1
|
Guijarro C, Song S, Aigouy B, Clément R, Villoutreix P, Kelly RG. Single-cell morphometrics reveals T-box gene-dependent patterns of epithelial tension in the Second Heart field. Nat Commun 2024; 15:9512. [PMID: 39496595 PMCID: PMC11535409 DOI: 10.1038/s41467-024-53612-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
The vertebrate heart tube extends by progressive addition of epithelial second heart field (SHF) progenitor cells from the dorsal pericardial wall. The interplay between epithelial mechanics and genetic mechanisms during SHF deployment is unknown. Here, we present a quantitative single-cell morphometric analysis of SHF cells during heart tube extension, including force inference analysis of epithelial stress. Joint spatial Principal Component Analysis reveals that cell orientation and stress direction are the main parameters defining apical cell morphology and distinguishes cells adjacent to the arterial and venous poles. Cell shape and mechanical forces display a dynamic relationship during heart tube formation. Moreover, while the T-box transcription factor Tbx1 is necessary for cell orientation towards the arterial pole, activation of Tbx5 in the posterior SHF correlates with the establishment of epithelial stress and SHF deletion of Tbx5 relaxes the progenitor epithelium. Integrating findings from cell-scale feature patterning and mechanical stress provides new insights into cardiac morphogenesis.
Collapse
Affiliation(s)
- Clara Guijarro
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Turing Centre for Living Systems, Marseille, France
- Aix-Marseille Université, LIS, UMR 7020, Turing Centre for Living Systems, Marseille, France
- Aix-Marseille Université, MMG, Inserm U1251, Turing Centre for Living Systems, Marseille, France
| | - Solène Song
- Aix-Marseille Université, LIS, UMR 7020, Turing Centre for Living Systems, Marseille, France
- Aix-Marseille Université, MMG, Inserm U1251, Turing Centre for Living Systems, Marseille, France
| | - Benoit Aigouy
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Raphaël Clément
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Paul Villoutreix
- Aix-Marseille Université, LIS, UMR 7020, Turing Centre for Living Systems, Marseille, France.
- Aix-Marseille Université, MMG, Inserm U1251, Turing Centre for Living Systems, Marseille, France.
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
2
|
Bolesani E, Bornhorst D, Iyer LM, Zawada D, Friese N, Morgan M, Lange L, Gonzalez DM, Schrode N, Leffler A, Wunder J, Franke A, Drakhlis L, Sebra R, Schambach A, Goedel A, Dubois NC, Dobreva G, Moretti A, Zelaráyan LC, Abdelilah-Seyfried S, Zweigerdt R. Transient stabilization of human cardiovascular progenitor cells from human pluripotent stem cells in vitro reflects stage-specific heart development in vivo. Cardiovasc Res 2024; 120:1295-1311. [PMID: 38836637 DOI: 10.1093/cvr/cvae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/11/2024] [Accepted: 04/06/2024] [Indexed: 06/06/2024] Open
Abstract
AIMS Understanding the molecular identity of human pluripotent stem cell (hPSC)-derived cardiac progenitors and mechanisms controlling their proliferation and differentiation is valuable for developmental biology and regenerative medicine. METHODS AND RESULTS Here, we show that chemical modulation of histone acetyl transferases (by IQ-1) and WNT (by CHIR99021) synergistically enables the transient and reversible block of directed cardiac differentiation progression on hPSCs. The resulting stabilized cardiovascular progenitors (SCPs) are characterized by ISL1pos/KI-67pos/NKX2-5neg expression. In the presence of the chemical inhibitors, SCPs maintain a proliferation quiescent state. Upon small molecules, removal SCPs resume proliferation and concomitant NKX2-5 up-regulation triggers cell-autonomous differentiation into cardiomyocytes. Directed differentiation of SCPs into the endothelial and smooth muscle lineages confirms their full developmental potential typical of bona fide cardiovascular progenitors. Single-cell RNA-sequencing-based transcriptional profiling of our in vitro generated human SCPs notably reflects the dynamic cellular composition of E8.25-E9.25 posterior second heart field of mouse hearts, hallmarked by nuclear receptor sub-family 2 group F member 2 expression. Investigating molecular mechanisms of SCP stabilization, we found that the cell-autonomously regulated retinoic acid and BMP signalling is governing SCP transition from quiescence towards proliferation and cell-autonomous differentiation, reminiscent of a niche-like behaviour. CONCLUSION The chemically defined and reversible nature of our stabilization approach provides an unprecedented opportunity to dissect mechanisms of cardiovascular progenitors' specification and reveal their cellular and molecular properties.
