1
|
Deng ZH, Chen YX, Xue-Gao, Yang JY, Wei XY, Zhang GX, Qian JX. Mesenchymal stem cell-derived exosomes ameliorate hypoxic pulmonary hypertension by inhibiting the Hsp90aa1/ERK/pERK pathway. Biochem Pharmacol 2024; 226:116382. [PMID: 38909785 DOI: 10.1016/j.bcp.2024.116382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Hypoxic pulmonary hypertension (HPH) is a serious and life-threatening chronic cardiopulmonary disease characterized by progressive elevation of pulmonary artery pressure and pulmonary vascular remodeling. Mesenchymal stem cell- derived exosomes (MSC-Exos) can relieve HPH by reversing pulmonary vascular remodeling. The HPH model was established in healthy male Sprague-Dawley (SD) rats aged 6 to 8 weeks. The rats were placed in a room with oxygen concentration of (10 ± 1) % for 8 hours a day over 28 days, were then injected intravenously with MSC-Exos (100 ug protein/kg) or equal-volume phosphate buffer saline (PBS) once a day over 1 week. Right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI) and pulmonary vascular remodeling were observed after anesthesia. In addition, platelet-derived growth factor BB (PDGF-BB) was used to stimulate rat pulmonary artery smooth muscle cells (PASMCs) to construct HPH pathological cell models. The results showed that MSC-Exos could not only reduce the elevation of RVSP, right ventricular hypertrophy and the degree of pulmonary vascular remodeling in HPH rats, but also reduce the proliferation, migration and apoptosis resistance of PASMCs. Finally, GSE53408 and GSE113439 datasets were analyzed and showed that the expression of Hsp90aa1 and pERK/ERK were significantly increased in HPH, also could be inhibited by MSC-Exos. Meanwhile, inhibition of Hsp90aa1 also reduced PASMCs migration and pERK/ERK protein level. In conclusion, MSC-Exos alleviated HPH by suppressing PASMCs proliferation, migration and apoptosis resistance through inhibiting the Hsp90aa1/ERK/pERK pathway.
Collapse
Affiliation(s)
- Zhi-Hua Deng
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Yao-Xin Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Xue-Gao
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Jing-Yu Yang
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Xia-Ying Wei
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Guo-Xing Zhang
- Department of Physiology and Neurosciences, Medical College of Soochow University, Suzhou 215000, China
| | - Jin-Xian Qian
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China.
| |
Collapse
|
2
|
Hou L, Zou Z, Wang Y, Pi H, Yuan Z, He Q, Kuang Y, Zhao G. Exploring the anti-atherosclerosis mechanism of ginsenoside Rb1 by integrating network pharmacology and experimental verification. Aging (Albany NY) 2024; 16:6745-6756. [PMID: 38546402 PMCID: PMC11087090 DOI: 10.18632/aging.205680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/03/2024] [Indexed: 05/08/2024]
Abstract
Ginsenoside Rb1 is the major active constituent of ginseng, which is widely used in traditional Chinese medicine for the atherosclerosis treatment by anti-inflammatory, anti-oxidant and reducing lipid accumulation. We explored cellular target and molecular mechanisms of ginsenoside Rb1 based on network pharmacology and in vitro experimental validation. In this study, we predicted 17 potential therapeutic targets for ginsenoside Rb1 with atherosclerosis from public databases. We then used protein-protein interaction network to screen the hub targets. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment showed that the effects of ginsenoside Rb1 were meditated through multiple targets and pathways. Next, molecular docking results revealed that in the 10 core targets, CCND1 has the highest binding energy with ginsenoside Rb1. Vascular cell proliferation plays a critical role in atherosclerosis development. However, the effect and direct target of ginsenoside Rb1 in regulating vascular cell proliferation in atherosclerosis remains unclear. Edu straining results indicated that ginsenoside Rb1 inhibited the cell proliferation of endothelial cells, macrophages, and vascular smooth muscle cells. The protein immunoprecipitation (IP) analysis showed that ginsenoside Rb1 inhibited the vascular cell proliferation by suppressing the interaction of CCDN1 and CDK4. These findings systematically reveal that the anti-atherosclerosis mechanism of ginsenoside Rb1 by integrating network pharmacology and experimental validation, which provide evidence to treat atherosclerosis by using ginsenoside Rb1 and targeting CCND1.
Collapse
Affiliation(s)
- Lianjie Hou
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan 511518, Guangdong, China
| | - Zhiming Zou
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510120, Guangdong, China
| | - Yu Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan 511518, Guangdong, China
| | - Hui Pi
- Dali University, Dali 671003, Yunnan, China
| | - Zeyue Yuan
- Dali University, Dali 671003, Yunnan, China
| | - Qin He
- Dali University, Dali 671003, Yunnan, China
| | - Yongfang Kuang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan 511518, Guangdong, China
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan 511518, Guangdong, China
| |
Collapse
|
3
|
Hazra J, Vijayakumar A, Mahapatra NR. Emerging role of heat shock proteins in cardiovascular diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:271-306. [PMID: 36858739 DOI: 10.1016/bs.apcsb.2022.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Heat Shock Proteins (HSPs) are evolutionarily conserved proteins from prokaryotes to eukaryotes. They are ubiquitous proteins involved in key physiological and cellular pathways (viz. inflammation, immunity and apoptosis). Indeed, the survivability of the cells under various stressful conditions depends on appropriate levels of HSP expression. There is a growing line of evidence for the role of HSPs in regulating cardiovascular diseases (CVDs) (viz. hypertension, atherosclerosis, atrial fibrillation, cardiomyopathy and heart failure). Furthermore, studies indicate that a higher concentration of circulatory HSP antibodies correlate to CVDs; some are even potential markers for CVDs. The multifaceted roles of HSPs in regulating cellular signaling necessitate unraveling their links to pathophysiology of CVDs. This review aims to consolidate our understanding of transcriptional (via multiple transcription factors including HSF-1, NF-κB, CREB and STAT3) and post-transcriptional (via microRNAs including miR-1, miR-21 and miR-24) regulation of HSPs. The cytoprotective nature of HSPs catapults them to the limelight as modulators of cell survival. Yet another attractive prospect is the development of new therapeutic strategies against cardiovascular diseases (from hypertension to heart failure) by targeting the regulation of HSPs. Moreover, this review provides insights into how genetic variation of HSPs can contribute to the manifestation of CVDs. It would also offer a bird's eye view of the evolving role of different HSPs in the modulation and manifestation of cardiovascular disease.
