1
|
Luo B, Xu Y, Bai J, Yao X, Kong Y, Wang P, Du J. Higher serum cystatin C and matrix metalloproteinase 9 levels effectively predict in-stent restenosis after stent implantation for intracranial and extracranial arterial stenosis. Pathol Res Pract 2024; 266:155751. [PMID: 39673887 DOI: 10.1016/j.prp.2024.155751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/27/2024] [Accepted: 11/30/2024] [Indexed: 12/16/2024]
Abstract
OBJECTIVE This paper was performed to unravel the predictive value of serum cystatin C (Cys C) and matrix metalloproteinase 9 (MMP-9) levels before vascular stent implantation for in-stent restenosis (ISR) 6-12 months after stent implantation for intracranial and extracranial arterial stenosis. METHODS One hundred and ninety-eight patients who underwent dilatation stenting for intracranial and extracranial arterial stenosis and completed Digital Subtraction Angiography or head and neck CT- Angiography review were selected for the study and were divided into ISR group (n = 33) and no ISR (NISR) group (n = 165) according to the presence or absence of ISR. Serum levels of Cys C, MMP-9, triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), uric acid (UA), creatinine (Cr), homocysteine (Hcy), fibrinogen (FIB), total bilirubin (TBIL), endothelin-1 (ET-1), nitric oxide (NO), angiotensin II (Ang II), interleukin-6 (IL-6), tumor necrosis factor (TNF-α), and C-reactive protein (CRP) levels before vascular stent implantation were examined and compared between groups. ROC curves were employed for analyzing the predictive value of serum Cys C and MMP-9 alone or in combination for ISR. Pearson test was utilized for analyzing the serum Cys C and MMP-9 with vasoactive substances and inflammatory cytokines in patients in the ISR group. Logistic regression analysis was implemented to analyze the factors influencing ISR 6-12 months after stent implantation for intracranial and extracranial arterial stenosis. RESULTS Cys C, MMP-9, LDL, UA, Cr, Hcy, FIB, ET-1, NO, Ang II, IL-6, TNF-α, and CRP were higher in the ISR group than in the NISR group, and TBIL was lower than in the NISR group (P < 0.05). The AUC of the combined serum Cys C and MMP-9 (AUC = 0.900) was greater than that of Cys C (AUC = 0.685) or MMP-9 (AUC = 0.870) alone (P < 0.05). Cys C and MMP-9 levels were positively correlated with ET-1, NO, Ang II, IL-6, TNF-α, and CRP (r > 0, P < 0.05). Increased levels of Cys C, MMP-9, LDL-C, UA, Cr, Hcy, FIB, ET-1, NO, Ang II, IL-6, TNF-α, and CRP, and diabetes were risk factors for the development of ISR (OR > 1, P < 0.05), and TBil was protective factor (OR < 1, P < 0.05). CONCLUSION Serum Cys C combined with MMP-9 levels are effective in predicting ISR.
Collapse
Affiliation(s)
- Bin Luo
- Department of Neurology, Aerospace Center Hospital, Beijing 100049, China
| | - Yahui Xu
- Department of Neurology, Aerospace Center Hospital, Beijing 100049, China
| | - Jin Bai
- Department of Neurology, Aerospace Center Hospital, Beijing 100049, China
| | - Xinlu Yao
- Department of Neurology, Aerospace Center Hospital, Beijing 100049, China
| | - Yong Kong
- Department of Neurology, Aerospace Center Hospital, Beijing 100049, China
| | - Peifu Wang
- Department of Neurology, Aerospace Center Hospital, Beijing 100049, China
| | - Jichen Du
- Department of Neurology, Aerospace Center Hospital, Beijing 100049, China.
| |
Collapse
|
2
|
Laboyrie SL, de Vries MR, Bijkerk R, Rotmans JI. Building a Scaffold for Arteriovenous Fistula Maturation: Unravelling the Role of the Extracellular Matrix. Int J Mol Sci 2023; 24:10825. [PMID: 37446003 DOI: 10.3390/ijms241310825] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Vascular access is the lifeline for patients receiving haemodialysis as kidney replacement therapy. As a surgically created arteriovenous fistula (AVF) provides a high-flow conduit suitable for cannulation, it remains the vascular access of choice. In order to use an AVF successfully, the luminal diameter and the vessel wall of the venous outflow tract have to increase. This process is referred to as AVF maturation. AVF non-maturation is an important limitation of AVFs that contributes to their poor primary patency rates. To date, there is no clear overview of the overall role of the extracellular matrix (ECM) in AVF maturation. The ECM is essential for vascular functioning, as it provides structural and mechanical strength and communicates with vascular cells to regulate their differentiation and proliferation. Thus, the ECM is involved in multiple processes that regulate AVF maturation, and it is essential to study its anatomy and vascular response to AVF surgery to define therapeutic targets to improve AVF maturation. In this review, we discuss the composition of both the arterial and venous ECM and its incorporation in the three vessel layers: the tunica intima, media, and adventitia. Furthermore, we examine the effect of chronic kidney failure on the vasculature, the timing of ECM remodelling post-AVF surgery, and current ECM interventions to improve AVF maturation. Lastly, the suitability of ECM interventions as a therapeutic target for AVF maturation will be discussed.