Collapse
Affiliation(s)
- Emiliano Bolesani
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Dorothee Bornhorst
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Lavanya M Iyer
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Dorota Zawada
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Nina Friese
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Lucas Lange
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - David M Gonzalez
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Nadine Schrode
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Julian Wunder
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Annika Franke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Lika Drakhlis
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Robert Sebra
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Alexander Goedel
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Nicole C Dubois
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gergana Dobreva
- Department of Anatomy and Developmental Biology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Laura C Zelaráyan
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
3
|
Guo X, Du X, Zhao G, Liu C, Gao J, Huang Z, Dong W. OSR1 suppresses oral squamous cell carcinoma proliferation and migration via the AXIN2/β-catenin pathway. Oral Dis 2024. [PMID: 39286942 DOI: 10.1111/odi.15135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/10/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVES The odd-skipped related transcription factor 1 (OSR1) gene exerts distinct regulatory effects on tumorigenesis and development in various cancer types. However, the precise role of OSR1 in oral squamous cell carcinoma (OSCC) remains to be elucidated. METHODS GEPIA 2 and TCGA databases were utilized to analyze the OSR1 expression in head and neck squamous cell carcinoma (HNSC) patients and its impact on prognosis. Hematoxylin-eosin staining, immunohistochemistry, immunofluorescence, western blotting, and RT-qPCR were employed to detect the OSR1 expression in OSCC tissues and cells. Lentivirus transfection was utilized for overexpression and downexpression of OSR1 in OSCC. CCK8 cell proliferation assay, colony formation and cell scratch assay were conducted to investigate the effects of OSR1 on biological behavior of OSCC cells. Western blotting and RT-qPCR were applied to investigate the regulatory mechanism of OSR1 on AXIN2/β-catenin signaling pathway. RESULTS OSR1 expression was significantly decreased in HNSC patients, OSCC tissues and cells, leading to a decrease in 5-year survival rate. OSR1 overexpression inhibited the proliferation and migration of OSCC cells, and the AXIN2/β-catenin signaling pathway was inhibited. Silencing OSR1 had the opposite effect. CONCLUSIONS OSR1 functioned as a tumor suppressor gene in OSCC proliferation and migration by regulating the AXIN2/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xintong Guo
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xinyi Du
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Gaoye Zhao
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Chongshen Liu
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jing Gao
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zunzhi Huang
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Wei Dong
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
4
|
Long X, Wei J, Fang Q, Yuan X, Du J. Single-cell RNA sequencing reveals the transcriptional heterogeneity of Tbx18-positive cardiac cells during heart development. Funct Integr Genomics 2024; 24:18. [PMID: 38265516 DOI: 10.1007/s10142-024-01290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024]
Abstract
The T-box family transcription factor 18 (Tbx18) has been found to play a critical role in regulating the development of the mammalian heart during the primary stages of embryonic development while the cellular heterogeneity and landscape of Tbx18-positive (Tbx18+) cardiac cells remain incompletely characterized. Here, we analyzed prior published single-cell RNA sequencing (scRNA-seq) mouse heart data to explore the heterogeneity of Tbx18+ cardiac cell subpopulations and provide a comprehensive transcriptional landscape of Tbx18+ cardiac cells during their development. Bioinformatic analysis methods were utilized to identify the heterogeneity between cell groups. Based on the gene expression characteristics, Tbx18+ cardiac cells can be classified into a minimum of two distinct cell populations, namely fibroblast-like cells and cardiomyocytes. In terms of temporal heterogeneity, these cells exhibit three developmental stages, namely the MEM stage, ML_P0 stage, and P stage Tbx18+ cardiac cells. Furthermore, Tbx18+ cardiac cells encompass several cell types, including cardiac progenitor-like cells, cardiomyocytes, and epicardial/stromal cells, as determined by specific transcriptional regulatory networks. The scRNA-seq results revealed the involvement of extracellular matrix (ECM) signals and epicardial epithelial-to-mesenchymal transition (EMT) in the development of Tbx18+ cardiac cells. The utilization of a lineage-tracing model served to validate the crucial function of Tbx18 in the differentiation of cardiac cells. Consequently, these findings offer a comprehensive depiction of the cellular heterogeneity within Tbx18+ cardiac cells.
Collapse
Affiliation(s)
- Xianglin Long
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jiangjun Wei
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qinghua Fang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
5
|
Wei N, Lee C, Duan L, Galdos FX, Samad T, Raissadati A, Goodyer WR, Wu SM. Cardiac Development at a Single-Cell Resolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:253-268. [PMID: 38884716 DOI: 10.1007/978-3-031-44087-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Mammalian cardiac development is a complex, multistage process. Though traditional lineage tracing studies have characterized the broad trajectories of cardiac progenitors, the advent and rapid optimization of single-cell RNA sequencing methods have yielded an ever-expanding toolkit for characterizing heterogeneous cell populations in the developing heart. Importantly, they have allowed for a robust profiling of the spatiotemporal transcriptomic landscape of the human and mouse heart, revealing the diversity of cardiac cells-myocyte and non-myocyte-over the course of development. These studies have yielded insights into novel cardiac progenitor populations, chamber-specific developmental signatures, the gene regulatory networks governing cardiac development, and, thus, the etiologies of congenital heart diseases. Furthermore, single-cell RNA sequencing has allowed for the exquisite characterization of distinct cardiac populations such as the hard-to-capture cardiac conduction system and the intracardiac immune population. Therefore, single-cell profiling has also resulted in new insights into the regulation of cardiac regeneration and injury repair. Single-cell multiomics approaches combining transcriptomics, genomics, and epigenomics may uncover an even more comprehensive atlas of human cardiac biology. Single-cell analyses of the developing and adult mammalian heart offer an unprecedented look into the fundamental mechanisms of cardiac development and the complex diseases that may arise from it.
