefore, may contribute to the development of functional limitations and disability in these conditions. Recent studies suggest that these conditions are associated with altered single fiber performance due to decreased expression of myofilament proteins and/or changes in myosin-actin cross-bridge interactions. Furthermore, cellular and myofilament-level adaptations are related to diminished whole muscle and whole body performance. Notably, the effect of these various conditions on myofilament and single fiber function tends to be larger in older women compared to older men, which may partially contribute to their higher rates of disability. To maintain functionality and provide the most appropriate and effective countermeasures to aging, disease, and disuse in both sexes, a more thorough understanding is needed of the contribution of myofilament adaptations to functional disability in older men and women and their contribution to tissue level function and mobility impairment.
Collapse
Affiliation(s)
- Mark S Miller
- Department of Kinesiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, MA, USA
| | - Damien M Callahan
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont Burlington, VT, USA
| | - Michael J Toth
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont Burlington, VT, USA ; Department of Medicine, College of Medicine, University of Vermont Burlington, VT, USA
| |
Collapse
|
22
|
Wilson K, Guggilam A, West TA, Zhang X, Trask AJ, Cismowski MJ, de Tombe P, Sadayappan S, Lucchesi PA. Effects of a myofilament calcium sensitizer on left ventricular systolic and diastolic function in rats with volume overload heart failure. Am J Physiol Heart Circ Physiol 2014; 307:H1605-17. [PMID: 25260618 DOI: 10.1152/ajpheart.00423.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Aortocaval fistula (ACF)-induced volume overload (VO) heart failure (HF) results in progressive left ventricular (LV) dysfunction. Hemodynamic load reversal during pre-HF (4 wk post-ACF; REV) results in rapid structural but delayed functional recovery. This study investigated myocyte and myofilament function in ACF and REV and tested the hypothesis that a myofilament Ca(2+) sensitizer would improve VO-induced myofilament dysfunction in ACF and REV. Following the initial sham or ACF surgery in male Sprague-Dawley rats (200-240 g) at week 0, REV surgery and experiments were performed at weeks 4 and 8, respectively. In ACF, decreased LV function is accompanied by impaired sarcomeric shortening and force generation and decreased Ca(2+) sensitivity, whereas, in REV, impaired LV function is accompanied by decreased Ca(2+) sensitivity. Intravenous levosimendan (Levo) elicited the best inotropic and lusitropic responses and was selected for chronic oral studies. Subsets of ACF and REV rats were given vehicle (water) or Levo (1 mg/kg) in drinking water from weeks 4-8. Levo improved systolic (% fractional shortening, end-systolic elastance, and preload-recruitable stroke work) and diastolic (τ, dP/dtmin) function in ACF and REV. Levo improved Ca(2+) sensitivity without altering the amplitude and kinetics of the intracellular Ca(2+) transient. In ACF-Levo, increased cMyBP-C Ser-273 and Ser-302 and cardiac troponin I Ser-23/24 phosphorylation correlated with improved diastolic relaxation, whereas, in REV-Levo, increased cMyBP-C Ser-273 phosphorylation and increased α-to-β-myosin heavy chain correlated with improved diastolic relaxation. We concluded that Levo improves LV function, and myofilament composition and regulatory protein phosphorylation likely play a key role in improving function.