Collapse
Affiliation(s)
- Joyita Hazra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Anupama Vijayakumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
4
|
Ding X, Meng C, Dong H, Zhang S, Zhou H, Tan W, Huang L, He A, Li J, Huang J, Li W, Zou F, Zou M. Extracellular Hsp90α, which participates in vascular inflammation, is a novel serum predictor of atherosclerosis in type 2 diabetes. BMJ Open Diabetes Res Care 2022; 10:10/1/e002579. [PMID: 35091448 PMCID: PMC8804642 DOI: 10.1136/bmjdrc-2021-002579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/03/2022] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Atherosclerosis is the main pathological change in diabetic angiopathy, and vascular inflammation plays an important role in early atherosclerosis. Extracellular heat shock protein 90 (eHsp90) is secreted into the serum and is involved in various physiological and pathophysiological processes. However, the specific mechanism of eHsp90 in early atherosclerosis remains unclear. This study explored the relationship between Hsp90 and diabetic lower extremity arterial disease and investigated the expression of eHsp90 in vascular endothelial cells under environmental stimulation and the function and mechanism of eHsp90α involved in diabetic atherosclerosis. RESEARCH DESIGN AND METHODS One hundred and three selected patients were divided into three groups: the diabetes mellitus group (n=27), the diabetic lower extremity arterial disease group (n=46), and the diabetic critical limb ischemia group (n=30). The relationships among serum Hsp90, oxidative stress indexes, and patient outcomes and the correlations among the indexes were analyzed. H&E staining and immunohistochemistry were used to observe the vasculature of amputated feet from patients with diabetic foot. An oxidative stress endothelial injury model was established under high glucose in vitro to explore the role of eHsp90 release in atherosclerosis progression. RESULTS The level of serum Hsp90 was upregulated with aggravation of diabetic vascular disease. Hsp90α was correlated with malondialdehyde to some extent and was an independent risk factor in the progression of diabetic vascular disease, with predictive ability. The expression area of Hsp90α was consistent with the area of inflammatory infiltration in the vessel lumen. Vascular endothelial cells were found to increase eHsp90α secretion under stress. Then inhibition of eHsp90α can reduce the degree of cellular inflammation and damage. Endothelial cell-conditioned medium and recombinant human Hsp90α increased monocyte migration via the low-denisity lipoprotein receptor-related protein 1 (LRP1) receptor to promote disease progression. CONCLUSIONS eHsp90α plays a critical role in the early inflammatory injury stage of atherosclerosis. TRIAL REGISTRATION NUMBER NCT04787770.
Collapse
Affiliation(s)
- Xinyi Ding
- Department of Occupational Health and Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuzhen Meng
- Department of Endocrinology and Metabolism, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Hangming Dong
- Department of Respiratory and Critical Care Medicine, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Shili Zhang
- Department of Endocrinology and Metabolism, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Hui Zhou
- Department of Occupational Health and Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenchong Tan
- Department of Occupational Health and Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Huang
- Department of Burns, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Aiping He
- Department of Endocrinology and Metabolism, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Jieyou Li
- Department of Occupational Health and Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiali Huang
- Department of Endocrinology and Metabolism, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Wei Li
- Department of Dermatology and the Norris Comprehensive Cancer Center, Keck Medical Centre, University of Southern California, Los Angeles, California, USA
| | - Fei Zou
- Department of Occupational Health and Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - MengChen Zou
- Department of Endocrinology and Metabolism, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Lin DS, Zhang CY, Li L, Ye GH, Jiang LP, Jin Q. Circ_ROBO2/miR-149 Axis Promotes the Proliferation and Migration of Human Aortic Smooth Muscle Cells by Activating NF-κB Signaling. Cytogenet Genome Res 2021; 161:414-424. [PMID: 34649241 DOI: 10.1159/000517294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/18/2021] [Indexed: 11/19/2022] Open
Abstract
Atherosclerosis is the leading global cause of mortality. The occurrence of coronary artery disease (CAD) is regulated by a diversity of pathways, including circRNAs. However, the potential mechanisms of circRNAs in CAD remain unclear. Here, qRT-PCR was used to examine the expressions of miR-149 and circ_ROBO2. Their influences on cell proliferation, migration, and apoptosis were measured by CCK-8, trans-well, and flow cytometry assays, respectively. The protein levels of p-IκBα and NF-κB p65 were examined using western blot. The molecular interactions were validated using dual luciferase reporter and RNA pull-down assays. The expression patterns of circ_ROBO2 and miR-149 in CAD patients and PDGF-BB-treated human aortic smooth muscle cells (HASMCs) were upregulated and downregulated, respectively. Knockdown of circ_ROBO2 could markedly inhibit the capabilities of proliferation and migration, enhance the apoptotic rate, and suppress NF-κB signaling in PDGF-BB-treated HASMCs. Mechanistically, circ_ROBO2 acted as a sponge of miR-149 to activate TRAF6/NF-κB signaling. Rescue studies demonstrated that neither silencing miR-149 nor activation of NF-κB signaling obviously abolished the biological roles of circ_ROBO2 knockdown in PDGF-BB treated-HASMCs. This discovery elucidated a functional mechanism of circ_ROBO2 in CAD, suggesting that circRNAs serve a vital role in the progression of CAD.
Collapse
Affiliation(s)
- Dong-Sheng Lin
- Department of Cardiovascular Medicine, The First Hospital of Changsha, Changsha, China
| | - Chi-Yuan Zhang
- Department of Cardiovascular Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Liang Li
- Department of Cardiovascular Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Guo-Hong Ye
- Department of Cardiovascular Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Lu-Ping Jiang
- Department of Cardiovascular Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Qiao Jin
- Department of Cardiovascular Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
6
|
Du S, Ling H, Guo Z, Cao Q, Song C. Roles of exosomal miRNA in vascular aging. Pharmacol Res 2020; 165:105278. [PMID: 33166733 DOI: 10.1016/j.phrs.2020.105278] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
Aging is a major risk factor for human diseases. As global average life expectancy has lengthened, delaying or reducing aging and age-related diseases has become an urgent issue for improving the quality of life. The vascular aging process represents an important link between aging and age-related diseases. Exosomes are small extracellular vesicles (EV) that can be secreted by almost all eukaryotic cells, and they deliver characteristic biological information about donor cells to regulate the cellular microenvironment, mediate signal transmission between neighboring or distant cells, and affect the expression of target genes in recipient cells. Many recent studies have shown that exosomal microribonucleic acids (miRNA) are involved in the regulation of vascular aging by participating in the physiological functions of vascular cells and the destruction and remodeling of the extracellular matrix (ECM). This review summarizes the regulatory functions of exosomal miRNA in vascular aging because they interact with the ECM, and participate in vascular cell senescence, and the regulation of senescence-related functions such as proliferation, migration, apoptosis, inflammation, and differentiation.
Collapse
Affiliation(s)
- Shuangshuang Du
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Hao Ling
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Ziyuan Guo
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qidong Cao
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Chunli Song
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
7
|
Choi J, Kim BY, Son Y, Lee D, Hong YS, Kim MS, Kim K. Reblastatins Inhibit Phenotypic Changes of Monocytes/Macrophages in a Milieu Rich in 27-Hydroxycholesterol. Immune Netw 2020; 20:e17. [PMID: 32395369 PMCID: PMC7192833 DOI: 10.4110/in.2020.20.e17] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/02/2020] [Accepted: 04/21/2020] [Indexed: 01/20/2023] Open
Abstract
We investigated effects of reblastatins on phenotypic changes in monocytes/macrophages induced by 27-hydroxycholesterol (27OHChol). Treatment of THP-1 monocytic cells with reblastatin derivatives, such as 17-demethoxy-reblastatin (17-DR), 18-dehydroxyl-17-demethoxyreblastatin (WK88-1), 18-hydroxyl-17-demethoxyreblastatin (WK88-2), and 18-hydroxyl-17-demethoxy-4,5-dehydroreblastatin (WK88-3), resulted in blockage of CCL2, CCL3, and CCL4 expression at the transcription and protein levels, which, in turn, impaired migration of monocytes/macrophages and Jurkat T cells expressing CCR5, and almost complete inhibition of transcription of M1 marker cytokines, like CXCL10, CXCL11, and TNF-α. Reblastatins also downregulated surface CD14 as well as soluble CD14 along with inhibition of LPS response and matrix metalloprotease-9 expression. Surface levels of mature dendritic cell (mDC)-specific markers, including CD80, CD83, CD88, CD197, and MHC class I and II molecules, were remarkably down-regulated, and 27OHChol-induced decrease of endocytic activity was recovered following treatment with 17-DR, WK88-1, WK88-2, and WK88-3. However, 15-hydroxyl-17-demethoxyreblastatin (DHQ3) did not affect the molecular or functional changes in monocytic cells induced by 27OHChol. Furthermore, surface levels of CD105, CD137, and CD166 were also down-regulated by 17-DR, WK88-1, WK88-2, and WK88-3, but not by DHQ3. Collectively, results of the current study indicate that, except DHQ3, reblastatins regulate the conversion and differentiation of monocytic cells to an immunostimulatory phenotype and mDCs, respectively, which suggests possible applications of reblastatins for immunomodulation in a milieu rich in oxygenated cholesterol molecules.