Collapse
Affiliation(s)
- Suzanne L Laboyrie
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Margreet R de Vries
- Department of Surgery and the Heart and Vascular Center, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Vascular Surgery, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
3
|
He Y, Yi X, Zhang Z, Luo H, Li R, Feng X, Fang ZM, Zhu XH, Cheng W, Jiang DS, Zhao F, Wei X. JIB-04, a histone demethylase Jumonji C domain inhibitor, regulates phenotypic switching of vascular smooth muscle cells. Clin Epigenetics 2022; 14:101. [PMID: 35964071 PMCID: PMC9375951 DOI: 10.1186/s13148-022-01321-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background Vascular smooth muscle cell (VSMC) phenotype switching is critical for neointima formation, which is the major cause of restenosis after stenting or coronary artery bypass grafting. However, the epigenetic mechanisms regulating phenotype switching of VSMCs, especially histone methylation, are not well understood. As a main component of histone lysine demethylases, Jumonji demethylases might be involved in VSMC phenotype switching and neointima formation. Methods and results A mouse carotid injury model and VSMC proliferation model were constructed to investigate the relationship between histone methylation of H3K36 (downstream target molecule of Jumonji demethylase) and neointima formation. We found that the methylation levels of H3K36 negatively correlated with VSMC proliferation and neointima formation. Next, we revealed that JIB-04 (a pan-inhibitor of the Jumonji demethylase superfamily) could increase the methylation levels of H3K36. Furthermore, we found that JIB-04 obviously inhibited HASMC proliferation, and a cell cycle assay showed that JIB-04 caused G2/M phase arrest in HASMCs by inhibiting the phosphorylation of RB and CDC2 and promoting the phosphorylation of CHK1. Moreover, JIB-04 inhibited the expression of MMP2 to suppress the migration of HASMCs and repressed the expression of contraction-related genes. RNA sequencing analysis showed that the biological processes associated with the cell cycle and autophagy were enriched by using Gene Ontology analysis after HASMCs were treated with JIB-04. Furthermore, we demonstrated that JIB-04 impairs autophagic flux by downregulating STX17 and RAB7 expression to inhibit the fusion of autophagosomes and lysosomes. Conclusion JIB-04 suppresses the proliferation, migration, and contractile phenotype of HASMCs by inhibiting autophagic flux, which indicates that JIB-04 is a promising reagent for the treatment of neointima formation. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01321-8.
Collapse
Affiliation(s)
- Yi He
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zihao Zhang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Hanshen Luo
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Rui Li
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Xin Feng
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Ze-Min Fang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Wenlin Cheng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, East Lake Road 169, Wuhan, Hubei, China.,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, Hubei, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Fang Zhao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, East Lake Road 169, Wuhan, Hubei, China. .,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, Hubei, China.
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China. .,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Pozzo CFSD, Sielski MS, de Campos Vidal B, Werneck CC, Vicente CP. A collagen I derived matricryptin increases aorta vascular wall remodeling after induced thrombosis in mouse. Thromb Res 2021; 209:59-68. [PMID: 34871983 DOI: 10.1016/j.thromres.2021.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 11/27/2022]
Abstract
Matricryptins are collagen fragments proteolytically released from the extracellular matrix (ECM) with biological activity that can regulate several processes involved in ECM remodeling. Vessel wall matrix reorganization after lesion is important to the recovery of vascular function. This study aimed to analyze the effect of the peptide p1158/59 (Lindsey, 2015) on thrombosis, neointimal formation, and vascular remodeling of C57BL6 mice abdominal aorta. We used a FeCl3 induced vascular injury mice model and analyzed thrombus size, neointima formation, gelatinase activities in situ, re-endothelization, and collagen fibers organization on the arterial wall using polarization microscopy. As result, we observed that 2 days after injury the treatment with p1158/59 increased thrombus size and gelatinase activity, vascular lesion and it did not recover the endothelium loss induced by the chemical injury. We also observed that the peptide increased neointima growth and collagen birefringence, indicating collagen fibers reorganization. It also promoted increased re-endothelization and decreased activity of gelatinases 14 days after injury. Thus, we conclude that the peptide p1158/59 impaired the initial thrombosis recovery 2 days after injury but was able to induce vascular ECM remodeling after 14 days, improving vessel re-endothelization, collagen fibers deposition, and organization.
Collapse
Affiliation(s)
| | - Micheli Severo Sielski
- Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Benedicto de Campos Vidal
- Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Claudio C Werneck
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Cristina Pontes Vicente
- Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
5
|
Preventive Effect and Mechanism of Crossostephium chinense Extract on Balloon Angioplasty-Induced Neointimal Hyperplasia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8466543. [PMID: 34306155 PMCID: PMC8266445 DOI: 10.1155/2021/8466543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022]
Abstract
Balloon angioplasty-induced neointimal hyperplasia remains a clinical problem that must be resolved. The bioactivities of the Crossostephium chinense extract (CCE) have demonstrated potential in preventing the progression of restenosis. The present study evaluated whether CCE can suppress balloon angioplasty-induced neointima formation and elucidated its possible pharmacological mechanisms. A rat model of carotid arterial balloon angioplasty was established to evaluate the inhibitory effect of CCEs on neointimal hyperplasia. Two cell lines, A10 vascular smooth muscle cells (VSMCs) and RAW264.7 macrophages, were used to investigate the potential regulatory activities and pharmacological mechanisms of CCEs in cell proliferation and migration and in inflammation. Our in vitro results indicated that CCE3, the ethanolic extract of C. chinense, exerted the strongest growth inhibitory and antimigratory effects on VSMCs. CCE3 blocked the activation of focal adhesion kinase, platelet-derived growth factor receptor-β (PDGFRB), and its downstream molecules (AKT and mTOR) and reduced the expression of matrix metalloproteinase-2. In addition, our findings revealed that CCE3 significantly increased the expression of miRNA-132, an inhibitory regulator of inflammation and restenosis, and suppressed the expression of inflammation-related molecules (inducible nitric oxide synthase, cyclooxygenase-2, interleukin- (IL-) 1β, and IL-6). Our in vivo study results indicated that balloon injury-induced neointimal hyperplasia was inhibited by CCE3. CCE3 could reduce neointima formation in balloon-injured arteries, and this effect may be partially attributed to the CCE3-induced suppression of PDGFRB-mediated downstream pathways and inflammation-related molecules.