Collapse
Affiliation(s)
- Kristin Wilson
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio; Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Anuradha Guggilam
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio
| | - T Aaron West
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio
| | - Xiaojin Zhang
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio
| | - Aaron J Trask
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Mary J Cismowski
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Pieter de Tombe
- Department of Cellular and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Sakthivel Sadayappan
- Department of Cellular and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Pamela A Lucchesi
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio;
| |
Collapse
|
23
|
Swenson AM, Trivedi DV, Rauscher AA, Wang Y, Takagi Y, Palmer BM, Málnási-Csizmadia A, Debold EP, Yengo CM. Magnesium modulates actin binding and ADP release in myosin motors. J Biol Chem 2014; 289:23977-91. [PMID: 25006251 DOI: 10.1074/jbc.m114.562231] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We examined the magnesium dependence of five class II myosins, including fast skeletal muscle myosin, smooth muscle myosin, β-cardiac myosin (CMIIB), Dictyostelium myosin II (DdMII), and nonmuscle myosin IIA, as well as myosin V. We found that the myosins examined are inhibited in a Mg(2+)-dependent manner (0.3-9.0 mm free Mg(2+)) in both ATPase and motility assays, under conditions in which the ionic strength was held constant. We found that the ADP release rate constant is reduced by Mg(2+) in myosin V, smooth muscle myosin, nonmuscle myosin IIA, CMIIB, and DdMII, although the ADP affinity is fairly insensitive to Mg(2+) in fast skeletal muscle myosin, CMIIB, and DdMII. Single tryptophan probes in the switch I (Trp-239) and switch II (Trp-501) region of DdMII demonstrate these conserved regions of the active site are sensitive to Mg(2+) coordination. Cardiac muscle fiber mechanic studies demonstrate cross-bridge attachment time is increased at higher Mg(2+) concentrations, demonstrating that the ADP release rate constant is slowed by Mg(2+) in the context of an activated muscle fiber. Direct measurements of phosphate release in myosin V demonstrate that Mg(2+) reduces actin affinity in the M·ADP·Pi state, although it does not change the rate of phosphate release. Therefore, the Mg(2+) inhibition of the actin-activated ATPase activity observed in class II myosins is likely the result of Mg(2+)-dependent alterations in actin binding. Overall, our results suggest that Mg(2+) reduces the ADP release rate constant and rate of attachment to actin in both high and low duty ratio myosins.
Collapse
Affiliation(s)
- Anja M Swenson
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Darshan V Trivedi
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Anna A Rauscher
- the Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Yuan Wang
- the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - Yasuharu Takagi
- the Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Bradley M Palmer
- the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - András Málnási-Csizmadia
- the Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Hungary, the Hungarian Academy of Sciences-Eötvös Loránd University Molecular Biophysics Research Group, H-1117 Budapest, Hungary
| | - Edward P Debold
- the Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts 02210, and
| | - Christopher M Yengo
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033,
| |
Collapse
|
24
|
Wilson K, Lucchesi PA. Myofilament dysfunction as an emerging mechanism of volume overload heart failure. Pflugers Arch 2014; 466:1065-77. [PMID: 24488008 DOI: 10.1007/s00424-014-1455-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/17/2014] [Accepted: 01/19/2014] [Indexed: 11/28/2022]
Abstract
Two main hemodynamic overload mechanisms [i.e., volume and pressure overload (VO and PO, respectively] result in heart failure (HF), and these two mechanisms have divergent pathologic alterations and different pathophysiological mechanisms. Extensive evidence from animal models and human studies of PO demonstrate a clear association with alterations in Ca(2+) homeostasis. By contrast, emerging evidence from animal models and patients with regurgitant valve disease and dilated cardiomyopathy point toward a more prominent role of myofilament dysfunction. With respect to VO HF, key features of excitation-contraction coupling defects, myofilament dysfunction, and extracellular matrix composition will be discussed.