Collapse
Affiliation(s)
- Jeongyoon Choi
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Bo-Young Kim
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Yonghae Son
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Dongho Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Young-Soo Hong
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
| | - Min Su Kim
- Department of Thoracic and Cardiovascular Surgery, Pusan National University Hospital, Busan 49241, Korea
| | - Koanhoi Kim
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan 50612, Korea
| |
Collapse
|
8
|
Kim J, Lee KP, Kim BS, Lee SJ, Moon BS, Baek S. Heat shock protein 90 inhibitor AUY922 attenuates platelet-derived growth factor-BB-induced migration and proliferation of vascular smooth muscle cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:241-248. [PMID: 32392915 PMCID: PMC7193915 DOI: 10.4196/kjpp.2020.24.3.241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 11/15/2022]
Abstract
Luminespib (AUY922), a heat shock proteins 90 inhibitor, has anti-neoplastic and antitumor effects. However, it is not clear whether AUY922 affects events in vascular diseases. We investigated the effects of AUY922 on the platelet-derived growth factor (PDGF)-BB-stimulated proliferation and migration of vascular smooth muscle cells (VSMC). VSMC viability was detected using the XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) reagent. To detect the attenuating effects of AUY922 on PDGF-BB-induced VSMCs migration in vitro, we performed the Boyden chamber and scratch wound healing assays. To identify AUY922-mediated changes in the signaling pathway, the phosphorylation of protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) 1/2 was analyzed by immunoblotting. The inhibitory effects of AUY922 on migration and proliferation ex vivo were tested using an aortic ring assay. AUY922 was not cytotoxic at concentrations up to 5 nM. PDGF-BB-induced VSMC proliferation, migration, and sprout outgrowth were significantly decreased by AUY922 in a dose-dependent manner. AUY922 significantly reduced the PDGF-BB-stimulated phosphorylation of Akt and ERK1/2. Furthermore, PD98059 (a selective ERK1/2 inhibitor) and LY294002 (a selective Akt inhibitor) decreased VSMC migration and proliferation by inhibiting phosphorylation of Akt and ERK1/2. Greater attenuation of PDGF-BB-induced cell viability and migration was observed upon treatment with PD98059 or LY294002 in combination with AUY922. AUY922 showed anti-proliferation and anti-migration effects towards PDGF-BBinduced VSMCs by regulating the phosphorylation of ERK1/2 and Akt. Thus, AUY922 is a candidate for the treatment of atherosclerosis and restenosis.
Collapse
Affiliation(s)
- Jisu Kim
- Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Korea
| | - Kang Pa Lee
- Research & Development Center, UMUST R&D Corporation, Seoul 05029, Korea
| | - Bom Sahn Kim
- Department of Nuclear Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul 07804, Korea
| | - Sang Ju Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Byung Seok Moon
- Department of Nuclear Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul 07804, Korea
| | - Suji Baek
- Research & Development Center, UMUST R&D Corporation, Seoul 05029, Korea
| |
Collapse
|
9
|
Zhang J, Hu C, Jiao X, Yang Y, Li J, Yu H, Qin Y, Wei Y. Potential Role of mRNAs and LncRNAs in Chronic Intermittent Hypoxia Exposure-Aggravated Atherosclerosis. Front Genet 2020; 11:290. [PMID: 32328084 PMCID: PMC7160761 DOI: 10.3389/fgene.2020.00290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is the pathological basis of cardiovascular disease. Obstructive sleep apnea (OSA) aggravates atherosclerosis, and chronic intermittent hypoxia (CIH) as a prominent feature of OSA plays an important role during the process of atherosclerosis. The mechanisms of CIH in the development of atherosclerosis remain unclear. In the current study, we used microarray to investigate differentially expressed mRNAs and long non-coding RNAs (lncRNAs) in aorta from five groups of ApoE–/– mice fed with a high-fat diet and exposed to various conditions: normoxia for 8 weeks, CIH for 8 weeks, normoxia for 12 weeks, CIH for 12 weeks, or CIH for 8 weeks followed by normoxia for 4 weeks. Selected transcripts were validated in aorta tissues and RT-qPCR analysis showed correlation with the microarray data. Gene Ontology analysis and pathway enrichment analysis were performed to explore the mRNA function. Bioinformatic analysis indicated that short-term CIH induced up-regulated mRNAs involved in inflammatory response. Pathway enrichment analysis of lncRNA co-localized mRNAs and lncRNA co-expressed mRNAs were performed to explore lncRNA functions. The up-regulated mRNAs, lncRNA co-localized mRNAs and lncRNA co-expressed mRNAs were significantly associated with protein processing in endoplasmic reticulum pathway in atherosclerotic vascular tissue with long-term CIH exposure, suggesting that differentially expressed mRNAs and lncRNAs play important roles in this pathway. Moreover, a mRNA-lncRNA co-expression network with 380 lncRNAs, 508 mRNAs and 3238 relationships was constructed based on the correlation analysis between the differentially expressed mRNAs and lncRNAs. In summary, our study provided a systematic perspective on the potential function of mRNAs and lncRNAs in CIH-aggravated atherosclerosis, and may provide novel molecular candidates for future investigation on atherosclerosis exposed to CIH.
Collapse
Affiliation(s)
- Jing Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China.,Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Chaowei Hu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China.,Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Xiaolu Jiao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China.,Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yunyun Yang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China.,Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Juan Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China.,Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Huahui Yu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China.,Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yanwen Qin
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China.,Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yongxiang Wei
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China.,Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| |
Collapse
|
10
|
Kassem MM, Muqri F, Dacosta M, Bruch D, Gahtan V, Maier KG. Inhibition of heat shock protein 90 attenuates post‑angioplasty intimal hyperplasia. Mol Med Rep 2020; 21:1959-1964. [PMID: 32319637 DOI: 10.3892/mmr.2020.10994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/01/2019] [Indexed: 11/05/2022] Open
Abstract
Intimal hyperplasia (IH) is a pathologic process that leads to restenosis after treatment for peripheral arterial disease. Heat shock protein 90 (HSP90) is a molecular chaperone that regulates protein maturation. Activation of HSP90 results in increased cell migration and proliferation. 17‑N‑allylamino‑17‑demethoxygeldanamycin (17‑AAG) and 17‑dimethylaminoethylamino‑17‑demethoxygeldanamycin (17‑DMAG) are low toxicity Food and Drug Association approved HSP90 inhibitors. The current study hypothesized that HSP90 inhibition was predicted to reduce vascular smooth muscle cell (VSMC) migration and proliferation. In addition, localized HSP90 inhibition may inhibit post‑angioplasty IH formation. For proliferation, VSMCs were treated with serum‑free media (SFM), 17‑DMAG or 17‑AAG. The selected proliferative agents were SFM, platelet derived growth factor (PDGF) or fibronectin. After three days, proliferation was measured. For migration, VSMCs were treated with SFM, 17‑AAG or 17‑DMAG with SFM, PDGF or fibronectin as chemoattractants. Balloon injury to the carotid artery was performed in rats. The groups included in the present study were the control, saline control, 17‑DMAG in 20% pluronic gel delivered topically to the adventitia or intraluminal delivery of 17‑DMAG. After 14 days, arteries were fixed and sectioned for morphometric analysis. Data was analyzed using ANOVA or a student's t‑test. P<0.05 was considered to indicate a statistically significant difference. The results revealed that 17‑AAG and 17‑DMAG had no effect on cell viability. PDGF and fibronectin also increased VSMC proliferation and migration. Furthermore, both 17‑AAG and 17‑DMAG decreased cell migration and proliferation in all agonists. Topical adventitial treatment with 17‑DMAG after balloon arterial injury reduced IH. HSP90 inhibitors suppressed VSMC proliferation and migration without affecting cell viability. Topical treatment with a HSP90 inhibitor (DMAG) decreased IH formation after arterial injury. It was concluded that 17‑DMAG may be utilized as an effective therapy to prevent restenosis after revascularization.
