1
|
Malikides O, Simantirakis E, Zacharis E, Fragkiadakis K, Kochiadakis G, Marketou M. Cardiac Remodeling and Ventricular Pacing: From Genes to Mechanics. Genes (Basel) 2024; 15:671. [PMID: 38927607 PMCID: PMC11203142 DOI: 10.3390/genes15060671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiac remodeling and ventricular pacing represent intertwined phenomena with profound implications for cardiovascular health and therapeutic interventions. This review explores the intricate relationship between cardiac remodeling and ventricular pacing, spanning from the molecular underpinnings to biomechanical alterations. Beginning with an examination of genetic predispositions and cellular signaling pathways, we delve into the mechanisms driving myocardial structural changes and electrical remodeling in response to pacing stimuli. Insights into the dynamic interplay between pacing strategies and adaptive or maladaptive remodeling processes are synthesized, shedding light on the clinical implications for patients with various cardiovascular pathologies. By bridging the gap between basic science discoveries and clinical translation, this review aims to provide a comprehensive understanding of cardiac remodeling in the context of ventricular pacing, paving the way for future advancements in cardiovascular care.
Collapse
Affiliation(s)
- Onoufrios Malikides
- Department of Cardiology, University General Hospital of Heraklion, 71003 Heraklion, Greece; (E.S.); (E.Z.); (K.F.); (G.K.); (M.M.)
| | - Emmanouel Simantirakis
- Department of Cardiology, University General Hospital of Heraklion, 71003 Heraklion, Greece; (E.S.); (E.Z.); (K.F.); (G.K.); (M.M.)
- Medical School, University of Crete, 71003 Heraklion, Greece
| | - Evangelos Zacharis
- Department of Cardiology, University General Hospital of Heraklion, 71003 Heraklion, Greece; (E.S.); (E.Z.); (K.F.); (G.K.); (M.M.)
- Medical School, University of Crete, 71003 Heraklion, Greece
| | - Konstantinos Fragkiadakis
- Department of Cardiology, University General Hospital of Heraklion, 71003 Heraklion, Greece; (E.S.); (E.Z.); (K.F.); (G.K.); (M.M.)
- Medical School, University of Crete, 71003 Heraklion, Greece
| | - George Kochiadakis
- Department of Cardiology, University General Hospital of Heraklion, 71003 Heraklion, Greece; (E.S.); (E.Z.); (K.F.); (G.K.); (M.M.)
- Medical School, University of Crete, 71003 Heraklion, Greece
| | - Maria Marketou
- Department of Cardiology, University General Hospital of Heraklion, 71003 Heraklion, Greece; (E.S.); (E.Z.); (K.F.); (G.K.); (M.M.)
- Medical School, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
2
|
Jiang XX, Zhang R, Wang HS. Neferine mitigates angiotensin II-induced atrial fibrillation and fibrosis via upregulation of Nrf2/HO-1 and inhibition of TGF-β/p-Smad2/3 pathways. Aging (Albany NY) 2024; 16:8630-8644. [PMID: 38775722 PMCID: PMC11164477 DOI: 10.18632/aging.205829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/10/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) is often associated with atrial fibrosis and oxidative stress. Neferine, a bisbenzylisoquinoline alkaloid, has been reported to exert an antiarrhythmic effect. However, its impact on Angiotensin II (Ang II) infusion-induced AF and the underlying mechanism remains unclear. This study aimed to investigate whether neferine alleviates Ang II-induced AF and explore the underlying mechanisms. METHODS Mice subjected to Ang II infusion to induce AF were concurrently treated with neferine or saline. AF incidence, myocardial cell size, fibrosis, and oxidative stress were then examined. RESULTS Neferine treatment inhibited Ang II-induced AF, atrial size augmentation, and atrial fibrosis. Additionally, we observed that Ang II increased reactive oxygen species (ROS) generation, induced mitochondrial membrane potential depolarization, and reduced glutathione (GSH) and superoxide dismutase (SOD) levels, which were reversed to some extent by neferine. Mechanistically, neferine activated the Nrf2/HO-1 signaling pathway and inhibited TGF-β/p-Smad2/3 in Ang II-infused atria. Zinc Protoporphyrin (ZnPP), an HO-1 inhibitor, reduced the anti-oxidative effect of neferine to some extent and subsequently abolished the beneficial effect of neferine on Ang II-induced AF. CONCLUSIONS These findings provide hitherto undocumented evidence that the protective role of neferine in Ang II-induced AF is dependent on HO-1.
Collapse
Affiliation(s)
- Xiao-Xiao Jiang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Ri Zhang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hui-Shan Wang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Command, Shenyang 110016, Liaoning, China
| |
Collapse
|
3
|
Ponzoni M, Coles JG, Maynes JT. Rodent Models of Dilated Cardiomyopathy and Heart Failure for Translational Investigations and Therapeutic Discovery. Int J Mol Sci 2023; 24:3162. [PMID: 36834573 PMCID: PMC9963155 DOI: 10.3390/ijms24043162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Even with modern therapy, patients with heart failure only have a 50% five-year survival rate. To improve the development of new therapeutic strategies, preclinical models of disease are needed to properly emulate the human condition. Determining the most appropriate model represents the first key step for reliable and translatable experimental research. Rodent models of heart failure provide a strategic compromise between human in vivo similarity and the ability to perform a larger number of experiments and explore many therapeutic candidates. We herein review the currently available rodent models of heart failure, summarizing their physiopathological basis, the timeline of the development of ventricular failure, and their specific clinical features. In order to facilitate the future planning of investigations in the field of heart failure, a detailed overview of the advantages and possible drawbacks of each model is provided.
Collapse
Affiliation(s)
- Matteo Ponzoni
- Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Program in Translational Medicine, SickKids Research Institute, Toronto, ON M5G 0A4, Canada
| | - John G. Coles
- Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Program in Translational Medicine, SickKids Research Institute, Toronto, ON M5G 0A4, Canada
| | - Jason T. Maynes
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON M5G 0A4, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5G 1E2, Canada
| |
Collapse
|
4
|
TECRL deficiency results in aberrant mitochondrial function in cardiomyocytes. Commun Biol 2022; 5:470. [PMID: 35577932 PMCID: PMC9110732 DOI: 10.1038/s42003-022-03414-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/26/2022] [Indexed: 11/20/2022] Open
Abstract
Sudden cardiac death (SCD) caused by ventricular arrhythmias is the leading cause of mortality of cardiovascular disease. Mutation in TECRL, an endoplasmic reticulum protein, was first reported in catecholaminergic polymorphic ventricular tachycardia during which a patient succumbed to SCD. Using loss- and gain-of-function approaches, we investigated the role of TECRL in murine and human cardiomyocytes. Tecrl (knockout, KO) mouse shows significantly aggravated cardiac dysfunction, evidenced by the decrease of ejection fraction and fractional shortening. Mechanistically, TECRL deficiency impairs mitochondrial respiration, which is characterized by reduced adenosine triphosphate production, increased fatty acid synthase (FAS) and reactive oxygen species production, along with decreased MFN2, p-AKT (Ser473), and NRF2 expressions. Overexpression of TECRL induces mitochondrial respiration, in PI3K/AKT dependent manner. TECRL regulates mitochondrial function mainly through PI3K/AKT signaling and the mitochondrial fusion protein MFN2. Apoptosis inducing factor (AIF) and cytochrome C (Cyc) is released from the mitochondria into the cytoplasm after siTECRL infection, as demonstrated by immunofluorescent staining and western blotting. Herein, we propose a previously unrecognized TECRL mechanism in regulating CPVT and may provide possible support for therapeutic target in CPVT. The endoplasmic reticulum protein TECRL promotes mitochondrial function in cardiomyocytes and its knockout in mice leads to cardiac dysfunction, decreased mitochondria function, and elevated levels of reactive oxygen species.