Collapse
|
6
|
Shih YC, Chen PY, Ko TM, Huang PH, Ma H, Tarng DC. MMP-9 Deletion Attenuates Arteriovenous Fistula Neointima through Reduced Perioperative Vascular Inflammation. Int J Mol Sci 2021; 22:ijms22115448. [PMID: 34064140 PMCID: PMC8196691 DOI: 10.3390/ijms22115448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 01/05/2023] Open
Abstract
Matrix metalloproteinase 9 (MMP-9) expression is upregulated in vascular inflammation and participates in vascular remodeling, including aneurysm dilatation and arterial neointima development. Neointima at the arteriovenous (AV) fistula anastomosis site primarily causes AV fistula stenosis and failure; however, the effects of MMP-9 on perioperative AV fistula remodeling remain unknown. Therefore, we created AV fistulas (end-to-side anastomosis) in wild-type (WT) and MMP-9 knockout mice with chronic kidney disease to further clarify this. Neointima progressively developed in the AV fistula venous segment of WT mice during the four-week postoperative course, and MMP-9 knockout increased the lumen area and attenuated neointima size by reducing smooth muscle cell and collagen components. Early perioperative AV fistula mRNA sequencing data revealed that inflammation-related gene sets were negatively enriched in AV fistula of MMP-9 knockout mice compared to that in WT mice. qPCR results also showed that inflammatory genes, including tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1), were downregulated. In addition, Western blot results showed that MMP-9 knockout reduced CD44 and RAC-alpha serine/threonine-protein kinase (Akt) and extracellular signal-regulated kinases (ERK) phosphorylation. In vitro, MMP-9 addition enhanced IL-6 and MCP-1 expression in vascular smooth muscle cells, as well as cell migration, which was reversed by an MMP-9 inhibitor. In conclusion, MMP-9 knockout attenuated AV fistula stenosis by reducing perioperative vascular inflammation.
Collapse
Affiliation(s)
- Yu-Chung Shih
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.-C.S.); (H.M.)
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Institute of Clinical Medicine, National Yang Ming University, Taipei 11221, Taiwan
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Po-Yuan Chen
- Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; (P.-Y.C.); (T.-M.K.)
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Tai-Ming Ko
- Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; (P.-Y.C.); (T.-M.K.)
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Center of Intelligent Drug System and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Po-Hsun Huang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Institute of Clinical Medicine, National Yang Ming University, Taipei 11221, Taiwan
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hsu Ma
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.-C.S.); (H.M.)
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Surgery, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Der-Cherng Tarng
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Institute of Clinical Medicine, National Yang Ming University, Taipei 11221, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Physiology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence:
| |
Collapse
|
7
|
Ji C, Pan Y, Xu S, Yu C, Ji J, Chen M, Hu F. Propolis ameliorates restenosis in hypercholesterolemia rabbits with carotid balloon injury by inhibiting lipid accumulation, oxidative stress, and TLR4/NF-κB pathway. J Food Biochem 2021; 45:e13577. [PMID: 33729587 DOI: 10.1111/jfbc.13577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022]
Abstract
Neointima formation and atherosclerosis are the main complications after the endovascular intervention and vascular surgery, and there are no effective drugs. Propolis is a kind of resin substance produced by honeybees and has numerous health-beneficial effects. In this study, we evaluated the effects of propolis (125 and 250 mg·kg-1 ·day-1 , 6 weeks) on carotid restenosis in hypercholesterolemia rabbits. Propolis significantly ameliorated the degree of carotid restenosis, inhibited neointima hyperplasia, reduced serum lipids profile, and enhanced the anti-oxidative activities in hypercholesterolemia rabbits. Furthermore, propolis reduced the plasma levels of C-reactive protein, interleukin-6, and tumor necrosis factor-α (TNF-α), and inhibited the expression of CD68, TLR4, NF-κB p65, MMP-9, and TNF-α in the carotid arteries. The results indicate that propolis has a protective effect on carotid restenosis in rabbits, which is associated with regulating blood lipids, inhibiting oxidative stress and inflammation, and its anti-inflammatory activity may be related to inhibit TLR4-mediated NF-κB signaling pathway. PRACTICAL APPLICATIONS: Restenosis is a primary challenge in angioplasty and atherosclerotic treatment. Hyperlipidemia can induce inflammation and accelerate the formation of restenosis. Recently, natural products have been widely used to prevent intimal hyperplasia of common cardiovascular diseases. Propolis is currently a popular functional food, but the role of propolis on carotid restenosis after angioplasty and its underlying mechanism remains unclear. This study showed that propolis inhibits the effect of carotid restenosis in hypercholesterolemia rabbits. The results of this study may provide a basis for propolis to prevent and treat vascular restenosis.