Collapse
Affiliation(s)
- Mohammed M Kassem
- Department of Surgery, Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Furqan Muqri
- Department of Surgery, Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mary Dacosta
- College of Medicine, MD Program, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - David Bruch
- Department of Surgery, Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Vivian Gahtan
- Department of Surgery, Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Kristopher G Maier
- Department of Surgery, Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
11
|
Lim IR, Kim C, Jung JW, Kim JH, Hong SJ. Inhibition of Smooth Muscle Cell Proliferation and Migration by a Talin Modulator Attenuates Neointimal Formation after Femoral Arterial Injury. Korean Circ J 2020; 50:613-624. [PMID: 32588569 PMCID: PMC7321761 DOI: 10.4070/kcj.2019.0421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/19/2020] [Accepted: 03/17/2020] [Indexed: 11/11/2022] Open
Abstract
Background and Objectives Vascular smooth muscle cell (SMC) proliferation and migration play a critical role in neointimal formation. Focal adhesion is involved in cell proliferation and migration, and talin is known to be a key regulator of these processes. We synthesized a new talin modulator that binds to the talin protein, and investigated its effects on SMCs and neointimal formation after vascular injury. Methods Human aortic SMCs (HAoSMCs) were treated with a newly synthesized talin modulator. Apolipoprotein E knockout (ApoE KO) mice were subjected to left femoral arterial injury and orally administered with the talin modulator daily. Laser Doppler imager was used to compare the blood flow, and injured femoral arteries and blood serum were analyzed after 28 days. Results The talin modulator significantly inhibited cell proliferation in a concentration-dependent manner and suppressed the migration of HAoSMCs. Treatment with a talin modulator resulted in a significant reduction in the phosphorylation of focal adhesion molecules and downstream signaling molecules related to cell proliferation and migration. The effects of the talin modulator in HAoSMCs were found to be reversible, as evidenced by the reactivation of signaling pathways upon its removal. After 28 days of administration of the talin modulator, an improvement in the blood flow and reduction in neointimal formation in the injured femoral arteries were observed. Conclusions We demonstrated the inhibitory effects of a talin modulator on SMC proliferation and migration, and that were associated with downregulation of signaling pathways, resulting in the attenuation of neointimal formation in ApoE KO mice.
Collapse
Affiliation(s)
- I Rang Lim
- Department of Cardiology, Cardiovascular Center, Korea University College of Medicine, Seoul, Korea
| | - Chungho Kim
- Department of Life Sciences, Korea University College of Life Sciences and Biotechnology, Seoul, Korea
| | - Jong Wha Jung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Korea
| | - Jong Ho Kim
- Department of Cardiology, Cardiovascular Center, Korea University College of Medicine, Seoul, Korea.
| | - Soon Jun Hong
- Department of Cardiology, Cardiovascular Center, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Sun G, Song H, Wu S. miR‑19a promotes vascular smooth muscle cell proliferation, migration and invasion through regulation of Ras homolog family member B. Int J Mol Med 2019; 44:1991-2002. [PMID: 31573047 PMCID: PMC6844633 DOI: 10.3892/ijmm.2019.4357] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/10/2019] [Indexed: 12/25/2022] Open
Abstract
Diabetic patients with high glucose exhibit vascular smooth muscle cell (VSMC) alteration. Thrombotic disease is related to erosion of an unstable plaque, the instability of which leads to ruptures, for example, a thin fibrous cap derived from VSMCs. VSMC proliferation, migration and invasion are related to thrombotic diseases, including atherosclerosis. MicroRNA-19a (miR-19a) has been reported to have pleiotropic functions in cancer cell survival, apoptosis and migration. The present study aimed to investigate the effect of miR-19a on VSMC proliferation, migration and invasion, and its mechanism. Cell Counting Kit-8 and a propidium iodide kit were used to determine the proliferation and cycle of VSMCs. A cell migration assay was performed by scratching and Matrigel was used in a cell invasion assay. miR-19a binding to Ras homolog family member B (RHOB), and their protein and mRNA expressions were determined by performing a dual luciferase assay, western blotting and reverse transcription-quantitative PCR, respectively. It was demonstrated that miR-19a promoted the proliferation, migration and invasion of VSMCs, promoted the expressions of dual specificity phosphatase Cdc25A (CDC25A), cyclinD1, matrix metalloproteinase (MMP)-2, MMP-9, α-smooth muscle actin (α-SMA) and smooth muscle 22α (SM22α), and inhibited suppressor of cytokine signaling 3 and RHOB expressions in VSMCs, while miR-19a had no effect on the expression of T-cell intracellular antigen-1. The miR-19a site bound to the RHOB gene position and inhibited RHOB to promote VSMC proliferation, invasion and migration, and increased MMP-2, MMP-9, α-SMA and SM22α expressions. The present study suggested that miR-19a could promote VSMC proliferation, migration and invasion via the cyclinD1/CDC25A and MMP/α-SMA/SM22α signaling pathways. Moreover, miR-19a promoted proliferation, migration and invasion via the MMP/α-SMA/SM22α signaling pathway by inhibiting RHOB, suggesting that miR-19a is a possible regulatory factor of RHOB.
Collapse
Affiliation(s)
- Gengxin Sun
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Medical University, Center for Clinical Medical Research of Cardiovascular Diseases in Shaanxi Province, Xi'an, Shaanxi 710038, P.R. China
| | - Hui Song
- Electrocardiographic Room, Ankang Central Hospital, Ankang, Shaanxi 725000, P.R. China
| | - Suya Wu
- Department of Cardiology, Xingyuan Hospital, Yulin, Shaanxi 719000, P.R. China
| |
Collapse
|
13
|
El-Saka MH, Madi NM, Shahba A. The possible role of heat shock protein-70 induction in collagen-induced arthritis in rats. Physiol Int 2019; 106:128-139. [PMID: 31262206 DOI: 10.1556/2060.106.2019.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIM This study aimed to evaluate the possible role of heat shock protein-70 (HSP70) induction by 17-allylaminodemethoxygeldanamycin (17-AAG) in collagen-induced arthritis in rats. MATERIAL AND METHODS Male Wistar rats were divided into five groups (n = 10/group) and were treated intraperitoneally twice a week for 4 weeks, namely normal control (saline), arthritis control (AR; saline), AR + 17-AAG, AR + methotrexate (MTX), and AR + 17-AAG + MTX. At the end of the treatments, arthritic score was determined and then the animals were sacrificed. Erythrocyte sedimentation rate (ESR), serum levels of HSP70, interleukin-17 (IL-17), tumor necrosis factor-alpha (TNF-α), rheumatic factor (RF), C-reactive protein (CRP), malondialdehyde (MDA), glutathione peroxidase (GPx), and matrix metalloproteinase-9 (MMP-9) were determined. RESULTS In the AR group, all parameters increased significantly, except for GPx, which showed a pronounced decrease. The 17-AAG and/or MTX treatments significantly reduced arthritic score, ESR, IL-17, TNF-α, RF, CRP, MDA, and MMP-9 with significant increase in GPx compared to the AR group. The HSP70 level was significantly higher in the AR + 17-AAG and the AR + 17-AAG + MTX groups but significantly lower in the AR + MTX group as compared to the AR group. Also, it was significantly lower in the AR + MTX group as compared to the AR + 17-AAG group. CONCLUSION We concluded that HSP70 induction by 17-AAG attenuated the inflammatory process in a rheumatoid arthritis (RA) model induced by collagen, which suggested that HSP70 inducers can be promising agents in the treatment of RA.