Collapse
|
5
|
Racioppi MF, Burgos JI, Morell M, Gonano LA, Vila Petroff M. Cellular Mechanisms Underlying the Low Cardiotoxicity of Istaroxime. J Am Heart Assoc 2021; 10:e018833. [PMID: 34219467 PMCID: PMC8483492 DOI: 10.1161/jaha.120.018833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Istaroxime is an inhibitor of Na+/K+ ATPase with proven efficacy to increase cardiac contractility and to accelerate relaxation attributable to a relief in phospholamban‐dependent inhibition of the sarcoplasmic reticulum Ca2+ ATPase. We have previously shown that pharmacologic Na+/K+ ATPase inhibition promotes calcium/calmodulin‐dependent kinase II activation, which mediates both cardiomyocyte death and arrhythmias. Here, we aim to compare the cardiotoxic effects promoted by classic pharmacologic Na+/K+ ATPase inhibition versus istaroxime. Methods and Results Ventricular cardiomyocytes were treated with ouabain or istaroxime at previously tested equi‐inotropic concentrations to compare their impact on cell viability, apoptosis, and calcium/calmodulin‐dependent kinase II activation. In contrast to ouabain, istaroxime neither promoted calcium/calmodulin‐dependent kinase II activation nor cardiomyocyte death. In addition, we explored the differential behavior promoted by ouabain and istaroxime on spontaneous diastolic Ca2+ release. In rat cardiomyocytes, istaroxime did not significantly increase Ca2+ spark and wave frequency but increased the proportion of aborted Ca2+ waves. Further insight was provided by studying cardiomyocytes from mice that do not express phospholamban. In this model, the lower Ca2+ wave incidence observed with istaroxime remains present, suggesting that istaroxime‐dependent relief on phospholamban‐dependent sarcoplasmic reticulum Ca2+ ATPase 2A inhibition is not the unique mechanism underlying the low arrhythmogenic profile of this drug. Conclusions Our results indicate that, different from ouabain, istaroxime can reach a significant inotropic effect without leading to calcium/calmodulin‐dependent kinase II–dependent cardiomyocyte death. Additionally, we provide novel insights regarding the low arrhythmogenic impact of istaroxime on cardiac Ca2+ handling.
Collapse
Affiliation(s)
- María Florencia Racioppi
- Centro de Investigaciones Cardiovasculares Horacio Cingolani CONICET La Plata Facultad de Ciencias Médicas Universidad Nacional de La Plata Argentina
| | - Juan Ignacio Burgos
- Centro de Investigaciones Cardiovasculares Horacio Cingolani CONICET La Plata Facultad de Ciencias Médicas Universidad Nacional de La Plata Argentina
| | - Malena Morell
- Centro de Investigaciones Cardiovasculares Horacio Cingolani CONICET La Plata Facultad de Ciencias Médicas Universidad Nacional de La Plata Argentina
| | - Luis Alberto Gonano
- Centro de Investigaciones Cardiovasculares Horacio Cingolani CONICET La Plata Facultad de Ciencias Médicas Universidad Nacional de La Plata Argentina
| | - Martín Vila Petroff
- Centro de Investigaciones Cardiovasculares Horacio Cingolani CONICET La Plata Facultad de Ciencias Médicas Universidad Nacional de La Plata Argentina
| |
Collapse
|
6
|
miR-520d suppresses rapid pacing-induced apoptosis of atrial myocytes through mediation of ADAM10. J Mol Histol 2021; 52:207-217. [PMID: 33547542 DOI: 10.1007/s10735-020-09938-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
MicroRNAs (miRNAs) play a key role in various pathological processes like atrial fibrillation (AF). However, the mechanisms remain unclear. Herein, this study was undertaken to probe the roles of ADAM10 and its targeting miR-520d in rapid pacing-induced apoptosis in atrial myocytes. In this study, the atrial myocytes grew adherently with irregular morphology. Immunofluorescence showed that more than 90% of atrial myocytes were α-sarcomeric actin (α-SCA) positive, indicating that the primary cells were positive for α-SCA staining and atrial myocytes were successfully isolated. The pacing atrial myocyte model was established after rapid pacing stimulation and we found the rapid pacing stimulation caused elevated ADAM10 and suppressed miR-520d. CCK-8 assay was applied for evaluation of cell viability, TUNEL staining for assessment of cell apoptosis and dual-luciferase reporter gene assay for verification of the targeting relationship between miR-520d and ADAM10. Overexpression of miR-520d or silencing of ADAM10 could enhance cell viability and reduce cell apoptosis in the rapid pacing-induced atrial myocytes. ADAM10 was a target gene of miR-520d. MiR-520d negatively targeted ADAM10, thereby promoting cell viability and inhibiting apoptosis in rapid pacing atrial myocyte model. In summary, miR-520d enhances atrial myocyte viability and inhibits cell apoptosis in rapid pacing-induced AF mouse model through negative mediation of ADAM10.
Collapse
|
7
|
Sepúlveda M, Burgos JI, Ciocci Pardo A, González Arbelaez L, Mosca S, Vila Petroff M. CaMKII-dependent ryanodine receptor phosphorylation mediates sepsis-induced cardiomyocyte apoptosis. J Cell Mol Med 2021; 24:9627-9637. [PMID: 33460250 PMCID: PMC7520277 DOI: 10.1111/jcmm.15470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 11/27/2022] Open
Abstract
Sepsis is associated with cardiac dysfunction, which is at least in part due to cardiomyocyte apoptosis. However, the underlying mechanisms are far from being understood. Using the colon ascendens stent peritonitis mouse model of sepsis (CASP), we examined the subcellular mechanisms that mediate sepsis‐induced apoptosis. Wild‐type (WT) CASP mice hearts showed an increase in apoptosis respect to WT‐Sham. CASP transgenic mice expressing a CaMKII inhibitory peptide (AC3‐I) were protected against sepsis‐induced apoptosis. Dantrolene, used to reduce ryanodine receptor (RyR) diastolic sarcoplasmic reticulum (SR) Ca2+ release, prevented apoptosis in WT‐CASP. To examine whether CaMKII‐dependent RyR2 phosphorylation mediates diastolic Ca2+ release and apoptosis in sepsis, we evaluated apoptosis in mutant mice hearts that have the CaMKII phosphorylation site of RyR2 (Serine 2814) mutated to Alanine (S2814A). S2814A CASP mice did not show increased apoptosis. Consistent with RyR2 phosphorylation‐dependent enhancement in diastolic SR Ca2+ release leading to mitochondrial Ca2+ overload, mitochondrial Ca2+ retention capacity was reduced in mitochondria isolated from WT‐CASP compared to Sham and this reduction was absent in mitochondria from CASP S2814A or dantrolene‐treated mice. We conclude that in sepsis, CaMKII‐dependent RyR2 phosphorylation results in diastolic Ca2+ release from SR which leads to mitochondrial Ca2+ overload and apoptosis.
Collapse
Affiliation(s)
- Marisa Sepúlveda
- Centro de Investigaciones Cardiovasculares, Conicet La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juan Ignacio Burgos
- Centro de Investigaciones Cardiovasculares, Conicet La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares, Conicet La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Luisa González Arbelaez
- Centro de Investigaciones Cardiovasculares, Conicet La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Susana Mosca
- Centro de Investigaciones Cardiovasculares, Conicet La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Martin Vila Petroff
- Centro de Investigaciones Cardiovasculares, Conicet La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
8
|
Liu H, Wang L, Dai L, Feng F, Xiao Y. CaMK II/Ca2+ dependent endoplasmic reticulum stress mediates apoptosis of hepatic stellate cells stimulated by transforming growth factor beta 1. Int J Biol Macromol 2021; 172:321-329. [PMID: 33454324 DOI: 10.1016/j.ijbiomac.2021.01.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/27/2022]
Abstract
Previous studies by our group have demonstrated that the calcium imbalance in rat hepatic stellate cells (HSCs) can induce endoplasmic reticulum stress (ERS) and promote cell apoptosis. KN-62, an inhibitor of Calmodulin kinase II (CaMK II), can decrease the expression of CaMK II that plays a major role in regulating the steady state of intracellular Ca2+. Uridine triphosphate (UTP) plays a biological role in increasing indirectly the level of intracellular Ca2+. In the experiment, we demonstrate that KN-62 and UTP can inhibit the proliferation and promote the apoptosis in HSCs, increase the level of intracellular Ca2+ and the expression of ERS protein GRP78, and increase the apoptosis protein Caspase-12 and Bax expression, while decrease the expression of Bcl-2 protein. Our findings indicate that the CaMK II/Ca2+ signaling pathway regulates the ERS apoptosis pathway and induces HSC apoptosis.