Collapse
Affiliation(s)
- Nicholas Wei
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | - Carissa Lee
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | - Lauren Duan
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | | | - Tahmina Samad
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | | | | | - Sean M Wu
- Stanford University, Cardiovascular Institute, Stanford, CA, USA.
| |
Collapse
|
6
|
Bileckyj C, Blotz B, Cripps RM. Drosophila as a Model to Understand Second Heart Field Development. J Cardiovasc Dev Dis 2023; 10:494. [PMID: 38132661 PMCID: PMC10744189 DOI: 10.3390/jcdd10120494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The genetic model system Drosophila has contributed fundamentally to our understanding of mammalian heart specification, development, and congenital heart disease. The relatively simple Drosophila heart is a linear muscular tube that is specified and develops in the embryo and persists throughout the life of the animal. It functions at all stages to circulate hemolymph within the open circulatory system of the body. During Drosophila metamorphosis, the cardiac tube is remodeled, and a new layer of muscle fibers spreads over the ventral surface of the heart to form the ventral longitudinal muscles. The formation of these fibers depends critically upon genes known to be necessary for mammalian second heart field (SHF) formation. Here, we review the prior contributions of the Drosophila system to the understanding of heart development and disease, discuss the importance of the SHF to mammalian heart development and disease, and then discuss how the ventral longitudinal adult cardiac muscles can serve as a novel model for understanding SHF development and disease.
Collapse
Affiliation(s)
| | | | - Richard M. Cripps
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
7
|
Edwards W, Bussey OK, Conlon FL. The Tbx20-TLE interaction is essential for the maintenance of the second heart field. Development 2023; 150:dev201677. [PMID: 37756602 PMCID: PMC10629681 DOI: 10.1242/dev.201677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
T-box transcription factor 20 (Tbx20) plays a multifaceted role in cardiac morphogenesis and controls a broad gene regulatory network. However, the mechanism by which Tbx20 activates and represses target genes in a tissue-specific and temporal manner remains unclear. Studies show that Tbx20 directly interacts with the Transducin-like Enhancer of Split (TLE) family of proteins to mediate transcriptional repression. However, a function for the Tbx20-TLE transcriptional repression complex during heart development has yet to be established. We created a mouse model with a two amino acid substitution in the Tbx20 EH1 domain, thereby disrupting the Tbx20-TLE interaction. Disruption of this interaction impaired crucial morphogenic events, including cardiac looping and chamber formation. Transcriptional profiling of Tbx20EH1Mut hearts and analysis of putative direct targets revealed misexpression of the retinoic acid pathway and cardiac progenitor genes. Further, we show that altered cardiac progenitor development and function contribute to the severe cardiac defects in our model. Our studies indicate that TLE-mediated repression is a primary mechanism by which Tbx20 controls gene expression.
Collapse
Affiliation(s)
- Whitney Edwards
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Olivia K. Bussey
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Frank L. Conlon
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Vallecillo-García P, Orgeur M, Comai G, Poehle-Kronawitter S, Fischer C, Gloger M, Dumas CE, Giesecke-Thiel C, Sauer S, Tajbakhsh S, Höpken UE, Stricker S. A local subset of mesenchymal cells expressing the transcription factor Osr1 orchestrates lymph node initiation. Immunity 2023; 56:1204-1219.e8. [PMID: 37160119 DOI: 10.1016/j.immuni.2023.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 12/05/2022] [Accepted: 04/13/2023] [Indexed: 05/11/2023]
Abstract
During development, lymph node (LN) initiation is coordinated by lymphoid tissue organizer (LTo) cells that attract lymphoid tissue inducer (LTi) cells at strategic positions within the embryo. The identity and function of LTo cells during the initial attraction of LTi cells remain poorly understood. Using lineage tracing, we demonstrated that a subset of Osr1-expressing cells was mesenchymal LTo progenitors. By investigating the heterogeneity of Osr1+ cells, we uncovered distinct mesenchymal LTo signatures at diverse anatomical locations, identifying a common progenitor of mesenchymal LTos and LN-associated adipose tissue. Osr1 was essential for LN initiation, driving the commitment of mesenchymal LTo cells independent of neural retinoic acid, and for LN-associated lymphatic vasculature assembly. The combined action of chemokines CXCL13 and CCL21 was required for LN initiation. Our results redefine the role and identity of mesenchymal organizer cells and unify current views by proposing a model of cooperative cell function in LN initiation.
Collapse
Affiliation(s)
| | - Mickael Orgeur
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
| | - Glenda Comai
- Institut Pasteur, Stem Cells & Development Unit, CNRS UMR 3738, Paris, France
| | | | - Cornelius Fischer
- Core Facility Genomics, Berlin Institute of Health at Charité, 10178 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115, Berlin, Germany
| | - Marleen Gloger
- Max Delbrück Center for Molecular Medicine, Department of Translational Tumor Immunology, 13125 Berlin, Germany; Uppsala University, Immunology Genetics and Pathology, 75237 Uppsala, Sweden
| | - Camille E Dumas
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009 Marseille, France
| | | | - Sascha Sauer
- Core Facility Genomics, Berlin Institute of Health at Charité, 10178 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115, Berlin, Germany
| | - Shahragim Tajbakhsh
- Institut Pasteur, Stem Cells & Development Unit, CNRS UMR 3738, Paris, France
| | - Uta E Höpken
- Max Delbrück Center for Molecular Medicine, Department of Microenvironmental Regulation in Autoimmunity and Cancer, 13125 Berlin, Germany
| | - Sigmar Stricker
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
9
|
Feigin CY, Moreno JA, Ramos R, Mereby SA, Alivisatos A, Wang W, van Amerongen R, Camacho J, Rasweiler JJ, Behringer RR, Ostrow B, Plikus MV, Mallarino R. Convergent deployment of ancestral functions during the evolution of mammalian flight membranes. SCIENCE ADVANCES 2023; 9:eade7511. [PMID: 36961889 PMCID: PMC10038344 DOI: 10.1126/sciadv.ade7511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/21/2023] [Indexed: 05/20/2023]
Abstract
Lateral flight membranes, or patagia, have evolved repeatedly in diverse mammalian lineages. While little is known about patagium development, its recurrent evolution may suggest a shared molecular basis. By combining transcriptomics, developmental experiments, and mouse transgenics, we demonstrate that lateral Wnt5a expression in the marsupial sugar glider (Petaurus breviceps) promotes the differentiation of its patagium primordium. We further show that this function of Wnt5a reprises ancestral roles in skin morphogenesis predating mammalian flight and has been convergently used during patagium evolution in eutherian bats. Moreover, we find that many genes involved in limb development have been redeployed during patagium outgrowth in both the sugar glider and bat. Together, our findings reveal that deeply conserved genetic toolkits contribute to the evolutionary transition to flight in mammals.