Collapse
Affiliation(s)
- M H El-Saka
- 1 Department of Physiology, Faculty of Medicine, Tanta University , Tanta, Egypt
| | - N M Madi
- 1 Department of Physiology, Faculty of Medicine, Tanta University , Tanta, Egypt
| | - A Shahba
- 2 Department of Internal Medicine, Faculty of Medicine, Tanta University , Tanta, Egypt
| |
Collapse
|
14
|
Dai L, Zhou J, Li T, Qian Y, Jin L, Zhu C, Li S. STRIP2 silencing inhibits vascular smooth muscle cell proliferation and migration via P38-AKT-MMP-2 signaling pathway. J Cell Physiol 2019; 234:22463-22476. [PMID: 31093976 DOI: 10.1002/jcp.28810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022]
Abstract
STRIP2 (FAM40B) was reported to regulate tumor cell migration. Our study aims to discuss the effect of STRIP2 in mouse aortic smooth muscle cell (MOVAS) proliferation and migration processes, which contributes greatly to atherosclerosis formation. In MOVAS cells, STRIP2 depletion suppressed cell proliferation and migration, which were related to a remarkable decrease in matrix metalloproteinases-2 (MMP-2)/MMP-9 expression. Additionally, P38 mitogen-activated protein kinases and Protein kinase B (AKT) are inactivated while extracellular signal-regulated kinase (ERK1/2) and jun N-terminal kinase (JNK) are activated upon STRIP2 silencing. SB203580 (P38 inhibitor) further reduced AKT phosphorylation (p-AKT) while dehydrocorydaline chloride (Dc; P38 activator) reversed this effect. Furthermore, Dc significantly recovered MMP-2 expression in STRIP2-knockdown cells. As expected, overexpressing STRIP2 exhibited a contrary effect. Dc and AKT activator SC79 reversed the inhibition of cell proliferation and migration induced by STRIP2 silencing. Interestingly, STRIP2 depletion increased vascular endothelial growth factor level significantly. Taken together, STRIP2 contributed to cell proliferation and migration through P38-AKT-MMP-2 signaling in MOVAS cells, indicating the importance of STRIP2 in atherosclerosis.
Collapse
Affiliation(s)
- Li Dai
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jun Zhou
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Tiantian Li
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Qian
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Lai Jin
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Chao Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Shengnan Li
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Tong Y, Ye C, Ren XS, Qiu Y, Zang YH, Xiong XQ, Wang JJ, Chen Q, Li YH, Kang YM, Zhu GQ. Exosome-Mediated Transfer of ACE (Angiotensin-Converting Enzyme) From Adventitial Fibroblasts of Spontaneously Hypertensive Rats Promotes Vascular Smooth Muscle Cell Migration. Hypertension 2019; 72:881-888. [PMID: 30354715 DOI: 10.1161/hypertensionaha.118.11375] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Migration of vascular smooth muscle cells (VSMCs) is pivotal for vascular remodeling in hypertension. Vascular adventitial fibroblasts (AFs) are important in the homeostasis of vascular structure. This study is designed to investigate the roles of AF exosomes (AFE) in VSMC migration and underling mechanism. Primary VSMCs and AFs were obtained from the aorta of spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats. VSMC migration was evaluated with Boyden chamber assay and wound healing assay. AFE from WKY rats and SHR were isolated and identified. AFE from SHR promoted but AFE from WKY rats had no significant effect on VSMC migration. The effects of AFE on VSMC migration were prevented by an exosome inhibitor GW4869, an AT1R (Ang II [angiotensin II] type 1 receptor) antagonist losartan, or an inhibitor of ACE (angiotensin-converting enzyme) captopril. ACE contents and activity were much higher in AFE from SHR than those from WKY rats. There were no significant difference in Ang II and AT1R mRNA and protein levels between AFE from SHR and AFE from WKY rats. AFE from SHR increased Ang II and ACE contents and ACE activity in VSMCs of WKY rats and SHR. The changes of Ang II contents and ACE activity were prevented by captopril. ACE knockdown in AFs reduced ACE contents and activity in AFE from SHR and inhibited AFE-induced migration of VSMCs of WKY rats and those of SHR. These results indicate that exosomes from AFs of SHR transfer ACE to VSMCs, which increases Ang II levels and activates AT1R in VSMCs and thereby promotes VSMC migration.
Collapse
Affiliation(s)
- Ying Tong
- From the Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology (Y.T., C.Y., X.-S.R., Y.Q., Y.-H.Z., X.-Q.X., J.-J.W., G.-Q.Z.)
| | - Chao Ye
- From the Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology (Y.T., C.Y., X.-S.R., Y.Q., Y.-H.Z., X.-Q.X., J.-J.W., G.-Q.Z.)
| | - Xing-Sheng Ren
- From the Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology (Y.T., C.Y., X.-S.R., Y.Q., Y.-H.Z., X.-Q.X., J.-J.W., G.-Q.Z.)
| | - Yun Qiu
- From the Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology (Y.T., C.Y., X.-S.R., Y.Q., Y.-H.Z., X.-Q.X., J.-J.W., G.-Q.Z.)
| | - Ying-Hao Zang
- From the Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology (Y.T., C.Y., X.-S.R., Y.Q., Y.-H.Z., X.-Q.X., J.-J.W., G.-Q.Z.)
| | - Xiao-Qing Xiong
- From the Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology (Y.T., C.Y., X.-S.R., Y.Q., Y.-H.Z., X.-Q.X., J.-J.W., G.-Q.Z.)
| | | | - Qi Chen
- Department of Pathophysiology (Q.C., Y.-H.L., G.-Q.Z.), Nanjing Medical University, Jiangsu, China
| | - Yue-Hua Li
- Department of Pathophysiology (Q.C., Y.-H.L., G.-Q.Z.), Nanjing Medical University, Jiangsu, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, China (Y.-M.K.)