Collapse
Affiliation(s)
- Chao Ji
- Huai'an Bee Products Engineering Research Center, Huai'an, China
| | - Yongming Pan
- Comparative Medical Research Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songtao Xu
- Comparative Medical Research Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chen Yu
- Comparative Medical Research Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jian Ji
- Huai'an Bee Products Engineering Research Center, Huai'an, China
| | - Minli Chen
- Comparative Medical Research Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Bao H, Li ZT, Xu LH, Su TY, Han Y, Bao M, Liu Z, Fan YJ, Lou Y, Chen Y, Jiang ZL, Gong XB, Qi YX. Platelet-Derived Extracellular Vesicles Increase Col8a1 Secretion and Vascular Stiffness in Intimal Injury. Front Cell Dev Biol 2021; 9:641763. [PMID: 33738288 PMCID: PMC7960786 DOI: 10.3389/fcell.2021.641763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/09/2021] [Indexed: 12/31/2022] Open
Abstract
The arterial mechanical microenvironment, including stiffness, is a crucial pathophysiological feature of vascular remodeling, such as neointimal hyperplasia after carotid endarterectomy and balloon dilatation surgeries. In this study, we examined changes in neointimal stiffness in a Sprague-Dawley rat carotid artery intimal injury model and revealed that extracellular matrix (ECM) secretion and vascular stiffness were increased. Once the endothelial layer is damaged in vivo, activated platelets adhere to the intima and may secrete platelet-derived extracellular vesicles (pEVs) and communicate with vascular smooth muscle cells (VSMCs). In vitro, pEVs stimulated VSMCs to promote collagen secretion and cell adhesion. MRNA sequencing analysis of a carotid artery intimal injury model showed that ECM factors, including col8a1, col8a2, col12a1, and elastin, were upregulated. Subsequently, ingenuity pathway analysis (IPA) was used to examine the possible signaling pathways involved in the formation of ECM, of which the Akt pathway played a central role. In vitro, pEVs activated Akt signaling through the PIP3 pathway and induced the production of Col8a1. MicroRNA (miR) sequencing of pEVs released from activated platelets revealed that 14 of the top 30 miRs in pEVs targeted PTEN, which could promote the activation of the Akt pathway. Further research showed that the most abundant miR targeting PTEN was miR-92a-3p, which promoted Col8a1 expression. Interestingly, knockdown of Col8a1 expression in vivo abrogated the increase in carotid artery stiffness and simultaneously increased the degree of neointimal hyperplasia. Our results revealed that pEVs may deliver miR-92a-3p to VSMCs to induce the production and secretion of Col8a1 via the PTEN/PIP3/Akt pathway, subsequently increasing vascular stiffness. Therefore, pEVs and key molecules may be potential therapeutic targets for treating neointimal hyperplasia.
Collapse
Affiliation(s)
- Han Bao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zi-Tong Li
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei-Han Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Tong-Yue Su
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yue Han
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Min Bao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ze Liu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang-Jing Fan
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Lou
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Chen
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zong-Lai Jiang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Bo Gong
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Xin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
9
|
Ding X, Yan Y, Zhang C, Xu X, Yang F, Liu Y, Wang G, Qin Y. OCT4 regulated neointimal formation in injured mouse arteries by matrix metalloproteinase 2-mediated smooth muscle cells proliferation and migration. J Cell Physiol 2020; 236:5421-5431. [PMID: 33372301 DOI: 10.1002/jcp.30248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 11/09/2022]
Abstract
The excessive proliferation and migration of vascular smooth muscle cells (VSMCs) play vital roles in neointimal hyperplasia and vascular restenosis. In the present study, we aimed to investigate the function and mechanism of octamer-binding transcription factor 4 (OCT4, a key transcription factor for maintaining stem cells in de-differentiated state) on neointima formation in response to vascular injury. Quantitative reverse-transcription polymerase chain reaction and western blot results displayed a significant increase of OCT4 levels in injured carotid arteries. Immunohistochemistry and immunofluorescence assays confirmed that the increased OCT4 expression was primarily localized in α-SMA-positive VSMCs from neointima, and colocalized with PCNA in the nuclei of VSMCs. Adenovirus-mediated OCT4 overexpression in injured carotid arteries exacerbated intimal thickening, while OCT4 knockdown significantly inhibited intimal thickening. In-vitro experiments confirmed that the increased OCT4 expression in VMSCs could be induced by platelet-derived growth factor-BB (PDGF-BB) in a time-dependent manner. Overexpression of OCT4 greatly promoted VSMCs proliferation and migration, while OCT4 knockdown significantly retarded the PDGF-BB-induced excessive proliferation and migration of VSMCs. Bioinformatics analysis, dual-luciferase reporter assay, and chromatin immunoprecipitation assay confirmed that OCT4 could upregulate matrix metalloproteinases 2 (MMP2) expression through promoting its transcription. Moreover, knockdown of MMP2 significantly attenuated OCT4-mediated VSMCs proliferation and migration. These results indicated that OCT4 facilitated neointimal formation in response to vascular injury by MMP2-mediated VSMCs proliferation and migration, and targeting OCT4 in VSMCs might be a novel therapeutic strategy for vascular restenosis.