Collapse
Affiliation(s)
- Charles Y. Feigin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jorge A. Moreno
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Raul Ramos
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Sarah A. Mereby
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ares Alivisatos
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Wei Wang
- Lewis Sigler Institute, Princeton University, Princeton, NJ 08544, USA
| | - Renée van Amerongen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Jasmin Camacho
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - John J. Rasweiler
- Department of Obstetrics and Gynecology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Richard R. Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bruce Ostrow
- Department of Biology, Grand Valley State University, Allendale, MI 49401, USA
| | - Maksim V. Plikus
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
10
|
Liu L, Zhou Y, Liu Z, Li J, Hu L, He L, Gao G, Kidd B, Walsh A, Jiang R, Wu C, Zhang K, Xie L. Osr1 Regulates Macrophage-mediated Liver Inflammation in Nonalcoholic Fatty Liver Disease Progression. Cell Mol Gastroenterol Hepatol 2022; 15:1117-1133. [PMID: 36581078 PMCID: PMC10036739 DOI: 10.1016/j.jcmgh.2022.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Liver macrophage-mediated inflammation contributes to the pathogenesis of the nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Odd skipped-related 1 (Osr1) is a putative transcription factor previously reported to be involved in NASH progression; however, the underlying mechanisms remain unknown. The current study focused on the role of Osr1 in macrophage polarization and metabolism and its associated functions in the inflammation-induced pathogenesis of NASH. METHODS OSR1/Osr1 expression patterns were compared in normal and NASH patients and mouse livers. NASH was established and compared between hepatocyte-specific Osr1 knockout (Osr1ΔHep), macrophage-specific Osr1 knockout (Osr1ΔMφ), and wild-type (Osr1F) mice fed with 3 different chronic obesogenic diets and methionine choline-deficient diet. Using genetic and therapeutic strategies in vitro and in vivo, the downstream targets of Osr1 and the associated mechanisms in inflammation-induced NASH were established. RESULTS Osr1 was expressed in both hepatocytes and macrophages and exhibited different expression patterns in NASH. In NAFLD and NASH murine models, deleting Osr1 in myeloid cells (Osr1ΔMφ), but not hepatocytes, aggravated steatohepatitis with pronounced liver inflammation. Myeloid Osr1 deletion resulted in a polarization switch toward a pro-inflammatory phenotype associated with reduced oxidative phosphorylation activity. These inflamed Osr1ΔMφ macrophages promoted steatosis and inflammation in hepatocytes via cytokine secretion. We identified 2 downstream transcriptional targets of Osr1, c-Myc, and PPARγ and established the Osr1-PPARγ cascade in macrophage polarization and liver inflammation by genetic study and rosiglitazone treatment in vivo. We tested a promising intervention strategy targeting Osr1-PPARγ by AAV8L-delivered Osr1 expression or rosiglitazone that significantly repressed NAFLD/NASH progression in Osr1F and Osr1ΔMφ mice. CONCLUSIONS Myeloid Osr1 mediates liver immune homeostasis and disrupting Osr1 aggravates the progression of NAFLD/NASH.
Collapse
Affiliation(s)
- Lin Liu
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Yi Zhou
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhimin Liu
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Jiangyuan Li
- Department of Statistics, Texas A&M University, College Station, Texas; Institute of Biosciences & Technology, Texas A&M University, Houston, Texas
| | - Linghao Hu
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Leya He
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Guannan Gao
- Department of Statistics, Texas A&M University, College Station, Texas; Institute of Biosciences & Technology, Texas A&M University, Houston, Texas
| | - Brian Kidd
- Department of Statistics, Texas A&M University, College Station, Texas; Institute of Biosciences & Technology, Texas A&M University, Houston, Texas
| | - Alexandra Walsh
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Ke Zhang
- Department of Nutrition, Texas A&M University, College Station, Texas; Institute of Biosciences & Technology, Texas A&M University, Houston, Texas
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, Texas.
| |
Collapse
|
11
|
Zhao K, Yang Z. The second heart field: the first 20 years. Mamm Genome 2022:10.1007/s00335-022-09975-8. [PMID: 36550326 DOI: 10.1007/s00335-022-09975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
In 2001, three independent groups reported the identification of a novel cluster of progenitor cells that contribute to heart development in mouse and chicken embryos. This population of progenitor cells was designated as the second heart field (SHF), and a new research direction in heart development was launched. Twenty years have since passed and a comprehensive understanding of the SHF has been achieved. This review provides retrospective insights in to the contribution, the signaling regulatory networks and the epithelial properties of the SHF. It also includes the spatiotemporal characteristics of SHF development and interactions between the SHF and other types of cells during heart development. Although considerable efforts will be required to investigate the cellular heterogeneity of the SHF, together with its intricate regulatory networks and undefined mechanisms, it is expected that the burgeoning new technology of single-cell sequencing and precise lineage tracing will advance the comprehension of SHF function and its molecular signals. The advances in SHF research will translate to clinical applications and to the treatment of congenital heart diseases, especially conotruncal defects, as well as to regenerative medicine.