| | - Guo-Qing Zhu
- From the Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology (Y.T., C.Y., X.-S.R., Y.Q., Y.-H.Z., X.-Q.X., J.-J.W., G.-Q.Z.).,Department of Pathophysiology (Q.C., Y.-H.L., G.-Q.Z.), Nanjing Medical University, Jiangsu, China
| |
Collapse
|
16
|
Zeynali-Moghaddam S, Mohammadian M, Kheradmand F, Fathi-Azarbayjani A, Rasmi Y, Esna-Ashari O, Malekinejad H. A molecular basis for the synergy between 17‑allylamino‑17‑demethoxy geldanamycin with Capecitabine and Irinotecan in human colorectal cancer cells through VEFG and MMP-9 gene expression. Gene 2019; 684:30-38. [DOI: 10.1016/j.gene.2018.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022]
|
17
|
Doğanlar ZB, Uzun M, Ovali MA, Dogan A, Ongoren G, Doğanlar O. Melatonin attenuates caspase-dependent apoptosis in the thoracic aorta by regulating element balance and oxidative stress in pinealectomised rats. Appl Physiol Nutr Metab 2019; 44:153-163. [DOI: 10.1139/apnm-2018-0205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aim of this study was to explain the possible mechanisms by which melatonin deficiency results in cardiovascular injury and to investigate the effects of melatonin administration on important signalling pathways and element equilibrium in the thoracic aorta (TA). For this purpose, we analysed the cellular and molecular effects of melatonin deficiency or administration on oxidative stress, DNA damage, molecular chaperone response, and apoptosis induction in TA tissues of pinealectomised rats using ELISA, RAPD, qRT-PCR, and Western blot assays. The results showed that melatonin deficiency led to an imbalance in essential element levels, unfolded or misfolded proteins, increased lipid peroxidation, and selectively induced caspase-dependent apoptosis in TA tissues without significantly affecting the Bcl-2/BAX ratio (2.28 in pinealectomised rats, 2.73 in pinealectomised rats treated with melatonin). In pinealectomised rats, the genomic template stability (80.22%) was disrupted by the significantly increased oxidative stress, and heat shock protein 70 (20.96-fold), TNF-α (1.73-fold), caspase-8 (2.03-fold), and caspase-3 (2.87-fold) were markedly overexpressed compared with the sham group. Melatonin treatment was protective against apoptosis and inhibited oxidative damage. In addition, melatonin increased the survivin level and improved the regulation of element equilibrium in TA tissues. The results of the study indicate that melatonin deficiency induces TNF-α-related extrinsic apoptosis signals and that the administration of pharmacological doses of melatonin attenuates cardiovascular toxicity by regulating the increase in the rate of apoptosis caused by melatonin deficiency in TA tissue of Sprague–Dawley rats.
Collapse
Affiliation(s)
- Zeynep Banu Doğanlar
- Department of Medical Biology, Faculty of Medicine, Trakya University, 22030 Edirne, Turkey
| | - Metehan Uzun
- Department of Physiology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale 17020, Turkey
| | - Mehmet Akif Ovali
- Department of Physiology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale 17020, Turkey
| | - Ayten Dogan
- Department of Medical Biology, Faculty of Medicine, Trakya University, 22030 Edirne, Turkey
| | - Gulin Ongoren
- Department of Medical Biology, Faculty of Medicine, Trakya University, 22030 Edirne, Turkey
| | - Oğuzhan Doğanlar
- Department of Medical Biology, Faculty of Medicine, Trakya University, 22030 Edirne, Turkey
| |
Collapse
|
18
|
Chen X, Wang Q, Li X, Wang Q, Xie J, Fu X. Heat shock pretreatment of mesenchymal stem cells for inhibiting the apoptosis of ovarian granulosa cells enhanced the repair effect on chemotherapy-induced premature ovarian failure. Stem Cell Res Ther 2018; 9:240. [PMID: 30257708 PMCID: PMC6158904 DOI: 10.1186/s13287-018-0964-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Premature ovarian failure (POF) is a severe complication associated with chemotherapy for female patients of childbearing age. A previous study has shown that bone marrow-derived mesenchymal stem cells (MSCs) can partially repair the damaged ovarian structure and function following chemotherapy. Heat shock (HS) is a pretreatment to enhance cell survival. The present study aimed to demonstrate the repair effect and potential working mechanism of HS MSCs on chemotherapy-induced POF. METHODS Rat MSCs were isolated, cultured and identified. At 24 h, 48 h and 72 h after different strengths of HS pretreatment for 30 min, 1 h, 2 h and 3 h, apoptosis of MSCs was detected to determine the optimal conditions. Apoptosis and cell proliferation changes of MSCs were detected under the optimal conditions of HS. Apoptosis of HS preconditioned MSCs was detected after adding phosphamide mustard (PM) to mimic the microenvironment under chemotherapy. Rat granulosa cells (GCs) were isolated and cultured. PM was added and apoptosis of GCs was detected after coculture with the pretreated MSCs. The rat model of chemotherapy-induced POF was established and the pretreated MSCs were injected into bilateral ovaries. Ovarian structure and endocrine function were evaluated by ovary weight, follicle count, estrous cycle and sex hormone levels. Apoptosis of GCs was detected by TUNEL assay. RESULTS The apoptosis rate of MSCs with 1 h of HS pretreatment decreased significantly, so 1 h was considered the optimal duration. Under this condition, the reduction in the apoptosis rate persisted until 120 h after the pretreatment and cell proliferation was accelerated. After HS pretreatment, MSCs displayed an increased tolerance to microenvironment under chemotherapy. After coculture with the HS-pretreated MSCs, PM-induced apoptosis of GCs decreased. Injection of the pretreated MSCs into the rat ovaries caused an increase in ovary weight and the number of follicles at different stages of estradiol levels, and a decrease in follicle stimulating hormone levels and apoptosis of GCs in the POF model. CONCLUSION HS pretreatment enhanced the repair effect of MSCs on chemotherapy-induced POF. The reason for this may be the further vitality enhancement of MSCs, which led to a greater inhibition of apoptosis of GCs.
Collapse
Affiliation(s)
- Xiaoying Chen
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qing Wang
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xinran Li
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qingru Wang
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jiaxin Xie
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiafei Fu
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
19
|
Wang Y, Song X, Li Z, Liu B. Long non-coding RNAs in coronary atherosclerosis. Life Sci 2018; 211:189-197. [PMID: 30195033 DOI: 10.1016/j.lfs.2018.08.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/26/2022]
Abstract
Coronary atherosclerosis (CAS), a leading cause of cardiovascular disease, is a major cause of death worldwide. CAS is a chronic disease in the aorta that can be caused by dyslipidemia, abnormal glucose metabolism, endothelial cell dysfunction, vascular smooth muscle cell (VSMC) or fibrous connective tissue hyperplasia, immune inflammatory reactions, and many other factors. The pathogenesis of CAS is not fully understood, as it is a complex lesion complicated by multiple factors. Damage-response theories have put forward endothelial cell (EC) injury as the initiating factor for CAS; the addition of lipid metabolism disorders may enhance monocyte adhesion, increase the proliferation and migration of fibroblasts and VSMCs, and accelerate the development of CAS. Furthermore, inflammatory and immune responses can create a vicious cycle of endothelial injury, which also plays key roles in the formation of CAS. Therefore, in order to elucidate the mechanisms controlling CAS, it is important to study the etiology of vascular cell dysfunction, abnormal energy and metabolism disorders, and immune and inflammatory reactions. Non-coding RNAs play regulatory roles in the pathogenesis of CAS, especially long non-coding RNAs (lncRNAs); lncRNAs have recently become a major focus for cardiovascular disease mechanisms, as they play numerous roles in the progression of CAS. Therefore, in this review, we discuss the role of lncRNAs in the pathogenesis of coronary CAS, and their role in the prevention and treatment of coronary CAS.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xianjing Song
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zhibo Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
20
|
Hoter A, El-Sabban ME, Naim HY. The HSP90 Family: Structure, Regulation, Function, and Implications in Health and Disease. Int J Mol Sci 2018; 19:E2560. [PMID: 30158430 PMCID: PMC6164434 DOI: 10.3390/ijms19092560] [Citation(s) in RCA: 396] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/22/2022] Open
Abstract
The mammalian HSP90 family of proteins is a cluster of highly conserved molecules that are involved in myriad cellular processes. Their distribution in various cellular compartments underlines their essential roles in cellular homeostasis. HSP90 and its co-chaperones orchestrate crucial physiological processes such as cell survival, cell cycle control, hormone signaling, and apoptosis. Conversely, HSP90, and its secreted forms, contribute to the development and progress of serious pathologies, including cancer and neurodegenerative diseases. Therefore, targeting HSP90 is an attractive strategy for the treatment of neoplasms and other diseases. This manuscript will review the general structure, regulation and function of HSP90 family and their potential role in pathophysiology.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover 30559, Germany.
| | - Marwan E El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover 30559, Germany.
| |
Collapse
|
21
|
Pfeiffer J, Tarbashevich K, Bandemer J, Palm T, Raz E. Rapid progression through the cell cycle ensures efficient migration of primordial germ cells - The role of Hsp90. Dev Biol 2018; 436:84-93. [PMID: 29477339 DOI: 10.1016/j.ydbio.2018.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/30/2017] [Accepted: 02/21/2018] [Indexed: 01/21/2023]
Abstract
Zebrafish primordial germ cells (PGCs) constitute a useful in vivo model to study cell migration and to elucidate the role of specific proteins in this process. Here we report on the role of the heat shock protein Hsp90aa1.2, a protein whose RNA level is elevated in the PGCs during their migration. Reducing Hsp90aa1.2 activity slows down the progression through the cell cycle and leads to defects in the control over the MTOC number in the migrating cells. These defects result in a slower migration rate and compromise the arrival of PGCs at their target, the region where the gonad develops. Our results emphasize the importance of ensuring rapid progression through the cell cycle during single-cell migration and highlight the role of heat shock proteins in the process.