Collapse
Affiliation(s)
- Haiying Liu
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, Hebei, China
| | - Luguang Wang
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, Hebei, China
| | - Linyu Dai
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, Hebei, China
| | - Fumin Feng
- Department of Epidemiology and Health Statistics, School of Life Sciences, North China University of Science and Technology, Hebei, China
| | - Yonghong Xiao
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, Hebei, China.
| |
Collapse
|
9
|
Medina AJ, Ibáñez AM, Diaz-Zegarra LA, Portiansky EL, Blanco PG, Pereyra EV, de Giusti VC, Aiello EA, Yeves AM, Ennis IL. Cardiac up-regulation of NBCe1 emerges as a beneficial consequence of voluntary wheel running in mice. Arch Biochem Biophys 2020; 694:108600. [PMID: 33007282 DOI: 10.1016/j.abb.2020.108600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 11/30/2022]
Abstract
Physical training stimulates the development of physiologic cardiac hypertrophy (CH), being a key event in this process the inhibition of the Na+/H+ exchanger. However, the role of the sodium bicarbonate cotransporter (NBC) has not been explored yet under this circumstance. C57/Bl6 mice were allowed to voluntary exercise (wheel running) for five weeks. Cardiac mass was evaluated by echocardiography and histomorphometry detecting that training promoted the development of physiological CH (heart weight/tibia length ratio, mg/mm: 6.54 ± 0.20 vs 8.81 ± 0.24; interstitial collagen content, %: 3.14 ± 0.63 vs. 1.57 ± 0.27; and cross-sectional area of cardiomyocytes, μm2: 200.6 ± 8.92 vs. 281.9 ± 24.05; sedentary (Sed) and exercised (Ex) mice, respectively). The activity of the electrogenic isoform of the cardiac NBC (NBCe1) was estimated by recording intracellular pH under high potassium concentration and by measuring action potential duration (APD). NBCe1 activity was significantly increased in isolated cardiomyocytes of trained mice. Additionally, the APD was shorter and the alkalization due to high extracellular potassium-induced depolarization was greater in this group, indicating that the NBCe1 was hyperactive. These results are online with the observed myocardial up-regulation of the NBCe1 (Western Blot, %: 100 ± 13.86 vs. 202 ± 29.98; Sed vs. Ex, n = 6 each group). In addition, we detected a reduction in H2O2 production in the myocardium of trained mice. These results support that voluntary training induces the development of physiologic CH with up-regulation of the cardiac NBCe1 in mice. Furthermore, the improvement in the antioxidant capacity contributes to the beneficial cardiovascular consequences of physical training.
Collapse
Affiliation(s)
- Andrés J Medina
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E, Cingolani" Facultad de Ciencias Médicas UNLP-CONICET, Argentina
| | - Alejandro M Ibáñez
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E, Cingolani" Facultad de Ciencias Médicas UNLP-CONICET, Argentina
| | - Leandro A Diaz-Zegarra
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E, Cingolani" Facultad de Ciencias Médicas UNLP-CONICET, Argentina
| | - Enrique L Portiansky
- Laboratorio de Análisis de Imágenes, Facultad de Ciencias Veterinarias UNLP-CONICET, Argentina
| | - Paula G Blanco
- Servicio de Cardiología, Facultad de Ciencias Veterinarias, UNLP-CONICET, Argentina
| | - Erica V Pereyra
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E, Cingolani" Facultad de Ciencias Médicas UNLP-CONICET, Argentina
| | - Verónica C de Giusti
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E, Cingolani" Facultad de Ciencias Médicas UNLP-CONICET, Argentina
| | - Ernesto A Aiello
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E, Cingolani" Facultad de Ciencias Médicas UNLP-CONICET, Argentina
| | - Alejandra M Yeves
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E, Cingolani" Facultad de Ciencias Médicas UNLP-CONICET, Argentina
| | - Irene L Ennis
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E, Cingolani" Facultad de Ciencias Médicas UNLP-CONICET, Argentina.
| |
Collapse
|
10
|
Shan HM, Zang M, Zhang Q, Shi RB, Shi XJ, Mamtilahun M, Liu C, Luo LL, Tian X, Zhang Z, Yang GY, Tang Y, Pu J, Wang Y. Farnesoid X receptor knockout protects brain against ischemic injury through reducing neuronal apoptosis in mice. J Neuroinflammation 2020; 17:164. [PMID: 32450881 PMCID: PMC7249620 DOI: 10.1186/s12974-020-01838-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background Farnesoid X receptor (FXR) is a nuclear receptor that plays a critical role in controlling cell apoptosis in diverse diseases. Previous studies have shown that knocking out FXR improved cardiac function by reducing cardiomyocyte apoptosis in myocardial ischemic mice. However, the role of FXR after cerebral ischemia remains unknown. In this study, we explored the effects and mechanisms of FXR knockout (KO) on the functional recovery of mice post cerebral ischemia-reperfusion. Methods Adult male C57BL/6 wild type and FXR KO mice were subjected to 90-min transient middle cerebral artery occlusion (tMCAO). The mice were divided into five groups: sham, wild-type tMCAO, FXR KO tMCAO, wild-type tMCAO treated with calcium agonist Bayk8644, and FXR KO tMCAO treated with Bayk8644. FXR expression was examined using immunohistochemistry and Western blot. Brain infarct and brain atrophy volume were examined at 3 and 14 days after stroke respectively. Neurobehavioral tests were conducted up to 14 days after stroke. The protein levels of apoptotic factors (Bcl-2, Bax, and Cleaved caspase-3) and mRNA levels of pro-inflammatory factors (TNF-α, IL-6, IL-1β, IL-17, and IL-18) were examined using Western blot and RT-PCR. TUNEL staining and calcium imaging were obtained using confocal and two-photon microscopy. Results The expression of FXR was upregulated after ischemic stroke, which is located in the nucleus of the neurons. FXR KO was found to reduce infarct volume and promote neurobehavioral recovery following tMCAO compared to the vehicle. The expression of apoptotic and pro-inflammatory factors decreased in FXR KO mice compared to the control. The number of NeuN+/TUNEL+ cells declined in the peri-infarct area of FXR KO mice compared to the vehicle. We further demonstrated that inhibition of FXR reduced calcium overload and addition of ionomycin could reverse this neuroprotective effect in vitro. What is more, in vivo results showed that enhancement of intracellular calcium concentrations could aggravate ischemic injury and reverse the neuroprotective effect of FXR KO in mice. Conclusions FXR KO can promote neurobehavioral recovery and attenuate ischemic brain injury, inflammatory release, and neuronal apoptosis via reducing calcium influx, suggesting its role as a therapeutic target for stroke treatments.
Collapse
Affiliation(s)
- Hui-Min Shan
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Minhua Zang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai, 200127, China
| | - Qi Zhang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Ru-Bing Shi
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Xiao-Jing Shi
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Muyassar Mamtilahun
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Chang Liu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Long-Long Luo
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Xiaoying Tian
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Zhijun Zhang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Guo-Yuan Yang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Yaohui Tang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China.