Collapse
Affiliation(s)
- Kristin Wilson
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | | |
Collapse
|
25
|
Chung CS, Mitov MI, Callahan LA, Campbell KS. Increased myocardial short-range forces in a rodent model of diabetes reflect elevated content of β myosin heavy chain. Arch Biochem Biophys 2013; 552-553:92-9. [PMID: 24012810 DOI: 10.1016/j.abb.2013.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/02/2013] [Accepted: 08/24/2013] [Indexed: 01/13/2023]
Abstract
Diastolic dysfunction is a clinically significant problem for patients with diabetes and often reflects increased ventricular stiffness. Attached cross-bridges contribute to myocardial stiffness and produce short-range forces, but it is not yet known whether these forces are altered in diabetes. In this study, we tested the hypothesis that cross-bridge-based short-range forces are increased in the streptozotocin (STZ) induced rat model of type 1 diabetes. Chemically permeabilized myocardial preparations were obtained from 12week old rats that had been injected with STZ or vehicle 4weeks earlier, and activated in solutions with pCa (=-log10[Ca(2+)]) values ranging from 9.0 to 4.5. The short-range forces elicited by controlled length changes were ∼67% greater in the samples from the diabetic rats than in the control preparations. This change was mostly due to an increased elastic limit (the length change at the peak short-range force) as opposed to increased passive muscle stiffness. The STZ-induced increase in short-ranges forces is thus unlikely to reflect changes to titin and/or collagen filaments. Gel electrophoresis showed that STZ increased the relative expression of β myosin heavy chain. This molecular mechanism can explain the increased short-ranges forces observed in the diabetic tissue if β myosin molecules remain bound between the filaments for longer durations than α molecules during imposed movements. These results suggest that interventions that decrease myosin attachment times may be useful treatments for diastolic dysfunction associated with diabetes.
Collapse
Affiliation(s)
- Charles S Chung
- Department of Physiology, Critical Care and Sleep Medicine, University of Kentucky, Lexington, KY 40536-0298, United States; Center for Muscle Biology, Critical Care and Sleep Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - Mihail I Mitov
- Department of Physiology, Critical Care and Sleep Medicine, University of Kentucky, Lexington, KY 40536-0298, United States; Center for Muscle Biology, Critical Care and Sleep Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - Leigh Ann Callahan
- Center for Muscle Biology, Critical Care and Sleep Medicine, University of Kentucky, Lexington, KY 40536-0298, United States; Division of Pulmonary, Critical Care and Sleep Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - Kenneth S Campbell
- Department of Physiology, Critical Care and Sleep Medicine, University of Kentucky, Lexington, KY 40536-0298, United States; Center for Muscle Biology, Critical Care and Sleep Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| |
Collapse
|
26
|
Racca AW, Beck AE, Rao VS, Flint GV, Lundy SD, Born DE, Bamshad MJ, Regnier M. Contractility and kinetics of human fetal and human adult skeletal muscle. J Physiol 2013; 591:3049-61. [PMID: 23629510 DOI: 10.1113/jphysiol.2013.252650] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Little is known about the contraction and relaxation properties of fetal skeletal muscle, and measurements thus far have been made with non-human mammalian muscle. Data on human fetal skeletal muscle contraction are lacking, and there are no published reports on the kinetics of either fetal or adult human skeletal muscle myofibrils. Understanding the contractile properties of human fetal muscle would be valuable in understanding muscle development and a variety of muscle diseases that are associated with mutations in fetal muscle sarcomere proteins. Therefore, we characterised the contractile properties of developing human fetal skeletal muscle and compared them to adult human skeletal muscle and rabbit psoas muscle. Electron micrographs showed human fetal muscle sarcomeres are not fully formed but myofibril formation is visible. Isolated myofibril mechanical measurements revealed much lower specific force, and slower rates of isometric force development, slow phase relaxation, and fast phase relaxation in human fetal when compared to human adult skeletal muscle. The duration of slow phase relaxation was also significantly longer compared to both adult groups, but was similarly affected by elevated ADP. F-actin sliding on human fetal skeletal myosin coated surfaces in in vitro motility (IVM) assays was much slower compared with adult rabbit skeletal myosin, though the Km(app) (apparent (fitted) Michaelis-Menten constant) of F-actin speed with ATP titration suggests a greater affinity of human fetal myosin for nucleotide binding. Replacing ATP with 2 deoxy-ATP (dATP) increased F-actin speed for both groups by a similar amount. Titrations of ADP into IVM assays produced a similar inhibitory affect for both groups, suggesting ADP binding may be similar, at least under low load. Together, our results suggest slower but similar mechanisms of myosin chemomechanical transduction for human fetal muscle that may also be limited by immature myofilament structure.