Collapse
Affiliation(s)
- Jana Pfeiffer
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| | - Katsiaryna Tarbashevich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| | - Jan Bandemer
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| | - Thomas Palm
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany.
| |
Collapse
|
22
|
Wang GK, Li SH, Zhao ZM, Liu SX, Zhang GX, Yang F, Wang Y, Wu F, Zhao XX, Xu ZY. Inhibition of heat shock protein 90 improves pulmonary arteriole remodeling in pulmonary arterial hypertension. Oncotarget 2018; 7:54263-54273. [PMID: 27472464 PMCID: PMC5342340 DOI: 10.18632/oncotarget.10855] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 07/17/2016] [Indexed: 01/25/2023] Open
Abstract
While the molecular chaperone heat shock protein 90 (HSP90) is involved in a multitude of physiological and pathological processes, its role relating to pulmonary arterial hypertension (PAH) remains unclear. In the present study, we investigated the effect in which HSP90 improves pulmonary arteriole remodeling, and explored the therapeutic utility of targeting HSP90 as therapeutic drug for PAH. By Elisa and immunohistochemistry, HSP90 was found to be increased in both plasma and membrane walls of pulmonary arterioles from PAH patients. Moreover, plasma HSP90 levels positively correlated with mean pulmonary arterial pressure and C-reactive protein. In a monocrotaline-induced rat model of PH, we found that 17-AAG, a HSP90-inhibitor, alleviated the progress of PH, demonstrated by lower pulmonary arterial pressure and absence of right ventricular hypertrophy. Immunohistochemical staining demonstrated that 17-AAG improved pulmonary arteriole remodeling on the basis of reduced wall thickness and wall area. The inflammatory response attributed to PH could be attenuated by 17-AAG through reduction of NF-κB signaling. Moreover, 17-AAG was found to suppress PDGF-stimulated proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through induction of cell cycle arrest in the G1 phase. In conclusion, HSP90 inhibitor 17-AAG could improve pulmonary arteriole remodeling via inhibiting the excessive proliferation of PASMCs, and inhibition of HSP90 may represent a therapeutic avenue for the treatment of PAH.
Collapse
Affiliation(s)
- Guo-Kun Wang
- Institution of Cardiac Surgery, Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Song-Hua Li
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhi-Min Zhao
- Institution of Cardiac Surgery, Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Su-Xuan Liu
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Guan-Xin Zhang
- Institution of Cardiac Surgery, Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Fan Yang
- Institution of Cardiac Surgery, Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yang Wang
- Institution of Cardiac Surgery, Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Feng Wu
- Department of Cardiology, 98th Military Hospital, Huzhou, Zhejiang, China
| | - Xian-Xian Zhao
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhi-Yun Xu
- Institution of Cardiac Surgery, Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
23
|
Zheng H, Han Y, Du Y, Shi X, Huang H, Yu X, Tan X, Hu C, Wang Y, Zhou S. Regulation of Hypertension for Secondary Prevention of Stroke: The Possible 'Bridging Function' of Acupuncture. Complement Med Res 2018; 25:45-51. [PMID: 29393105 DOI: 10.1159/000475930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, stroke is the leading cause of mortality and disability, with hypertension being an independent risk factor for a secondary stroke. Acupuncture for the treatment of hypertension gains more attention in alternative and complementary medicine, but the results are inconsistent. Few studies regarding the secondary prevention of stroke by managing hypertension with acupuncture have been carried out as there are some problems regarding the antihypertensive drug status in the secondary prevention of stroke. Still, the potential of acupuncture in regulating the blood pressure for secondary stroke prevention deserves our focus. This review is based on papers recorded in the PubMed, Embase, and Web of Science databases, from their inception until March 28, 2017, and retrieved with the following search terms: hypertension and acupuncture, limited in spontaneously hypertensive rats (SHRs), stress-induced (or cold-induced) hypertensive or pre-hypertensive models. We find that, in these hypertensive animals, acupuncture could mainly influence factors related to the nervous system, oxidative stress, the endocrine system, cardiovascular function, and hemorheology, which are closely associated with the stroke outcome. This trend may give us a hint that acupuncture might well participate in the secondary prevention of stroke through these pathways when used in the management of hypertension.
Collapse
|
24
|
Sontake V, Wang Y, Kasam RK, Sinner D, Reddy GB, Naren AP, McCormack FX, White ES, Jegga AG, Madala SK. Hsp90 regulation of fibroblast activation in pulmonary fibrosis. JCI Insight 2017; 2:e91454. [PMID: 28239659 DOI: 10.1172/jci.insight.91454] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe fibrotic lung disease associated with fibroblast activation that includes excessive proliferation, tissue invasiveness, myofibroblast transformation, and extracellular matrix (ECM) production. To identify inhibitors that can attenuate fibroblast activation, we queried IPF gene signatures against a library of small-molecule-induced gene-expression profiles and identified Hsp90 inhibitors as potential therapeutic agents that can suppress fibroblast activation in IPF. Although Hsp90 is a molecular chaperone that regulates multiple processes involved in fibroblast activation, it has not been previously proposed as a molecular target in IPF. Here, we found elevated Hsp90 staining in lung biopsies of patients with IPF. Notably, fibroblasts isolated from fibrotic lesions showed heightened Hsp90 ATPase activity compared with normal fibroblasts. 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), a small-molecule inhibitor of Hsp90 ATPase activity, attenuated fibroblast activation and also TGF-β-driven effects on fibroblast to myofibroblast transformation. The loss of the Hsp90AB, but not the Hsp90AA isoform, resulted in reduced fibroblast proliferation, myofibroblast transformation, and ECM production. Finally, in vivo therapy with 17-AAG attenuated progression of established and ongoing fibrosis in a mouse model of pulmonary fibrosis, suggesting that targeting Hsp90 represents an effective strategy for the treatment of fibrotic lung disease.