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai, 200127, China.
| | - Yongting Wang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China.
| |
Collapse
|
11
|
Luo HM, Wu X, Liu WX, Wang LY, Sun HY, Zhu LY, Yang L. Calcitonin gene-related peptide attenuates angiotensin II-induced ROS-dependent apoptosis in vascular smooth muscle cells by inhibiting the CaMKII/CREB signalling pathway. Biochem Biophys Res Commun 2019; 521:285-289. [PMID: 31668374 DOI: 10.1016/j.bbrc.2019.10.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/05/2019] [Indexed: 01/31/2023]
Abstract
Apoptosis is associated with various cardiovascular diseases. CGRP exerts a variety of effects within the cardiovascular system, and protects against the onset and development of angiotensin (Ang) II-induced vascular dysfunction and remodelling. However, it is not known whether CGRP has a direct effect on Ang II-induced apoptosis in vascular smooth muscle cells (VSMCs), and the mechanism underlying the anti-apoptotic role remains unclear. In this study, CGRP significantly suppressed reactive oxygen species (ROS) and apoptosis in Ang II-induced VSMCs. In VSMCs pre-treated with a CGRP receptor antagonist (CGRP8-37), the CGRP-mediated inhibition of Ang II-induced ROS and apoptosis was completely abolished. Moreover, pre-treatment with N-acetyl-L cysteine (NAC), an ROS scavenger, blocked the effects of CGRP on Ang II-induced apoptosis. In addition, the activation of CaMKII and the downstream transcription factor CREB stimulated by Ang II was abrogated by CGRP. Importantly, in both CGRP and NAC-treated VSMCs, CGRP failed to further attenuate CaMKII and CREB activation. The results demonstrate that CGRP attenuated Ang II-induced ROS-dependent apoptosis in VSMCs by inhibiting the CaMKII/CREB signalling pathway.
Collapse
Affiliation(s)
- Hong-Min Luo
- Department of Nephrology, Third Hospital, Hebei Medical University, Shijiazhuang, China
| | - Xia Wu
- The Third Hospital, Hebei Medical University, Shijiazhuang, China
| | - Wen-Xuan Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China
| | - Lu-Yao Wang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China
| | - Hong-Yu Sun
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China
| | - Liang-Yu Zhu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China
| | - Lei Yang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
12
|
Nielsen BE, Bermudez I, Bouzat C. Flavonoids as positive allosteric modulators of α7 nicotinic receptors. Neuropharmacology 2019; 160:107794. [PMID: 31560909 DOI: 10.1016/j.neuropharm.2019.107794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/09/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
The use of positive allosteric modulators (PAM) of α7 nicotinic receptors is a promising therapy for neurodegenerative, inflammatory and cognitive disorders. Flavonoids are polyphenolic compounds showing neuroprotective, anti-inflammatory and pro-cognitive actions. Besides their well-known antioxidant activity, flavonoids trigger intracellular pathways and interact with receptors, including α7. To reveal how the beneficial actions of flavonoids are linked to α7 function, we evaluated the effects of three representative flavonoids -genistein, quercetin and the neoflavonoid 5,7-dihydroxy-4-phenylcoumarin- on whole-cell and single-channel currents. All flavonoids increase the maximal currents elicited by acetylcholine with minimal effects on desensitization and do not reactivate desensitized receptors, a behaviour consistent with type I PAMs. At the single-channel level, they increase the duration of the open state and produce activation in long-duration episodes with a rank order of efficacy of genistein > quercetin ≥ neoflavonoid. By using mutant and chimeric α7 receptors, we demonstrated that flavonoids share transmembrane structural determinants with other PAMs. The α7-PAM activity of flavonoids results in decreased cell levels of reactive oxygen species. Thus, allosteric potentiation of α7 may be an additional mechanism underlying neuroprotective actions of flavonoids, which may be used as scaffolds for designing new therapeutic agents.
Collapse
Affiliation(s)
- Beatriz Elizabeth Nielsen
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Isabel Bermudez
- Department of Medical and Biological Sciences, Oxford Brookes University, Oxford, OX3 0BP, United Kingdom
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina.
| |
Collapse
|
13
|
Gonano LA, Sepúlveda M, Morell M, Toteff T, Racioppi MF, Lascano E, Negroni J, Fernández Ruocco MJ, Medei E, Neiman G, Miriuka SG, Back TG, Chen SRW, Mattiazzi A, Vila Petroff M. Non-β-Blocking Carvedilol Analog, VK-II-86, Prevents Ouabain-Induced Cardiotoxicity. Circ J 2018; 83:41-51. [DOI: 10.1253/circj.cj-18-0247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Luis A. Gonano
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata
| | - Marisa Sepúlveda
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata
| | - Malena Morell
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata
| | - Tamara Toteff
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata
| | - María Florencia Racioppi
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata
| | - Elena Lascano
- Instituto de Medicina Translacional, Transplante y Bioingeniería, Universidad Favaloro, CONICET
| | - Jorge Negroni
- Instituto de Medicina Translacional, Transplante y Bioingeniería, Universidad Favaloro, CONICET
| | - María Julieta Fernández Ruocco
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro
| | - Emiliano Medei
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro
| | | | | | | | - S. R. Wayne Chen
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata
| | - Martin Vila Petroff
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata
| |
Collapse
|
14
|
Suppression of Oxidative Stress and Apoptosis in Electrically Stimulated Neonatal Rat Cardiomyocytes by Resveratrol and Underlying Mechanisms. J Cardiovasc Pharmacol 2017; 70:396-404. [DOI: 10.1097/fjc.0000000000000534] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Burgos JI, Yeves AM, Barrena JP, Portiansky EL, Vila-Petroff MG, Ennis IL. Nitric oxide and CaMKII: Critical steps in the cardiac contractile response To IGF-1 and swim training. J Mol Cell Cardiol 2017; 112:16-26. [DOI: 10.1016/j.yjmcc.2017.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
|
16
|
The reduced myofilament responsiveness to calcium contributes to the negative force-frequency relationship in rat cardiomyocytes: role of reactive oxygen species and p-38 map kinase. Pflugers Arch 2017; 469:1663-1673. [DOI: 10.1007/s00424-017-2058-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/11/2017] [Indexed: 01/01/2023]
|
17
|
Calcium/Calmodulin Protein Kinase II-Dependent Ryanodine Receptor Phosphorylation Mediates Cardiac Contractile Dysfunction Associated With Sepsis. Crit Care Med 2017; 45:e399-e408. [PMID: 27648519 DOI: 10.1097/ccm.0000000000002101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Sepsis is associated with cardiac contractile dysfunction attributed to alterations in Ca handling. We examined the subcellular mechanisms involved in sarcoplasmic reticulum Ca loss that mediate altered Ca handling and contractile dysfunction associated with sepsis. DESIGN Randomized controlled trial. SETTING Research laboratorySUBJECTS:: Male wild type and transgenic miceINTERVENTIONS:: We induced sepsis in mice using the colon ascendens stent peritonitis model. MEASUREMENTS AND MAIN RESULTS Twenty-four hours after colon ascendens stent peritonitis surgery, we observed that wild type mice had significantly elevated proinflammatory cytokine levels, reduced ejection fraction, and fractional shortening (ejection fraction %, 54.76 ± 0.67; fractional shortening %, 27.53 ± 0.50) compared with sham controls (ejection fraction %, 73.57 ± 0.20; fractional shortening %, 46.75 ± 0.38). At the cardiac myocyte level, colon ascendens stent peritonitis cells showed reduced cell shortening, Ca transient amplitude and sarcoplasmic reticulum Ca content compared with sham cardiomyocytes. Colon ascendens stent peritonitis hearts showed a significant increase in oxidation-dependent calcium and calmodulin-dependent protein kinase II activity, which could be prevented by pretreating animals with the antioxidant tempol. Pharmacologic inhibition of calcium and calmodulin-dependent protein kinase II with 2.5 µM of KN93 prevented the decrease in cell shortening, Ca transient amplitude, and sarcoplasmic reticulum Ca content in colon ascendens stent peritonitis myocytes. Contractile function was also preserved in colon ascendens stent peritonitis myocytes isolated from transgenic mice expressing a calcium and calmodulin-dependent protein kinase II inhibitory peptide (AC3-I) and in colon ascendens stent peritonitis myocytes isolated from mutant mice that have the ryanodine receptor 2 calcium and calmodulin-dependent protein kinase II-dependent phosphorylation site (serine 2814) mutated to alanine (S2814A). Furthermore, colon ascendens stent peritonitis S2814A mice showed preserved ejection fraction and fractional shortening (ejection fraction %, 73.06 ± 6.31; fractional shortening %, 42.33 ± 5.70) compared with sham S2814A mice (ejection fraction %, 71.60 ± 4.02; fractional shortening %, 39.63 ± 3.23). CONCLUSIONS Results indicate that oxidation and subsequent activation of calcium and calmodulin-dependent protein kinase II has a causal role in the contractile dysfunction associated with sepsis. Calcium and calmodulin-dependent protein kinase II, through phosphorylation of the ryanodine receptor would lead to Ca leak from the sarcoplasmic reticulum, reducing sarcoplasmic reticulum Ca content, Ca transient amplitude and contractility. Development of organ-specific calcium and calmodulin-dependent protein kinase II inhibitors may result in a beneficial therapeutic strategy to ameliorate contractile dysfunction associated with sepsis.