Collapse
Affiliation(s)
- Ke Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, 210093, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, 210093, China.
| |
Collapse
|
12
|
Proprotein Convertase Subtilisin/Kexin 6 in Cardiovascular Biology and Disease. Int J Mol Sci 2022; 23:ijms232113429. [DOI: 10.3390/ijms232113429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Proprotein convertase subtilisin/kexin 6 (PCSK6) is a secreted serine protease expressed in most major organs, where it cleaves a wide range of growth factors, signaling molecules, peptide hormones, proteolytic enzymes, and adhesion proteins. Studies in Pcsk6-deficient mice have demonstrated the importance of Pcsk6 in embryonic development, body axis specification, ovarian function, and extracellular matrix remodeling in articular cartilage. In the cardiovascular system, PCSK6 acts as a key modulator in heart formation, lipoprotein metabolism, body fluid homeostasis, cardiac repair, and vascular remodeling. To date, dysregulated PCSK6 expression or function has been implicated in major cardiovascular diseases, including atrial septal defects, hypertension, atherosclerosis, myocardial infarction, and cardiac aging. In this review, we describe biochemical characteristics and posttranslational modifications of PCSK6. Moreover, we discuss the role of PCSK6 and related molecular mechanisms in cardiovascular biology and disease.
Collapse
|
13
|
Alam MJ, Uppulapu SK, Tiwari V, Varghese B, Mohammed SA, Adela R, Arava SK, Banerjee SK. Pregestational diabetes alters cardiac structure and function of neonatal rats through developmental plasticity. Front Cardiovasc Med 2022; 9:919293. [PMID: 36176990 PMCID: PMC9514058 DOI: 10.3389/fcvm.2022.919293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Pregestational diabetes (PGDM) leads to developmental impairment, especially cardiac dysfunction, in their offspring. The hyperglycemic microenvironment inside the uterus alters the cardiac plasticity characterized by electrical and structural remodeling of the heart. The altered expression of several transcription factors due to hyperglycemia during fetal development might be responsible for molecular defects and phenotypic changes in the heart. The molecular mechanism of the developmental defects in the heart due to PGDM remains unclear. To understand the molecular defects in the 2-days old neonatal rats, streptozotocin-induced diabetic female rats were bred with healthy male rats. We collected 2-day-old hearts from the neonates and identified the molecular basis for phenotypic changes. Neonates from diabetic mothers showed altered electrocardiography and echocardiography parameters. Transcriptomic profiling of the RNA-seq data revealed that several altered genes were associated with heart development, myocardial fibrosis, cardiac conduction, and cell proliferation. Histopathology data showed the presence of focal cardiac fibrosis and increased cell proliferation in neonates from diabetic mothers. Thus, our results provide a comprehensive map of the cellular events and molecular pathways perturbed in the neonatal heart during PGDM. All of the molecular and structural changes lead to developmental plasticity in neonatal rat hearts and develop cardiac anomalies in their early life.
Collapse
Affiliation(s)
- Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
- Non-communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Shravan Kumar Uppulapu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Vikas Tiwari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Bincy Varghese
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Soheb Anwar Mohammed
- Non-communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Ramu Adela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Sudheer Kumar Arava
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay K. Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
- Non-communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, India
- *Correspondence: Sanjay K. Banerjee,
| |
Collapse
|
14
|
Galdos FX, Xu S, Goodyer WR, Duan L, Huang YV, Lee S, Zhu H, Lee C, Wei N, Lee D, Wu SM. devCellPy is a machine learning-enabled pipeline for automated annotation of complex multilayered single-cell transcriptomic data. Nat Commun 2022; 13:5271. [PMID: 36071107 PMCID: PMC9452519 DOI: 10.1038/s41467-022-33045-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
A major informatic challenge in single cell RNA-sequencing analysis is the precise annotation of datasets where cells exhibit complex multilayered identities or transitory states. Here, we present devCellPy a highly accurate and precise machine learning-enabled tool that enables automated prediction of cell types across complex annotation hierarchies. To demonstrate the power of devCellPy, we construct a murine cardiac developmental atlas from published datasets encompassing 104,199 cells from E6.5-E16.5 and train devCellPy to generate a cardiac prediction algorithm. Using this algorithm, we observe a high prediction accuracy (>90%) across multiple layers of annotation and across de novo murine developmental data. Furthermore, we conduct a cross-species prediction of cardiomyocyte subtypes from in vitro-derived human induced pluripotent stem cells and unexpectedly uncover a predominance of left ventricular (LV) identity that we confirmed by an LV-specific TBX5 lineage tracing system. Together, our results show devCellPy to be a useful tool for automated cell prediction across complex cellular hierarchies, species, and experimental systems.