Collapse
Affiliation(s)
- Xueyan Ding
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.,Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yan Yan
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China.,Department of Cardiothoracic Surgery, No. 903 Hospital of Chinese People's Liberation Army, Hangzhou, Zhejiang, China
| | - Chengke Zhang
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xudong Xu
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Fan Yang
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guokun Wang
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yongwen Qin
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
10
|
Feng S, Gao L, Zhang D, Tian X, Kong L, Shi H, Wu L, Huang Z, Du B, Liang C, Zhang Y, Yao R. MiR-93 regulates vascular smooth muscle cell proliferation, and neointimal formation through targeting Mfn2. Int J Biol Sci 2019; 15:2615-2626. [PMID: 31754334 PMCID: PMC6854371 DOI: 10.7150/ijbs.36995] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/28/2019] [Indexed: 11/05/2022] Open
Abstract
Background/Aims: Vascular smooth muscle cell (VSMC) hyperplasia plays important roles in the pathogenesis of many vascular diseases, such as atherosclerosis and restenosis. Many microRNAs (miRs) have recently been reported to regulate the proliferation and migration of VSMC. In the current study, we aimed to explore the function of miR-93 in VSMCs and its molecular mechanism. Methods: First, qRT-PCR and immunofluorescence assays were performed to determine miR-93 expression in rat VSMCs following carotid artery injury in vivo and platelet-derived growth factor-BB (PDGF-BB) stimulation in vitro. Next, the biological role of miR-93 in rat VSMC proliferation and migration was examined in vivo and vitro. EdU incorporation assay and MTT assay for measuring cell proliferation, Transwell cell invasion assay and Cell scratch wound assay for measuring cell migration. Then, the targets of miR-93 were identified. Finally, the expression levels of proteins in the Raf-ERK1/2 pathway were measured by western blot. Results: MiR-93 was upregulated in rat VSMCs following carotid artery injury in vivo. Similar results were observed in ex vivo cultured VSMCs after PDGF-BB treatment. MiR-93 inhibition suppressed neointimal formation after carotid artery injury. Moreover, our results demonstrated that a miR-93 inhibitor suppressed the PDGF-BB induced proliferation and migration of in VSMC. This inhibitor also decreased the expression levels of MMP2 and cyclin D1. Mechanistically, we discovered that mitofusin 2(Mfn2) is a direct target of miR-93. Furthermore, an analysis of the signaling events revealed that miR-93-mediated VSMC proliferation and migration occurred via the Raf-ERK1/2 pathway. Conclusions: Our findings suggest that miR-93 promotes VSMCs proliferation and migration by targeting Mfn2. MiR-93 may be a new target for treating in-stent restenosis.
Collapse
Affiliation(s)
- Shengdong Feng
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Gao
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dianhong Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyu Tian
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingyao Kong
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiting Shi
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Leiming Wu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Huang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Binbin Du
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cui Liang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanzhou Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Yao
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Mechanisms of Intravascular Linear Ablation Induced Restenosis in Rabbit Abdominal Aorta. BIOMED RESEARCH INTERNATIONAL 2019; 2018:7459276. [PMID: 30671470 PMCID: PMC6323460 DOI: 10.1155/2018/7459276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/29/2018] [Accepted: 10/18/2018] [Indexed: 11/17/2022]
Abstract
Objectives Percutaneous coronary intervention (PCI) is the mainstay treatment for coronary artery disease but complications such as in-stent restenosis and thrombosis remain problematic. Radiofrequency balloon angioplasty (RBA) can improve lumen dimension, fusing intimal tears, and artery dissection but is associated with higher restenosis rate. Methods After establishing an atherosclerosis model based on endothelial abrasion and high cholesterol diet, forty-five rabbits were randomly divided into three groups: RBA (n=20), percutaneous transluminal angioplasty (PTA) (n=20), and control groups (n=5). The RBA and PTA groups were subdivided according to harvested time posttreatment, respectively (1 hour, 7 days, 14 days, and 28 days). Aorta segments were then isolated for hematoxylin and eosin staining, Masson trichrome staining, immunohistochemistry, and Western blot for TLR-4, NF-κB, MCP-1, and VCAM-1expression. Results At 28 days, intimal area was significantly lower in the RBA group compared to the PTA and control groups, whilst luminal and medial area were comparable in the RBA and PTA group but higher and lower than the control group, respectively. Expression of TLR-4, NF-κB, MCP-1, and VCAM-1 showed no significant difference between RBA and PTA groups. Conclusions RBA can depress the intimal hyperplasia and promote dilatation of the artery to greater extents than PTA at 28 days. However, this did not involve TLR-4 signaling pathway, which likely plays a negligible role in mediating restenosis. Reduction of intimal hyperplasia may be due to injury of ablation to the tunica media and inhibition of VSMC proliferation and migration.
Collapse
|
12
|
Wun K, Theriault BR, Pierre JF, Chen EB, Leone VA, Harris KG, Xiong L, Jiang Q, Spedale M, Eskandari OM, Chang EB, Ho KJ. Microbiota control acute arterial inflammation and neointimal hyperplasia development after arterial injury. PLoS One 2018; 13:e0208426. [PMID: 30521585 PMCID: PMC6283560 DOI: 10.1371/journal.pone.0208426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The microbiome has a functional role in a number of inflammatory processes and disease states. While neointimal hyperplasia development has been linked to inflammation, a direct role of the microbiota in neointimal hyperplasia has not yet been established. Germ-free (GF) mice are an invaluable model for studying causative links between commensal organisms and the host. We hypothesized that GF mice would exhibit altered neointimal hyperplasia following carotid ligation compared to conventionally raised (CONV-R) mice. METHODS Twenty-week-old male C57BL/6 GF mice underwent left carotid ligation under sterile conditions. Maintenance of sterility was assessed by cultivation and 16S rRNA qPCR of stool. Neointimal hyperplasia was assessed by morphometric and histologic analysis of arterial sections after 28 days. Local arterial cell proliferation and inflammation was assessed by immunofluorescence for Ki67 and inflammatory cell markers at five days. Systemic inflammation was assessed by multiplex immunoassays of serum. CONV-R mice treated in the same manner served as the control cohort. GF and CONV-R mice were compared using standard statistical methods. RESULTS All GF mice remained sterile during the entire study period. Twenty-eight days after carotid ligation, CONV-R mice had significantly more neointimal hyperplasia development compared to GF mice, as assessed by intima area, media area, intima+media area, and intima area/(intima+media) area. The collagen content of the neointimal lesions appeared qualitatively similar on Masson's trichrome staining. There was significantly reduced Ki67 immunoreactivity in the media and adventitia of GF carotid arteries 5 days after ligation. GF mice also had increased arterial infiltration of anti-inflammatory M2 macrophages compared to CONV-R mouse arteries and a reduced proportion of mature neutrophils. GF mice had significantly reduced serum IFN-γ-inducible protein (IP)-10 and MIP-2 5 days after carotid ligation, suggesting a reduced systemic inflammatory response. CONCLUSIONS GF mice have attenuated neointimal hyperplasia development compared to CONV-R mice, which is likely related to altered kinetics of wound healing and acute inflammation. Recognizing the role of commensals in the regulation of arterial remodeling will provide a deeper understanding of the pathophysiology of restenosis and support strategies to treat or reduce restenosis risk by manipulating microbiota.