Collapse
|
18
|
Morris AS, Sebag SC, Paschke JD, Wongrakpanich A, Ebeid K, Anderson ME, Grumbach IM, Salem AK. Cationic CaMKII Inhibiting Nanoparticles Prevent Allergic Asthma. Mol Pharm 2017; 14:2166-2175. [PMID: 28460526 DOI: 10.1021/acs.molpharmaceut.7b00114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Asthma is a common lung disease affecting over 300 million people worldwide and is associated with increased reactive oxygen species, eosinophilic airway inflammation, bronchoconstriction, and mucus production. Targeting of novel therapeutic agents to the lungs of patients with asthma may improve efficacy of treatments and minimize side effects. We previously demonstrated that Ca2+/calmodulin-dependent protein kinase (CaMKII) is expressed and activated in the bronchial epithelium of asthmatic patients. CaMKII inhibition in murine models of allergic asthma reduces key disease phenotypes, providing the rationale for targeted CaMKII inhibition as a potential therapeutic approach for asthma. Herein we developed a novel cationic nanoparticle (NP)-based system for delivery of the potent and specific CaMKII inhibitor peptide, CaMKIIN, to airways.1 CaMKIIN-loaded NPs abrogated the severity of allergic asthma in a murine model. These findings provide the basis for development of innovative, site-specific drug delivery therapies, particularly for treatment of pulmonary diseases such as asthma.
Collapse
Affiliation(s)
- Angie S Morris
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa , 115 South Grand Avenue, S228 PHAR, Iowa City, Iowa 52242, United States
| | - Sara C Sebag
- Department of Internal Medicine, Carver College of Medicine, University of Iowa , 200 Hawkins Drive, Iowa City, Iowa 52242, United States
| | - John D Paschke
- Department of Internal Medicine, Carver College of Medicine, University of Iowa , 200 Hawkins Drive, Iowa City, Iowa 52242, United States
| | | | - Kareem Ebeid
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa , 115 South Grand Avenue, S228 PHAR, Iowa City, Iowa 52242, United States
| | - Mark E Anderson
- Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Isabella M Grumbach
- Department of Internal Medicine, Carver College of Medicine, University of Iowa , 200 Hawkins Drive, Iowa City, Iowa 52242, United States.,Iowa City Veterans Affairs Healthcare System , 601 US-6, Iowa City, Iowa 52246, United States
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa , 115 South Grand Avenue, S228 PHAR, Iowa City, Iowa 52242, United States
| |
Collapse
|
19
|
Toneto AT, Ferreira Ramos LA, Salomão EM, Tomasin R, Aereas MA, Gomes-Marcondes MCC. Nutritional leucine supplementation attenuates cardiac failure in tumour-bearing cachectic animals. J Cachexia Sarcopenia Muscle 2016; 7:577-586. [PMID: 27030817 PMCID: PMC4793899 DOI: 10.1002/jcsm.12100] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 09/14/2015] [Accepted: 11/30/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The condition known as cachexia presents in most patients with malignant tumours, leading to a poor quality of life and premature death. Although the cancer-cachexia state primarily affects skeletal muscle, possible damage in the cardiac muscle remains to be better characterized and elucidated. Leucine, which is a branched chain amino acid, is very useful for preserving lean body mass. Thus, this amino acid has been studied as a coadjuvant therapy in cachectic cancer patients, but whether this treatment attenuates the effects of cachexia and improves cardiac function remains poorly understood. Therefore, using an experimental cancer-cachexia model, we evaluated whether leucine supplementation ameliorates cachexia in the heart. METHODS Male Wistar rats were fed either a leucine-rich or a normoprotein diet and implanted or not with subcutaneous Walker-256 carcinoma. During the cachectic stage (approximately 21 days after tumour implantation), when the tumour mass was greater than 10% of body weight, the rats were subjected to an electrocardiogram analysis to evaluate the heart rate, QT-c, and T wave amplitude. The myocardial tissues were assayed for proteolytic enzymes (chymotrypsin, alkaline phosphatase, cathepsin, and calpain), cardiomyopathy biomarkers (myeloperoxidase, tissue inhibitor of metalloproteinases, and total plasminogen activator inhibitor 1), and caspase-8, -9, -3, and -7 activity. RESULTS Both groups of tumour-bearing rats, especially the untreated group, had electrocardiography alterations that were suggestive of ischemia, dilated cardiomyopathy, and sudden death risk. Additionally, the rats in the untreated tumour-bearing group but not their leucine-supplemented littermates exhibited remarkable increases in chymotrypsin activity and all three heart failure biomarkers analysed, including an increase in caspase-3 and -7 activity. CONCLUSIONS Our data suggest that a leucine-rich diet could modulate heart damage, cardiomyocyte proteolysis, and apoptosis driven by cancer-cachexia. Further studies must be conducted to elucidate leucine's mechanisms of action, which potentially includes the modulation of the heart's inflammatory process.
Collapse
Affiliation(s)
- Aline Tatiane Toneto
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Institute of Biology State University of Campinas, Campinas 13083-970 São Paulo Brazil; Faculty of Biomedical Sciences Metrocamp College-IBMEC Group 13035-270 Campinas SP Brazil
| | - Luiz Alberto Ferreira Ramos
- Laboratory of Electrocardiography and Hemodynamic, Department of Structural and Functional Biology, Institute of Biology State University of Campinas Campinas 13083-970 São Paulo Brazil
| | - Emilianne Miguel Salomão
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Institute of Biology State University of Campinas, Campinas 13083-970 São Paulo Brazil
| | - Rebeka Tomasin
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Institute of Biology State University of Campinas, Campinas 13083-970 São Paulo Brazil
| | - Miguel Arcanjo Aereas
- Laboratory of Electrocardiography and Hemodynamic, Department of Structural and Functional Biology, Institute of Biology State University of Campinas Campinas 13083-970 São Paulo Brazil
| | - Maria Cristina Cintra Gomes-Marcondes
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Institute of Biology State University of Campinas, Campinas 13083-970 São Paulo Brazil
| |
Collapse
|
20
|
cAMP-PKA-CaMKII signaling pathway is involved in aggravated cardiotoxicity during Fuzi and Beimu Combination Treatment of Experimental Pulmonary Hypertension. Sci Rep 2016; 6:34903. [PMID: 27739450 PMCID: PMC5064387 DOI: 10.1038/srep34903] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023] Open
Abstract
Aconiti Lateralis Radix Praeparata (Fuzi) and Fritillariae Thunbergii bulbus (Beimu) have been widely used clinically to treat cardiopulmonary related diseases in China. However, according to the classic rules of traditional Chinese medicine, Fuzi and Beimu should be prohibited to use as a combination for their incompatibility. Therefore, it is critical to elucidate the paradox on the use of Fuzi and Beimu combination therapy. Monocrotaline-induced pulmonary hypertension rats were treated with either Fuzi, Beimu, or their combination at different stages of PH. We demonstrated that at the early stage of PH, Fuzi and Beimu combination significantly improved lung function and reduced pulmonary histopathology. However, as the disease progressed, when Fuzi and Beimu combination were used at the late stage of PH, right ventricular chamber dilation was histologically apparent and myocardial apoptosis was significantly increased compared with each drug alone. Western-blotting results indicated that the main chemical ingredient of Beimu could down-regulate the protein phosphorylation levels of Akt and PDE4D, whereas the combination of Fuzi and Beimu could up-regulate PKA and CaMKII signaling pathways. Therefore, we concluded that Fuzi and Beimu combination potentially aggravated the heart injury due to the inhibition of PDK1/Akt/PDE4D axis and subsequent synergistic activation of βAR-Gs-PKA/CaMKII signaling pathway.