Collapse
Affiliation(s)
- Francisco X Galdos
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, USA
| | - Sidra Xu
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - William R Goodyer
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, USA
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, USA
| | - Lauren Duan
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuhsin V Huang
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Soah Lee
- Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Han Zhu
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Palo Alto, USA
| | - Carissa Lee
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas Wei
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Lee
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean M Wu
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Palo Alto, USA.
| |
Collapse
|
15
|
Single-cell transcriptomic profiling unveils dysregulation of cardiac progenitor cells and cardiomyocytes in a mouse model of maternal hyperglycemia. Commun Biol 2022; 5:820. [PMID: 35970860 PMCID: PMC9378651 DOI: 10.1038/s42003-022-03779-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/28/2022] [Indexed: 11/08/2022] Open
Abstract
Congenital heart disease (CHD) is the most prevalent birth defect, often linked to genetic variations, environmental exposures, or combination of both. Epidemiological studies reveal that maternal pregestational diabetes is associated with ~5-fold higher risk of CHD in the offspring; however, the causal mechanisms affecting cardiac gene-regulatory-network (GRN) during early embryonic development remain poorly understood. In this study, we utilize an established murine model of pregestational diabetes to uncover the transcriptional responses in key cell-types of the developing heart exposed to maternal hyperglycemia (matHG). Here we show that matHG elicits diverse cellular responses in E9.5 and E11.5 embryonic hearts compared to non-diabetic hearts by single-cell RNA-sequencing. Through differential-gene-expression and cellular trajectory analyses, we identify perturbations in genes, predominantly affecting Isl1+ second heart field progenitors and Tnnt2+ cardiomyocytes with matHG. Using cell-fate mapping analysis in Isl1-lineage descendants, we demonstrate that matHG impairs cardiomyocyte differentiation and alters the expression of lineage-specifying cardiac genes. Finally, our work reveals matHG-mediated transcriptional changes in second heart field lineage that elevate CHD risk by perturbing Isl1-GRN during cardiomyocyte differentiation. Gene-environment interaction studies targeting the Isl1-GRN in cardiac progenitor cells will have a broader impact on understanding the mechanisms of matHG-induced risk of CHD associated with diabetic pregnancies. ScRNA-seq of embryonic heart tissues from a mouse model of maternal hyperglycemia (matHG) provides further insight into how matHG disrupts heart development and perturbs second heart field derived cardiomyocyte differentiation.
Collapse
|
16
|
Lynch EC, Liu Z, Liu L, Wang X, Zhang KK, Xie L. Disrupting Osr1 expression promoted hepatic steatosis and inflammation induced by high-fat diet in the mouse model. PLoS One 2022; 17:e0268344. [PMID: 35657825 PMCID: PMC9165803 DOI: 10.1371/journal.pone.0268344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
NAFLD, regarded as the hepatic manifestation of metabolic syndrome, is the most common form of liver disease in the United States. The Odd-skipped related 1 (Osr1) gene was previously reported to play a critical role in embryonic development and as a cancer repressor gene, however its role in overnutrition induced fatty liver disease has never been explored. Induced by a high-fat diet (HFD) for 10-week, the development and the progression of NAFLD was evaluated in either Osr1 heterozygote (Osr1 group) or wildtype mice (WT group). The Osr1 mice, regardless of sex, exhibited more severe steatosis compared to WT. Upregulation of lipogenesis protein including Srebp1c was detected in the Osr1 group, together with impaired IRS2 expression and overactivated Akt/mTOR signaling. In addition, the Osr1 mice had decreased bile acid synthesis in the liver with depressed hepatic expression of Cyp7a1 and Cyp27a1. Furthermore, there was more macrophage infiltration with enhanced expression of Il-1β and TNF-α in the Osr1 liver, associated with overactivation of JNK and NF-κB signaling. In summary, our study showed that Osr1 plays an important role in regulating the lipid homeostasis and hepatic inflammation, whose disruption contributes to NAFLD progression.
Collapse
Affiliation(s)
- Ernest C. Lynch
- Department of Nutrition, Texas A&M University, College Station, TX, United States of America
| | - Zhimin Liu
- Department of Nutrition, Texas A&M University, College Station, TX, United States of America
| | - Lin Liu
- Department of Nutrition, Texas A&M University, College Station, TX, United States of America
| | - Xian Wang
- Department of Nutrition, Texas A&M University, College Station, TX, United States of America
| | - Ke K. Zhang
- Department of Nutrition, Texas A&M University, College Station, TX, United States of America
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX, United States of America
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX, United States of America
- * E-mail:
| |
Collapse
|
17
|
Robbe ZL, Shi W, Wasson LK, Scialdone AP, Wilczewski CM, Sheng X, Hepperla AJ, Akerberg BN, Pu WT, Cristea IM, Davis IJ, Conlon FL. CHD4 is recruited by GATA4 and NKX2-5 to repress noncardiac gene programs in the developing heart. Genes Dev 2022; 36:468-482. [PMID: 35450884 PMCID: PMC9067406 DOI: 10.1101/gad.349154.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/31/2022] [Indexed: 12/23/2022]
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex is one of the central chromatin remodeling complexes that mediates gene repression. NuRD is essential for numerous developmental events, including heart development. Clinical and genetic studies have provided direct evidence for the role of chromodomain helicase DNA-binding protein 4 (CHD4), the catalytic component of NuRD, in congenital heart disease (CHD), including atrial and ventricular septal defects. Furthermore, it has been demonstrated that CHD4 is essential for mammalian cardiomyocyte formation and function. A key unresolved question is how CHD4/NuRD is localized to specific cardiac target genes, as neither CHD4 nor NuRD can directly bind DNA. Here, we coupled a bioinformatics-based approach with mass spectrometry analyses to demonstrate that CHD4 interacts with the core cardiac transcription factors GATA4, NKX2-5, and TBX5 during embryonic heart development. Using transcriptomics and genome-wide occupancy data, we characterized the genomic landscape of GATA4, NKX2-5, and TBX5 repression and defined the direct cardiac gene targets of the GATA4-CHD4, NKX2-5-CHD4, and TBX5-CHD4 complexes. These data were used to identify putative cis-regulatory elements controlled by these complexes. We genetically interrogated two of these silencers in vivo: Acta1 and Myh11 We show that deletion of these silencers leads to inappropriate skeletal and smooth muscle gene misexpression, respectively, in the embryonic heart. These results delineate how CHD4/NuRD is localized to specific cardiac loci and explicates how mutations in the broadly expressed CHD4 protein lead to cardiac-specific disease states.