Collapse
Affiliation(s)
- Kelly Wun
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States of America
| | - Betty R. Theriault
- Department of Surgery and Animal Resources Center, University of Chicago, Chicago, IL, United States of America
| | - Joseph F. Pierre
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Edmund B. Chen
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States of America
| | - Vanessa A. Leone
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL, United States of America
| | - Katharine G. Harris
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL, United States of America
| | - Liqun Xiong
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States of America
| | - Qun Jiang
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States of America
| | - Melanie Spedale
- Department of Surgery and Animal Resources Center, University of Chicago, Chicago, IL, United States of America
| | - Owen M. Eskandari
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States of America
| | - Eugene B. Chang
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL, United States of America
| | - Karen J. Ho
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States of America
| |
Collapse
|
13
|
Veres G, Schmidt H, Hegedűs P, Korkmaz-Icöz S, Radovits T, Loganathan S, Brlecic P, Li S, Karck M, Szabó G. Is internal thoracic artery resistant to reperfusion injury? Evaluation of the storage of free internal thoracic artery grafts. J Thorac Cardiovasc Surg 2018; 156:1460-1469. [DOI: 10.1016/j.jtcvs.2018.05.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 10/14/2022]
|
14
|
Wu JH, Li Y, Zhou YF, Haslam J, Elvis ON, Mao L, Xia YP, Hu B. Semaphorin-3E attenuates neointimal formation via suppressing VSMCs migration and proliferation. Cardiovasc Res 2018; 113:1763-1775. [PMID: 29016743 DOI: 10.1093/cvr/cvx190] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023] Open
Abstract
Aims The migration and proliferation of vascular smooth muscle cells (VSMCs) are crucial events in the neointimal formation, a hallmark of atherosclerosis and restenosis. Semaphorin3E (Sema3E) has been found to be a critical regulator of cell migration and proliferation in many scenarios. However, its role on VSMCs migration and proliferation is unclear. This study aimed to investigate the effect of Sema3E on VSMCs migration, proliferation and neointimal formation, and explore possible mechanisms. Methods and results We found that the expression of Sema3E was progressively decreased during neointimal formation in a carotid ligation model. H&E-staining showed lentivirus-mediated overexpression of Sema3E in carotid ligation area attenuated neointimal formation. Immunofluorescence staining showed that the receptor (PlexinD1) of Sema3E was expressed in vascular walls. In cultured mouse VSMCs, Sema3E inhibited VSMCs migration and proliferation via plexinD1 receptor. The inhibitory effect was mediated, at least in part, by inactivating Rap1-AKT signalling pathways in VSMCs. Moreover, we found that PDGFBB down-regulated the expression of Sema3E in VSMCs and Sema3E notably inhibited the expression of PDGFB in endothelial cells. In addition, the number of Sema3E-positive VSMCs was diminished in plaques of atherosclerotic patients. Results from a public GEO microarray database showed a negative correlation between Sema3E and PDGFB transcriptional levels in the human plaques examined. Conclusion Our study demonstrates that Sema3E/plexinD1 inhibits proliferation and migration of VSMCs via inactivation of Rap1-AKT signalling pathways. The mutual inhibition between PDGF-BB and Sema3E after vascular injury plays a critical role in the process of neointimal formation.
Collapse
Affiliation(s)
- Jie-Hong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi-Fan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - James Haslam
- Swansea College of Medicine, Swansea University, Singleton Park, Swansea, Wales SA2 8PP, UK
| | - Opoku Nana Elvis
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuan-Peng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
15
|
Xie P, Horio F, Fujii I, Zhao J, Shinohara M, Matsukura M. A novel polysaccharide derived from algae extract inhibits cancer progression via JNK, not via the p38 MAPK signaling pathway. Int J Oncol 2018; 52:1380-1390. [PMID: 29512724 PMCID: PMC5873927 DOI: 10.3892/ijo.2018.4297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/06/2018] [Indexed: 02/05/2023] Open
Abstract
Cancer has long been one of the most malignant diseases worldwide. Processes in cancer cells are often mediated by Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38 MAPK) and other signaling pathways. Traditional therapies are often problematic. Recently, a novel polysaccharide derived from algae extract was investigated due to the increasing interest in biological activities of compounds from marine organisms. The effect of this novel polysaccharide on human MKN45 gastric carcinoma cells was determined previously. The current aimed to determine whether the polysaccharide affects other types of cancer, and the deeper mechanisms involved in the process. Human MCF-7 breast cancer cells were used to investigate the novel polysaccharide for its role in the cell growth and migration, and determine the mechanisms affected. MTT assay, nuclear staining and fluorescence activated cell sorting analysis demonstrated that the novel polysaccharide reduced the viability of MCF-7 cells by inducing cell apoptosis and arresting the cells at G2/M phase. Results of western blot analysis demonstrated that phosphorylation of JNK and expression of p53, caspase-9 and caspase-3 were upregulated in the polysaccharide-treated MCF-7 cells. SP600125, an inhibitor of JNK, maintained MCF-7 cell viability, prevented cell apoptosis and cycle arrest, and downregulated the polysaccharide-induced protein phosphorylation/expression. However, a migration assay demonstrated that the novel polysaccharide did not change the migration of MCF-7 cells, as well as the expression of p38 MAPK, and matrix metalloproteinase-9 and -2. Taken together, the current study demonstrated that the novel polysaccharide suppressed cancer cell growth, induced cancer cell apoptosis and cell cycle arrest via JNK signaling, but had no effect on cancer cell migration and p38 MAPK signaling.