Collapse
Affiliation(s)
- Vishwaraj Sontake
- Division of Pulmonary Medicine.,Department of Biochemistry, National Institute of Nutrition, Hyderabad, Telangana, India
| | | | - Rajesh K Kasam
- Division of Pulmonary Medicine.,Department of Biochemistry, National Institute of Nutrition, Hyderabad, Telangana, India
| | - Debora Sinner
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio USA
| | - Geereddy B Reddy
- Department of Biochemistry, National Institute of Nutrition, Hyderabad, Telangana, India
| | | | - Francis X McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio USA
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, AnnArbor, Michigan, USA
| | | | | |
Collapse
|
25
|
Sun HJ, Zhao MX, Ren XS, Liu TY, Chen Q, Li YH, Kang YM, Wang JJ, Zhu GQ. Salusin-β Promotes Vascular Smooth Muscle Cell Migration and Intimal Hyperplasia After Vascular Injury via ROS/NFκB/MMP-9 Pathway. Antioxid Redox Signal 2016; 24:1045-57. [PMID: 26952533 DOI: 10.1089/ars.2015.6475] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Media-to-intima migration of vascular smooth muscle cells (VSMCs) is critical to intimal thickening in atherosclerosis and restenosis after coronary angioplasty. The aim of this study is to determine the effects of salusin-β on VSMC migration and intimal hyperplasia after vascular injury and the underlying mechanism. RESULTS In vitro, salusin-β promoted VSMC migration, which was attenuated by matrix metalloproteinase (MMP)-9 inhibition. Inhibition or knockdown of p65-nuclear factor kappa beta (NFκB) in VSMCs suppressed salusin-β-induced MMP-9 expression and VSMC migration. Salusin-β increased NADPH oxidase 2 (NOX2) expression and reactive oxygen species (ROS) production, which were prevented by NOX2-small interfering RNA (siRNA) transfection. Salusin-β-induced p65-NFκB translocation, MMP-9 expression, and VSMC migration were inhibited by ROS scavenger, NADPH oxidase inhibitor, or NOX2-siRNA. In vivo, carotid artery ligation-induced vascular injury resulted in intimal hyperplasia in injured artery in rats. Salusin-β was upregulated in the injured carotid arteries of rats, which was attributed to reduced miR-133a-3p expression. Knockdown of salusin-β with siRNA attenuated the vascular injury-induced intimal thickening, p65-NFκB nuclear translocation, and NOX2 and MMP-9 expressions in rats. INNOVATION Salusin-β is a critical modulator in VSMC migration and neointima formation in response to vascular injury. CONCLUSIONS Salusin-β promotes VSMC migration and vascular injury-induced intimal hyperplasia via MMP-9 accumulation due to NOX2 activation, followed by ROS production, IκBα phosphorylation and degradation, and p65-NFκB translocation. We propose that salusin-β may be important in the VSMC migration and neointima of some vascular diseases. Antioxid. Redox Signal. 24, 1045-1057.
Collapse
Affiliation(s)
- Hai-Jian Sun
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University , Nanjing, China
| | - Ming-Xia Zhao
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University , Nanjing, China
| | - Xing-Sheng Ren
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University , Nanjing, China
| | - Tong-Yan Liu
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University , Nanjing, China
| | - Qi Chen
- 2 Department of Pathophysiology, Nanjing Medical University , Nanjing, China
| | - Yue-Hua Li
- 2 Department of Pathophysiology, Nanjing Medical University , Nanjing, China
| | - Yu-Ming Kang
- 3 Department of Physiology and Pathophysiology, Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine , Xi'an, China
| | - Jue-Jin Wang
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University , Nanjing, China
| | - Guo-Qing Zhu
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University , Nanjing, China
| |
Collapse
|
26
|
Presa N, Gomez-Larrauri A, Rivera IG, Ordoñez M, Trueba M, Gomez-Muñoz A. Regulation of cell migration and inflammation by ceramide 1-phosphate. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:402-9. [DOI: 10.1016/j.bbalip.2016.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/13/2022]
|
27
|
Endothelial nitric oxide synthase induces heat shock protein HSPA6 (HSP70B') in human arterial smooth muscle cells. Nitric Oxide 2015; 52:41-8. [PMID: 26656590 DOI: 10.1016/j.niox.2015.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 11/22/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) is the major source of nitric oxide (NO) production in blood vessels. One of the pleitropic functions of eNOS derived NO is to inhibit vascular smooth muscle cell proliferation in the blood vessel wall, and whose dysfunction is a primary cause of atherosclerosis and restenosis. In this study there was an interest in examining the gene profile of eNOS adenoviral (Ad-eNOS) transduced human coronary artery smooth muscle cells (HCASMC) to further understand the eNOS inhibitory effect on smooth muscle cell proliferation. To this aim a whole genome wide analysis of eNOS transduced HCASMCs was performed. A total of 19 genes were up regulated, and 31 genes down regulated in Ad-eNOS transduced HCASMCs compared to cells treated with an empty adenovirus. Noticeably, a cluster of HSP70 gene family members was amongst the genes up regulated. Quantitative PCR confirmed that transcripts for HSPA1A (HSP70A), HSPA1B (HSP70B) and HSPA6 (HSP70B') were elevated 2, 1.7 and 14-fold respectively in Ad-eNOS treated cells. The novel gene HSPA6 was further explored as a potential mediator of eNOS signaling in HCASMC. Immunoblotting showed that HSPA6 protein was induced by Ade-NOS. To functionally examine the effect of HSPA6 on SMCs, an adenovirus harboring the HSPA6 gene under the control of a constitutive promoter was generated. Transduction of HCASMCs with Ad-HSPA6 inhibited SMC proliferation at 3 and 6 days post serum growth stimulation, and paralleled the Ad-eNOS inhibition of SMC growth. The identification in this study that HSPA6 overexpression inhibits SMC proliferation coupled with the recent finding that inhibition of HSP90 has a similar effect, progresses the field of targeting HSPs for vascular repair.
Collapse
|
28
|
Lazaro I, Oguiza A, Recio C, Mallavia B, Madrigal-Matute J, Blanco J, Egido J, Martin-Ventura JL, Gomez-Guerrero C. Targeting HSP90 Ameliorates Nephropathy and Atherosclerosis Through Suppression of NF-κB and STAT Signaling Pathways in Diabetic Mice. Diabetes 2015; 64:3600-13. [PMID: 26116697 DOI: 10.2337/db14-1926] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/20/2015] [Indexed: 11/13/2022]
Abstract
Heat shock proteins (HSPs) are induced by cellular stress and function as molecular chaperones that regulate protein folding. Diabetes impairs the function/expression of many HSPs, including HSP70 and HSP90, key regulators of pathological mechanisms involved in diabetes complications. Therefore, we investigated whether pharmacological HSP90 inhibition ameliorates diabetes-associated renal damage and atheroprogression in a mouse model of combined hyperglycemia and hyperlipidemia (streptozotocin-induced diabetic apolipoprotein E-deficient mouse). Treatment of diabetic mice with 17-dimethylaminoethylamino-17-demethoxygeldanamycin (DMAG, 2 and 4 mg/kg, 10 weeks) improved renal function, as evidenced by dose-dependent decreases in albuminuria, renal lesions (mesangial expansion, leukocyte infiltration, and fibrosis), and expression of proinflammatory and profibrotic genes. Furthermore, DMAG significantly reduced atherosclerotic lesions and induced a more stable plaque phenotype, characterized by lower content of lipids, leukocytes, and inflammatory markers, and increased collagen and smooth muscle cell content. Mechanistically, the renoprotective and antiatherosclerotic effects of DMAG are mediated by the induction of protective HSP70 along with inactivation of nuclear factor-κB (NF-κB) and signal transducers and activators of transcription (STAT) and target gene expression, both in diabetic mice and in cultured cells under hyperglycemic and proinflammatory conditions. In conclusion, HSP90 inhibition by DMAG restrains the progression of renal and vascular damage in experimental diabetes, with potential implications for the prevention of diabetes complications.
Collapse
Affiliation(s)
- Iolanda Lazaro
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Ainhoa Oguiza
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Carlota Recio
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Beñat Mallavia
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Julio Madrigal-Matute
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY
| | - Julia Blanco
- Department of Pathology, Hospital Clinico San Carlos, Madrid, Spain
| | - Jesus Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Jose-Luis Martin-Ventura
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Carmen Gomez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| |
Collapse
|