Collapse
|
21
|
Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat Commun 2016; 7:10312. [PMID: 26785135 PMCID: PMC4735644 DOI: 10.1038/ncomms10312] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 11/27/2015] [Indexed: 02/06/2023] Open
Abstract
The therapeutic success of human stem cell-derived cardiomyocytes critically depends on their ability to respond to and integrate with the surrounding electromechanical environment. Currently, the immaturity of human cardiomyocytes derived from stem cells limits their utility for regenerative medicine and biological research. We hypothesize that biomimetic electrical signals regulate the intrinsic beating properties of cardiomyocytes. Here we show that electrical conditioning of human stem cell-derived cardiomyocytes in three-dimensional culture promotes cardiomyocyte maturation, alters their automaticity and enhances connexin expression. Cardiomyocytes adapt their autonomous beating rate to the frequency at which they were stimulated, an effect mediated by the emergence of a rapidly depolarizing cell population, and the expression of hERG. This rate-adaptive behaviour is long lasting and transferable to the surrounding cardiomyocytes. Thus, electrical conditioning may be used to promote cardiomyocyte maturation and establish their automaticity, with implications for cell-based reduction of arrhythmia during heart regeneration.
Collapse
|
22
|
Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci Rep 2015; 5:16222. [PMID: 26552848 PMCID: PMC4639773 DOI: 10.1038/srep16222] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022] Open
Abstract
Overexpression of P2X7 receptors correlates with tumor growth and metastasis. Yet, release of ATP is associated with immunogenic cancer cell death as well as inflammatory responses caused by necrotic cell death at sites of trauma or ischemia-reperfusion injury. Using an FDA-approved anti-parasitic agent Ivermectin as a prototype agent to allosterically modulate P2X4 receptors, we can switch the balance between the dual pro-survival and cytotoxic functions of purinergic signaling in breast cancer cells. This is mediated through augmented opening of the P2X4/P2X7-gated Pannexin-1 channels that drives a mixed apoptotic and necrotic mode of cell death associated with activation of caspase-1 and is consistent with pyroptosis. We show that cancer cell death is dependent on ATP release and death signals downstream of P2X7 receptors that can be reversed by inhibition of NADPH oxidases-generated ROS, Ca2+/Calmodulin-dependent protein kinase II (CaMKII) or mitochondrial permeability transition pore (MPTP). Ivermectin induces autophagy and release of ATP and HMGB1, key mediators of inflammation. Potentiated P2X4/P2X7 signaling can be further linked to the ATP rich tumor microenvironment providing a mechanistic explanation for the tumor selectivity of purinergic receptors modulation and its potential to be used as a platform for integrated cancer immunotherapy.
Collapse
|
23
|
De Giusti VC, Orlowski A, Ciancio MC, Espejo MS, Gonano LA, Caldiz CI, Vila Petroff MG, Villa-Abrille MC, Aiello EA. Aldosterone stimulates the cardiac sodium/bicarbonate cotransporter via activation of the g protein-coupled receptor gpr30. J Mol Cell Cardiol 2015; 89:260-7. [PMID: 26497404 DOI: 10.1016/j.yjmcc.2015.10.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/07/2015] [Accepted: 10/20/2015] [Indexed: 12/22/2022]
Abstract
Some cardiac non-genomic effects of aldosterone (Ald) are reported to be mediated through activation of the classic mineralocorticoid receptor (MR). However, in the last years, it was proposed that activation of the novel G protein-coupled receptor GPR30 mediates certain non-genomic effects of Ald. The aim of this study was to elucidate if the sodium/bicarbonate cotransporter (NBC) is stimulated by Ald and if the activation of GPR30 mediates this effect. NBC activity was evaluated in rat cardiomyocytes perfused with HCO3(-)/CO2 solution in the continuous presence of HOE642 (sodium/hydrogen exchanger blocker) during recovery from acidosis using intracellular fluorescence measurements. Ald enhanced NBC activity (% of ΔJHCO3(-); control: 100±5.82%, n=7 vs Ald: 151.88±11.02%, n=5; P<0.05), which was prevented by G15 (GPR30 blocker, 90.53±7.81%, n=7). Further evidence for the involvement of GPR30 was provided by G1 (GPR30 agonist), which stimulated NBC (185.13±18.28%, n=6; P<0.05) and this effect was abrogated by G15 (124.19±10.96%, n=5). Ald- and G1-induced NBC stimulation was abolished by the reactive oxygen species (ROS) scavenger MPG and by the NADPH oxidase inhibitor apocynin. In addition, G15 prevented Ald- and G1-induced ROS production. Pre-incubation of myocytes with wortmannin (PI3K-AKT pathway blocker) prevented Ald- or G1-induced NBC stimulation. In summary, Ald stimulates NBC by GPR30 activation, ROS production and AKT stimulation.
Collapse
Affiliation(s)
- Verónica C De Giusti
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Alejandro Orlowski
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - María C Ciancio
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - María S Espejo
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Luis A Gonano
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Claudia I Caldiz
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Martín G Vila Petroff
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - María C Villa-Abrille
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Ernesto A Aiello
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
24
|
Mattiazzi A, Bassani RA, Escobar AL, Palomeque J, Valverde CA, Vila Petroff M, Bers DM. Chasing cardiac physiology and pathology down the CaMKII cascade. Am J Physiol Heart Circ Physiol 2015; 308:H1177-91. [PMID: 25747749 DOI: 10.1152/ajpheart.00007.2015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/16/2015] [Indexed: 11/22/2022]
Abstract
Calcium dynamics is central in cardiac physiology, as the key event leading to the excitation-contraction coupling (ECC) and relaxation processes. The primary function of Ca(2+) in the heart is the control of mechanical activity developed by the myofibril contractile apparatus. This key role of Ca(2+) signaling explains the subtle and critical control of important events of ECC and relaxation, such as Ca(2+) influx and SR Ca(2+) release and uptake. The multifunctional Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) is a signaling molecule that regulates a diverse array of proteins involved not only in ECC and relaxation but also in cell death, transcriptional activation of hypertrophy, inflammation, and arrhythmias. CaMKII activity is triggered by an increase in intracellular Ca(2+) levels. This activity can be sustained, creating molecular memory after the decline in Ca(2+) concentration, by autophosphorylation of the enzyme, as well as by oxidation, glycosylation, and nitrosylation at different sites of the regulatory domain of the kinase. CaMKII activity is enhanced in several cardiac diseases, altering the signaling pathways by which CaMKII regulates the different fundamental proteins involved in functional and transcriptional cardiac processes. Dysregulation of these pathways constitutes a central mechanism of various cardiac disease phenomena, like apoptosis and necrosis during ischemia/reperfusion injury, digitalis exposure, post-acidosis and heart failure arrhythmias, or cardiac hypertrophy. Here we summarize significant aspects of the molecular physiology of CaMKII and provide a conceptual framework for understanding the role of the CaMKII cascade on Ca(2+) regulation and dysregulation in cardiac health and disease.