Collapse
Affiliation(s)
- Zachary L Robbe
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Wei Shi
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Lauren K Wasson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Angel P Scialdone
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Caralynn M Wilczewski
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Xinlei Sheng
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Austin J Hepperla
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Brynn N Akerberg
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Ian J Davis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Frank L Conlon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
18
|
Murugapoopathy V, Cammisotto PG, Mossa AH, Campeau L, Gupta IR. Osr1 Is Required for Mesenchymal Derivatives That Produce Collagen in the Bladder. Int J Mol Sci 2021; 22:ijms222212387. [PMID: 34830270 PMCID: PMC8619163 DOI: 10.3390/ijms222212387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
The extracellular matrix of the bladder consists mostly of type I and III collagen, which are required during loading. During bladder injury, there is an accumulation of collagen that impairs bladder function. Little is known about the genes that regulate production of collagens in the bladder. We demonstrate that the transcription factor Odd-skipped related 1 (Osr1) is expressed in the bladder mesenchyme and epithelium at the onset of development. As development proceeds, Osr1 is mainly expressed in mesenchymal progenitors and their derivatives. We hypothesized that Osr1 regulates mesenchymal cell differentiation and production of collagens in the bladder. To test this hypothesis, we examined newborn and adult mice heterozygous for Osr1, Osr1+/−. The bladders of newborn Osr1+/− mice had a decrease in collagen I by western blot analysis and a global decrease in collagens using Sirius red staining. There was also a decrease in the cellularity of the lamina propria, where most collagen is synthesized. This was not due to decreased proliferation or increased apoptosis in this cell population. Surprisingly, the bladders of adult Osr1+/− mice had an increase in collagen that was associated with abnormal bladder function; they also had a decrease in bladder capacity and voided more frequently. The results suggest that Osr1 is important for the differentiation of mesenchymal cells that give rise to collagen-producing cells.
Collapse
Affiliation(s)
| | - Philippe G. Cammisotto
- Lady Davis Research Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (P.G.C.); (A.H.M.); (L.C.)
| | - Abubakr H. Mossa
- Lady Davis Research Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (P.G.C.); (A.H.M.); (L.C.)
| | - Lysanne Campeau
- Lady Davis Research Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (P.G.C.); (A.H.M.); (L.C.)
- Division of Urology, Department of Surgery, Jewish General Hospital, McGill University, Montreal, QCH3T 1E2, Canada
| | - Indra R. Gupta
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada;
- Research Institute of the McGill University Health Center, Montreal, QC H3H 2R9, Canada
- Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
19
|
Xu H, Xiang M, Qin Y, Cheng H, Chen D, Fu Q, Zhang KK, Xie L. Tbx5 inhibits hedgehog signaling in determination of digit identity. Hum Mol Genet 2021; 29:1405-1416. [PMID: 31373354 DOI: 10.1093/hmg/ddz185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/02/2019] [Accepted: 07/18/2019] [Indexed: 01/27/2023] Open
Abstract
Dominant TBX5 mutation causes Holt-Oram syndrome (HOS), which is characterized by limb defects in humans, but the underlying mechanistic basis is unclear. We used a mouse model with Tbx5 conditional knockdown in Hh-receiving cells (marked by Gli1+) during E8 to E10.5, a previously established model to study atrial septum defects, which displayed polydactyly or hypodactyly. The results suggested that Tbx5 is required for digit identity in a subset of limb mesenchymal cells. Specifically, Tbx5 deletion in this cell population decreased cell apoptosis and increased the proliferation of handplate mesenchymal cells. Furthermore, Tbx5 was found to negatively regulate the Hh-signaling activity through transcriptional regulation of Ptch1, a known Hh-signaling repressor. Repression of Hh-signaling through Smo co-mutation in Tbx5 heterozygotes rescued the limb defects, thus placing Tbx5 upstream of Hh-signaling in limb defects. This work reveals an important missing component necessary for understanding not only limb development but also the molecular and genetic mechanisms underlying HOS.