Collapse
Affiliation(s)
- Peiyu Xie
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Kumamoto 860-0822, Japan
| | - Fukuko Horio
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Kumamoto 860-0822, Japan
| | - Isao Fujii
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Kumamoto 860-0822, Japan
| | - Jien Zhao
- Ashikita Institution for Developmental Disabilities, Ashikita, Kumamoto 869-541, Japan
| | - Makoto Shinohara
- Ashikita Institution for Developmental Disabilities, Ashikita, Kumamoto 869-541, Japan
| | - Makoto Matsukura
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Kumamoto 860-0822, Japan
| |
Collapse
|
16
|
The inhibition of calpains ameliorates vascular restenosis through MMP2/TGF-β1 pathway. Sci Rep 2016; 6:29975. [PMID: 27453531 PMCID: PMC4958998 DOI: 10.1038/srep29975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/28/2016] [Indexed: 01/16/2023] Open
Abstract
Restenosis limits the efficacy of vascular percutaneous intervention, in which vascular smooth muscle cell (VSMC) proliferation and activation of inflammation are two primary causal factors. Calpains influence VSMC proliferation and collagen synthesis. However, the roles of calpastatin and calpains in vascular restenosis remain unclear. Here, restenosis was induced by ligating the left carotid artery, and VSMCs were pretreated with platelet-derived growth factor (PDGF)-BB. Adenovirus vector carrying MMP2 sequence and specific small interfering RNA against calpain-1/2 were introduced. Finally, restenosis enhanced the expression of calpain-1/2, but reduced calpastatin content. In calpastatin transgenic mice, lumen narrowing was attenuated gradually and peaked on days 14-21. Cell proliferation and migration as well as collagen synthesis were inhibited in transgenic mice, and expression of calpain-1/2 and MMP2/transforming growth factor-β1 (TGF-β1). Consistently, in VSMCs pretreated with PDGF-BB, calpastatin induction and calpains inhibition suppressed the proliferation and migration of VSMCs and collagen synthesis, and reduced expression of calpain-1/2 and MMP2/TGF-β1. Moreover, simvastatin improved restenosis indicators by suppressing the HIF-1α/calpains/MMP2/TGF-β1 pathway. However, MMP2 supplementation eliminated the vascular protection of calpastatin induction and simvastatin. Collectively, calpains inhibition plays crucial roles in vascular restenosis by preventing neointimal hyperplasia at the early stage via suppression of the MMP2/TGF-β1 pathway.
Collapse
|
17
|
Suppressive effect of formononetin on platelet-derived growth factor-BB-stimulated proliferation and migration of vascular smooth muscle cells. Exp Ther Med 2016; 12:1901-1907. [PMID: 27588108 DOI: 10.3892/etm.2016.3514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/26/2016] [Indexed: 01/28/2023] Open
Abstract
Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) has been implicated in intimal hyperplasia, atherosclerosis and restenosis following percutaneous coronary intervention. Formononetin, a phytoestrogen extracted from the root of Astragalus membranaceus, has been widely used in Chinese tradition medicine due to its protective effects against certain symptoms of cancer, hypertension, inflammation, hypoxia-induced cytotoxicity and ovariectomy-induced bone loss. However, the effect of formononetin on platelet-derived growth factor (PDGF)-BB-induced proliferation and migration of VSMCs, as well as the underlying molecular mechanism, remains largely unclear. In the present study, treatment with formononetin significantly inhibited PDGF-BB-induced proliferation and migration of human VSMCs. Investigation into the underlying molecular mechanism revealed that the administration of formononetin suppressed PDGF-BB-stimulated switch of VSMCs to a proliferative phenotype. Furthermore, treatment with formononetin inhibited the PDGF-BB-induced upregulation of cell cycle-related proteins, matrix metalloproteinase (MMP2) and MMP9. In addition, the that administration of formononetin inhibited the phosphorylation of AKT induced by PDGF-BB in VSMCs. The present results suggest that formononetin has a suppressive effect on PDGF-BB-stimulated VSMCs proliferation and migration, which may occur partly via the inhibition of AKT signaling pathway. Therefore, formononetin may be useful for the treatment of intimal hyperplasia, atherosclerosis and restenosis.