Collapse
Affiliation(s)
- Alice W Racca
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lowey S, Bretton V, Gulick J, Robbins J, Trybus KM. Transgenic mouse α- and β-cardiac myosins containing the R403Q mutation show isoform-dependent transient kinetic differences. J Biol Chem 2013; 288:14780-7. [PMID: 23580644 DOI: 10.1074/jbc.m113.450668] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Familial hypertrophic cardiomyopathy (FHC) is a major cause of sudden cardiac death in young athletes. The discovery in 1990 that a point mutation at residue 403 (R403Q) in the β-myosin heavy chain (MHC) caused a severe form of FHC was the first of many demonstrations linking FHC to mutations in muscle proteins. A mouse model for FHC has been widely used to study the mechanochemical properties of mutated cardiac myosin, but mouse hearts express α-MHC, whereas the ventricles of larger mammals express predominantly β-MHC. To address the role of the isoform backbone on function, we generated a transgenic mouse in which the endogenous α-MHC was partially replaced with transgenically encoded β-MHC or α-MHC. A His6 tag was cloned at the N terminus, along with R403Q, to facilitate isolation of myosin subfragment 1 (S1). Stopped flow kinetics were used to measure the equilibrium constants and rates of nucleotide binding and release for the mouse S1 isoforms bound to actin. For the wild-type isoforms, we found that the affinity of MgADP for α-S1 (100 μM) is ~ 4-fold weaker than for β-S1 (25 μM). Correspondingly, the MgADP release rate for α-S1 (350 s(-1)) is ~3-fold greater than for β-S1 (120 s(-1)). Introducing the R403Q mutation caused only a minor reduction in kinetics for β-S1, but R403Q in α-S1 caused the ADP release rate to increase by 20% (430 s(-1)). These transient kinetic studies on mouse cardiac myosins provide strong evidence that the functional impact of an FHC mutation on myosin depends on the isoform backbone.
Collapse
Affiliation(s)
- Susan Lowey
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405, USA.
| | | | | | | | | |
Collapse
|
28
|
Palmer BM, Schmitt JP, Seidman CE, Seidman JG, Wang Y, Bell SP, Lewinter MM, Maughan DW. Elevated rates of force development and MgATP binding in F764L and S532P myosin mutations causing dilated cardiomyopathy. J Mol Cell Cardiol 2013; 57:23-31. [PMID: 23313350 DOI: 10.1016/j.yjmcc.2012.12.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/28/2012] [Accepted: 12/30/2012] [Indexed: 11/24/2022]
Abstract
Dilated cardiomyopathy (DCM) is a disease characterized by dilation of the ventricular chambers and reduced contractile function. We examined the contractile performance of chemically-skinned ventricular strips from two heterozygous murine models of DCM-causing missense mutations of myosin, F764L/+ and S532P/+, in an α-myosin heavy chain (MyHC) background. In Ca(2+)-activated skinned myocardial strips, the maximum developed tension in F764L/+ was only ~50% that of litter-mate controls (+/+). The F764L/+ also exhibited significantly reduced rigor stiffness, loaded shortening velocity and power output. Corresponding indices for S532P/+ strips were not different from controls. Manipulation of MgATP concentration in conjunction with measures of viscoelasticity, which provides estimates of myosin detachment rate 2πc, allowed us to probe the molecular basis of changes in crossbridge kinetics that occur with the myosin mutations. By examining the response of detachment rate to varying MgATP we found the rate of MgADP release was unaffected by the myosin mutations. However, MgATP binding rate was higher in the DCM groups compared to controls (422±109mM(-1)·s(-1) in F764L/+, 483±74mM(-1)·s(-1) in S532P/+ and 303±18mM(-1)·s(-1) in +/+). In addition, the rate constant of force development, 2πb, was significantly higher in DCM groups compared to controls (at 5mM MgATP: 36.9±4.9s(-1) in F764L/+, 32.9±4.5s(-1) in S532P/+ and 18.2±1.7s(-1) in +/+). These results suggest that elevated rates of force development and MgATP binding are features of cardiac myofilament function that underlie the development of DCM.
Collapse
Affiliation(s)
- Bradley M Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA.
| | | | | | | | | | | | | | | |
Collapse
|