Collapse
Affiliation(s)
- Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, The National Scientific and Technical Research Council-La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina;
| | - Rosana A Bassani
- Centro de Engenharia Biomédica, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Ariel L Escobar
- Biological Engineering and Small Scale Technologies, School of Engineering, University of California, Merced, California; and
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, The National Scientific and Technical Research Council-La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares, The National Scientific and Technical Research Council-La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Martín Vila Petroff
- Centro de Investigaciones Cardiovasculares, The National Scientific and Technical Research Council-La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, California
| |
Collapse
|
25
|
Shi J, Jiang Q, Ding X, Xu W, Wang DW, Chen M. The ER stress-mediated mitochondrial apoptotic pathway and MAPKs modulate tachypacing-induced apoptosis in HL-1 atrial myocytes. PLoS One 2015; 10:e0117567. [PMID: 25689866 PMCID: PMC4331367 DOI: 10.1371/journal.pone.0117567] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/28/2014] [Indexed: 11/18/2022] Open
Abstract
Background and Object Cell apoptosis is a contributing factor in the initiation, progression and relapse of atrial fibrillation (AF), a life-threatening illness accompanied with stroke and heart failure. However, the regulatory cascade of apoptosis is intricate and remains unidentified, especially in the setting of AF. The aim of this study was to explore the roles of endoplasmic reticulum (ER) stress, mitochondrial apoptotic pathway (MAP), mitogen-activated protein kinases (MAPKs), and their cross-talking in tachypacing-induced apoptosis. Methods and Results HL-1 cells were cultured in the presence of tachypacing for 24 h to simulate atrial tachycardia remodeling. Results showed that tachypacing reduced cell viability measured by the cell counting kit-8, dissipated mitochondrial membrane potential detected by JC-1 staining and resulted in approximately 50% apoptosis examined by Hoechst staining and annexin V/propidium iodide staining. In addition, the proteins involved in ER stress, MAP and MAPKs were universally up-regulated or activated via phosphorylation, as confirmed by western blotting; and reversely silencing of ER stress, caspase-3 (the ultimate executor of MAP) and MAPKs with specific inhibitors prior to pacing partially alleviated apoptosis. An inhibitor of ER stress was applied to further investigate the responses of mitochondria and MAPKs to ER stress, and results indicated that suppression of ER stress comprehensively but incompletely attenuated the activation of MAP and MAPKs aroused by tachypacing, with the exception of ERK1/2, one branch of MAPKs. Conclusions Our study suggested tachypacing-induced apoptosis is regulated by ER stress-mediated MAP and MAPKs. Thus, the above three components are all promising anti-apoptotic targets in AF patients and ER stress appears to play a dominant role due to its comprehensive effects.
Collapse
Affiliation(s)
- Jiaojiao Shi
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Jiang
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangwei Ding
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenhua Xu
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dao W. Wang
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Minglong Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
26
|
Lee S, Choi E, Cha MJ, Hwang KC. Looking into a conceptual framework of ROS-miRNA-atrial fibrillation. Int J Mol Sci 2014; 15:21754-76. [PMID: 25431922 PMCID: PMC4284676 DOI: 10.3390/ijms151221754] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) has been recognized as a major cause of cardiovascular-related morbidity and mortality. MicroRNAs (miRNAs) represent recent additions to the collection of biomolecules involved in arrhythmogenesis. Reactive oxygen species (ROS) have been independently linked to both AF and miRNA regulation. However, no attempts have been made to investigate the possibility of a framework composed of ROS–miRNA–AF that is related to arrhythmia development. Therefore, this review was designed as an attempt to offer a new approach to understanding AF pathogenesis. The aim of this review was to find and to summarize possible connections that exist among AF, miRNAs and ROS to understand the interactions among the molecular entities underlying arrhythmia development in the hopes of finding unappreciated mechanisms of AF. These findings may lead us to innovative therapies for AF, which can be a life-threatening heart condition. A systemic literature review indicated that miRNAs associated with AF might be regulated by ROS, suggesting the possibility that miRNAs translate cellular stressors, such as ROS, into AF pathogenesis. Further studies with a more appropriate experimental design to either prove or disprove the existence of an ROS–miRNA–AF framework are strongly encouraged.
Collapse
Affiliation(s)
- Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Korea.
| | - Eunhyun Choi
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Korea.
| | - Min-Ji Cha
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Korea.
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Korea.
| |
Collapse
|
27
|
Gonano LA, Morell M, Burgos JI, Dulce RA, De Giusti VC, Aiello EA, Hare JM, Vila Petroff M. Hypotonic swelling promotes nitric oxide release in cardiac ventricular myocytes: impact on swelling-induced negative inotropic effect. Cardiovasc Res 2014; 104:456-66. [PMID: 25344365 DOI: 10.1093/cvr/cvu230] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Cardiomyocyte swelling occurs in multiple pathological situations and has been associated with contractile dysfunction, cell death, and enhanced propensity to arrhythmias. We investigate whether hypotonic swelling promotes nitric oxide (NO) release in cardiomyocytes, and whether it impacts on swelling-induced contractile dysfunction. METHODS AND RESULTS Superfusing rat cardiomyocytes with a hypotonic solution (HS; 217 mOsm), increased cell volume, reduced myocyte contraction and Ca(2+) transient, and increased NO-sensitive 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM) fluorescence. When cells were exposed to HS + 2.5 mM of the NO synthase inhibitor l-NAME, cell swelling occurred in the absence of NO release. Swelling-induced NO release was also prevented by the nitric oxide synthase 1 (NOS1) inhibitor, nitroguanidine, and significantly reduced in NOS1 knockout mice. Additionally, colchicine (inhibitor of microtubule polymerization) prevented the increase in DAF-FM fluorescence induced by HS, indicating that microtubule integrity is necessary for swelling-induced NO release. The swelling-induced negative inotropic effect was exacerbated in the presence of either l-NAME, nitroguandine, the guanylate cyclase inhibitor, ODQ, or the PKG inhibitor, KT5823, suggesting that NOS1-derived NO provides contractile support via a cGMP/PKG-dependent mechanism. Indeed, ODQ reduced Ca(2+) wave velocity and both ODQ and KT5823 reduced the HS-induced increment in ryanodine receptor (RyR2, Ser2808) phosphorylation, suggesting that in this context, cGMP/PKG may contribute to preserve contractile function by enhancing sarcoplasmic reticulum Ca(2+) release. CONCLUSIONS Our findings suggest a novel mechanism for NO release in cardiomyocytes with putative pathophysiological relevance determined, at least in part, by its capability to reduce the extent of contractile dysfunction associated with hypotonic swelling.