Collapse
|
18
|
Cross-talk between macrophages and smooth muscle cells impairs collagen and metalloprotease synthesis and promotes angiogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1568-78. [DOI: 10.1016/j.bbamcr.2016.04.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 02/08/2023]
|
19
|
Zhang MJ, Zhou Y, Chen L, Wang X, Pi Y, Long CY, Sun MJ, Chen X, Gao CY, Li JC, Zhang LL. Impaired SIRT1 promotes the migration of vascular smooth muscle cell-derived foam cells. Histochem Cell Biol 2016; 146:33-43. [DOI: 10.1007/s00418-016-1408-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2016] [Indexed: 11/24/2022]
|
20
|
Liu JP, Wang YZ, Li YK, Cheng Q, Zheng Z. Matrix metalloproteinase 9 level as an indicator for restenosis following cervical and intracranial angioplasty and stenting. Neural Regen Res 2015; 10:631-5. [PMID: 26170826 PMCID: PMC4424758 DOI: 10.4103/1673-5374.155439] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2015] [Indexed: 01/14/2023] Open
Abstract
Cervical and intracranial angioplasty and stenting is an effective and safe method of reducing the risk of ischemic stroke, but it may be affected by in-stent restenosis. The present study investigated serum level of matrix metalloproteinase 9 as a predictor of restenosis after 40 patients underwent cervical and/or intracranial angioplasty and stenting. Results showed that restenosis occurred in 30% (3/10) of patients when the serum level of matrix metalloproteinase 9 at 3 days after surgery was 2.5 times higher than preoperative level. No restenosis occurred when the serum level of matrix metalloproteinase 9 at 3 days after surgery was not 2.5 times higher than preoperative level. Restenosis occurred in 12% (2/17) of patients when the serum level of matrix metalloproteinase 9 was higher than preoperative level for more than 30 days after surgery, but only occurred in 4% (1/23) of patients when the serum level of matrix metalloproteinase 9 was higher than preoperative level for less than 30 days after surgery. However, the differences observed were not statistically significant (P > 0.05). Experimental findings indicate that when the serum level of matrix metalloproteinase 9 is 2.5 times higher than preoperative level at 3 days after cervical and intracranial angioplasty and stenting, it may serve as a predictor of in-stent restenosis.
Collapse
Affiliation(s)
- Jun-Peng Liu
- Department of Neurology, Fujian Provincial Hospital, Provincial Clinical Department of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yin-Zhou Wang
- Department of Neurology, Fujian Provincial Hospital, Provincial Clinical Department of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yong-Kun Li
- Department of Neurology, Fujian Provincial Hospital, Provincial Clinical Department of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Qiong Cheng
- Department of Neurology, Fujian Provincial Hospital, Provincial Clinical Department of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Zheng Zheng
- Department of Neurology, Fujian Provincial Hospital, Provincial Clinical Department of Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
21
|
Freise C, Querfeld U. The lignan (+)-episesamin interferes with TNF-α-induced activation of VSMC via diminished activation of NF-ĸB, ERK1/2 and AKT and decreased activity of gelatinases. Acta Physiol (Oxf) 2015; 213:642-52. [PMID: 25267105 DOI: 10.1111/apha.12400] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/03/2014] [Accepted: 09/24/2014] [Indexed: 12/15/2022]
Abstract
AIM Activation of vascular smooth muscle cells (VSMC), a key event in the pathogenesis of atherosclerosis, is triggered by inflammatory stimuli such as tumour necrosis factor-alpha (TNF-α) causing a mitogenic VSMC response. The polyphenol (+)-episesamin (ES) was shown to counteract TNF-α-induced effects, for example in macrophages. Aiming for novel therapeutic options, we here investigated whether ES protects VSMC from TNF-α-induced growth and migration, which both contribute to the onset and progression of atherosclerosis. METHODS Human and murine VSMC were treated with combinations of ES and TNF-α. Expressions of mRNA were analyzed by RT-PCR. Enzymatic activities and proliferation were determined by specific substrate assays. Cell signalling was analyzed by Western blot and reporter gene assays. Migration was assessed by wound healing assays. RESULTS ES at 1-10 μm reduced basal and TNF-α-induced VSMC proliferation and migration due to impaired activation of extracellular signal-regulated kinases (ERK)1/2, Akt (protein kinase B), nuclear factor-kappa B (NF-ĸB) and vascular cell adhesion molecule (VCAM)-1. This was accompanied by reduced expression and secretion of matrix metalloproteinases (MMP)-2/-9, which are known to promote VSMC migration. Specific inhibitors of Akt, NF-ĸB and MMP-2/-9 reduced TNF-α-induced VSMC proliferation, confirming ES-specific effects. Besides, ES reduced TNF-α- and H₂O₂ -induced oxidative stress and in parallel induces anti-inflammatory haem oxygenase (HO)-1 expression. CONCLUSION ES interferes with inflammation-associated VSMC activation and subsequent decreased proliferation and migration due to anti-oxidative properties and impaired activation of NF-ĸB, known contributors to atherogenesis. These results suggest ES as a complemental treatment of VSMC specific vascular diseases such as atherosclerosis.
Collapse
Affiliation(s)
- C. Freise
- Department of Pediatric Nephrology and Center for Cardiovascular Research; Charité - University Medicine; Campus Virchow Clinic; Berlin Germany
| | - U. Querfeld
- Department of Pediatric Nephrology; Charité - University Medicine; Campus Virchow Clinic; Berlin Germany
| |
Collapse
|
22
|
GUO LING, SUN GUIZHI, WANG GUOYU, NING WENHU, ZHAO KAN. Soluble P-selectin promotes acute myocardial infarction onset but not severity. Mol Med Rep 2014; 11:2027-33. [DOI: 10.3892/mmr.2014.2917] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/19/2014] [Indexed: 11/06/2022] Open
|