Collapse
Affiliation(s)
- Luis Alberto Gonano
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, La Plata 1900, Argentina
| | - Malena Morell
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, La Plata 1900, Argentina
| | - Juan Ignacio Burgos
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, La Plata 1900, Argentina
| | - Raul Ariel Dulce
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Verónica Celeste De Giusti
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, La Plata 1900, Argentina
| | - Ernesto Alejandro Aiello
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, La Plata 1900, Argentina
| | - Joshua Michael Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Martin Vila Petroff
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, La Plata 1900, Argentina
| |
Collapse
|
28
|
Dietl A, Winkel I, Deutzmann R, Schröder J, Hupf J, Riegger G, Luchner A, Birner C. Interatrial differences of basal molecular set-up and changes in tachycardia-induced heart failure-a proteomic profiling study. Eur J Heart Fail 2014; 16:835-45. [PMID: 25045083 DOI: 10.1002/ejhf.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/06/2014] [Accepted: 05/23/2014] [Indexed: 01/09/2023] Open
Abstract
AIMS Left and right atria show compelling differences regarding organogenesis and specific clinical diseases. In congestive heart failure (CHF), remodelling of the atria occurs leading to increased arrhythmogenic susceptibility and deterioration of clinical symptoms. We aimed to assess the basal left and right atrial molecular set-up and different chamber-specific atrial changes in heart failure. METHODS AND RESULTS We combined an animal model of rapid ventricular pacing induced heart failure in the rabbit and a gel-based proteomic screening of left and right atrial specimen. A gene ontology over-representation analysis was performed for biological function. Ultrastructural adaptations were evaluated using transmission electron microscopy. Comparing left and right atria of healthy control animals (CTRL), 39 proteins displayed significant expression differences involving various biological functions. Upon further statistical analyses, four pathways of energy metabolism were confirmed to be significantly over-represented beneath the other biological processes. Rapid ventricular pacing induced severe left ventricular systolic dysfunction, symptomatic heart failure and a macroscopic atrial remodelling. In CHF versus CTRL, metabolic and antioxidative enzymes were differentially expressed and showed chamber-specific bidirectional alterations. Transmission electron microscopy visualized a remarkable and again chamber-specific ultrastructural disturbance of mitochondrial morphology. CONCLUSIONS Our data indicate a diverging basal left and right atrial molecular set-up in the adult healthy heart. In addition, metabolic and antioxidative enzymes are profoundly and chamber-specifically altered during atrial remodelling in progressive heart failure.
Collapse
Affiliation(s)
- Alexander Dietl
- Department of Internal Medicine II, University Hospital Regensburg; Department of Genetic Epidemiology, University of Regensburg
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Joiner MLA, Koval OM. CaMKII and stress mix it up in mitochondria. Front Pharmacol 2014; 5:67. [PMID: 24822046 PMCID: PMC4013469 DOI: 10.3389/fphar.2014.00067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/24/2014] [Indexed: 11/25/2022] Open
Abstract
CaMKII is a newly discovered resident of mitochondria in the heart. Mitochondrial CaMKII promotes poor outcomes after heart injury from a number of pathological conditions, including myocardial infarction (MI), ischemia reperfusion (IR), and stress from catecholamine stimulation. A study using the inhibitor of CaMKII, CaMKIIN, with expression delimited to myocardial mitochondria, indicates that an underlying cause of heart disease results from the opening of the mitochondrial permeability transition pore (mPTP). Evidence from electrophysiological and other experiments show that CaMKII inhibition likely suppresses mPTP opening by reducing Ca2+ entry into mitochondria. However, we expect other proteins involved in Ca2+ signaling in the mitochondria are affected with CaMKII inhibition. Several outstanding questions remain for CaMKII signaling in heart mitochondria. Most importantly, how does CaMKII, without the recognized N-terminal mitochondrial targeting sequence transfer to mitochondria?
Collapse
Affiliation(s)
| | - Olha M Koval
- Internal Medicine/Cardiology, University of Iowa Iowa City, IA, USA
| |
Collapse
|
30
|
Grandi E, Herren AW. CaMKII-dependent regulation of cardiac Na(+) homeostasis. Front Pharmacol 2014; 5:41. [PMID: 24653702 PMCID: PMC3948048 DOI: 10.3389/fphar.2014.00041] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/21/2014] [Indexed: 01/01/2023] Open
Abstract
Na+ homeostasis is a key regulator of cardiac excitation and contraction. The cardiac voltage-gated Na+ channel, NaV1.5, critically controls cell excitability, and altered channel gating has been implicated in both inherited and acquired arrhythmias. Ca2+/calmodulin-dependent protein kinase II (CaMKII), a serine/threonine kinase important in cardiac physiology and disease, phosphorylates NaV1.5 at multiple sites within the first intracellular linker loop to regulate channel gating. Although CaMKII sites on the channel have been identified (S516, T594, S571), the relative role of each of these phospho-sites in channel gating properties remains unclear, whereby both loss-of-function (reduced availability) and gain-of-function (late Na+ current, INaL) effects have been reported. Our review highlights investigating the complex multi-site phospho-regulation of NaV1.5 gating is crucial to understanding the genesis of acquired arrhythmias in heart failure (HF) and CaMKII activated conditions. In addition, the increased Na+ influx accompanying INaL may also indirectly contribute to arrhythmia by promoting Ca2+ overload. While the precise mechanisms of Na+ loading during HF remain unclear, and quantitative analyses of the contribution of INaL are lacking, disrupted Na+ homeostasis is a consistent feature of HF. Computational and experimental observations suggest that both increased diastolic Na+ influx and action potential prolongation due to systolic INaL contribute to disruption of Ca2+ handling in failing hearts. Furthermore, simulations reveal a synergistic interaction between perturbed Na+ fluxes and CaMKII, and confirm recent experimental findings of an arrhythmogenic feedback loop, whereby CaMKII activation is at once a cause and a consequence of Na+ loading.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California at Davis Davis, CA, USA
| | - Anthony W Herren
- Department of Pharmacology, University of California at Davis Davis, CA, USA
| |
Collapse
|
31
|
DeSantiago J, Bare DJ, Xiao L, Ke Y, Solaro RJ, Banach K. p21-Activated kinase1 (Pak1) is a negative regulator of NADPH-oxidase 2 in ventricular myocytes. J Mol Cell Cardiol 2014; 67:77-85. [PMID: 24380729 PMCID: PMC3930036 DOI: 10.1016/j.yjmcc.2013.12.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 12/20/2022]
Abstract
Ischemic conditions reduce the activity of the p21-activated kinase (Pak1) resulting in increased arrhythmic activity. Triggered arrhythmic activity during ischemia is based on changes in cellular ionic balance and the cells Ca(2+) handling properties. In the current study we used isolated mouse ventricular myocytes (VMs) deficient for the expression of Pak1 (Pak1(-/-)) to determine the mechanism by which Pak1 influences the generation of arrhythmic activity during simulated ischemia. The Ca(2+) transient amplitude and kinetics did not significantly change in wild type (WT) and Pak1(-/-) VMs during 15 min of simulated ischemia. However, Pak1(-/-) VMs exhibited an exaggerated increase in [Ca(2+)]i, which resulted in spontaneous Ca(2+) release events and waves. The Ca(2+) overload in Pak1(-/-) VMs could be suppressed with a reverse mode blocker (KB-R7943) of the sodium calcium exchanger (NCX), a cytoplasmic scavenger of reactive oxygen species (ROS; TEMPOL) or a RAC1 inhibitor (NSC23766). Measurements of the cytoplasmic ROS levels revealed that decreased Pak1 activity in Pak1(-/-) VMs or VMs treated with the Pak1 inhibitor (IPA3) enhanced cellular ROS production. The Pak1 dependent increase in ROS was attenuated in VMs deficient for NADPH oxidase 2 (NOX2; p47(phox-/-)) or in VMs where NOX2 was inhibited (gp91ds-tat). Voltage clamp recordings showed increased NCX activity in Pak1(-/-) VMs that depended on enhanced NOX2 induced ROS production. The exaggerated Ca(2+) overload in Pak1(-/-) VMs could be mimicked by low concentrations of ouabain. Overall our data show that Pak1 is a critical negative regulator of NOX2 dependent ROS production and that a latent ROS dependent stimulation of NCX activity can predispose VMs to Ca(2+) overload under conditions where no significant changes in excitation-contraction coupling are yet evident.
Collapse
Affiliation(s)
- Jaime DeSantiago
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA; Department of Medicine, Section of Cardiology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Dan J Bare
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA; Department of Medicine, Section of Cardiology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Lei Xiao
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA; Department of Medicine, Section of Cardiology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA; Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Yunbo Ke
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA; Department of Physiology and Biophysics, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - R John Solaro
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA; Department of Physiology and Biophysics, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Kathrin Banach
- Center for Cardiovascular Research, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA; Department of Medicine, Section of Cardiology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA.
| |
Collapse
|