Collapse
Affiliation(s)
- Huiting Xu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA.,Hubei Cancer Hospital, Wuhan, Hubei 430079, China
| | - Menglan Xiang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Yushu Qin
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Henghui Cheng
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA.,Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Duohua Chen
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA.,Department of Food Science, Changsha University, Changsha, Hunan 410078, China
| | - Qiang Fu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA.,Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ke K Zhang
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA.,Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Linglin Xie
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA.,Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
20
|
Abstract
Congenital heart disease is the most frequent birth defect and the leading cause of death for the fetus and in the first year of life. The wide phenotypic diversity of congenital heart defects requires expert diagnosis and sophisticated repair surgery. Although these defects have been described since the seventeenth century, it was only in 2005 that a consensus international nomenclature was adopted, followed by an international classification in 2017 to help provide better management of patients. Advances in genetic engineering, imaging, and omics analyses have uncovered mechanisms of heart formation and malformation in animal models, but approximately 80% of congenital heart defects have an unknown genetic origin. Here, we summarize current knowledge of congenital structural heart defects, intertwining clinical and fundamental research perspectives, with the aim to foster interdisciplinary collaborations at the cutting edge of each field. We also discuss remaining challenges in better understanding congenital heart defects and providing benefits to patients.
Collapse
Affiliation(s)
- Lucile Houyel
- Unité de Cardiologie Pédiatrique et Congénitale and Centre de Référence des Malformations Cardiaques Congénitales Complexes (M3C), Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France.,Université de Paris, 75015 Paris, France
| | - Sigolène M Meilhac
- Université de Paris, 75015 Paris, France.,Imagine-Institut Pasteur Unit of Heart Morphogenesis, INSERM UMR 1163, 75015 Paris, France;
| |
Collapse
|
21
|
Zhou Y, Liu Z, Lynch EC, He L, Cheng H, Liu L, Li Z, Li J, Lawless L, Zhang KK, Xie L. Osr1 regulates hepatic inflammation and cell survival in the progression of non-alcoholic fatty liver disease. J Transl Med 2021; 101:477-489. [PMID: 33005011 PMCID: PMC7987871 DOI: 10.1038/s41374-020-00493-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023] Open
Abstract
Odd-skipped related 1 (Osr1) is a novel tumor suppressor gene in several cancer cell lines. Non-alcoholic steatohepatitis (NASH) is considered as a high-risk factor for hepatocellular carcinoma (HCC). This study is aimed to investigate the novel role of Osr1 in promoting the progression of hepatic steatosis to NASH. Following 12 weeks of diethylnitrosamine (DEN) and high-fat diet (HFD), wildtype (WT) and Osr1 heterozygous (Osr1+/-) male mice were examined for liver injuries. Osr1+/- mice displayed worsen liver injury with higher serum alanine aminotransferase levels than the WT mice. The Osr1+/- mice also revealed early signs of collagen deposition with increased hepatic Tgfb and Fn1 expression. There was overactivation of both JNK and NF-κB signaling in the Osr1+/- liver, along with accumulation of F4/80+ cells and enhanced hepatic expression of Il-1b and Il-6. Moreover, the Osr1+/- liver displayed hyperphosphorylation of AKT/mTOR signaling, associated with overexpression of Bcl-2. In addition, Osr1+/- and WT mice displayed differences in the DNA methylome of the liver cells. Specifically, Osr1-responsible CpG islands of Ccl3 and Pcgf2, genes for inflammation and macrophage infiltration, were further identified. Taken together, Osr1 plays an important role in regulating cell inflammation and survival through multiple signaling pathways and DNA methylation modification for NAFLD progression.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhimin Liu
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University (Gastrointestinal and Anal Hospital of Sun Yat-sen Unversity), Guangzhou, 510655, China
| | - Ernest C Lynch
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Leya He
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Henghui Cheng
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Lin Liu
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Zhen Li
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Jiangyuan Li
- Department of Statistics, Texas A&M University, College Station, TX, 77843, USA
| | - Lauren Lawless
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Ke K Zhang
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX, USA
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
22
|
Christoffels V, Jensen B. Cardiac Morphogenesis: Specification of the Four-Chambered Heart. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037143. [PMID: 31932321 DOI: 10.1101/cshperspect.a037143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Early heart morphogenesis involves a process in which embryonic precursor cells are instructed to form a cyclic contracting muscle tube connected to blood vessels, pumping fluid. Subsequently, the heart becomes structurally complex and its size increases several orders of magnitude to functionally keep up with the demands of the growing organism. Programmed transcriptional regulatory networks control the early steps of cardiac development. However, already during the early stages of its assembly, the heart tube starts to produce electrochemical potentials, contractions, and flow, which are transduced into signals that feed back into the process of morphogenesis itself. Heart morphogenesis, thus, involves the interplay between progressively changing genetic networks, function, and shape. Morphogenesis is evolutionarily conserved, but species-specific differences occur and in mouse, for instance, distinct phases of development become overlapping and compounded in an extremely fast gestation. Here, we review the early morphogenesis of the chambered heart that maintains a circulation supporting development of an organism rapidly growing in size and requirements.
Collapse
Affiliation(s)
- Vincent Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| |
Collapse
|
23
|
Stefanovic S, Laforest B, Desvignes JP, Lescroart F, Argiro L, Maurel-Zaffran C, Salgado D, Plaindoux E, De Bono C, Pazur K, Théveniau-Ruissy M, Béroud C, Puceat M, Gavalas A, Kelly RG, Zaffran S. Hox-dependent coordination of mouse cardiac progenitor cell patterning and differentiation. eLife 2020; 9:55124. [PMID: 32804075 PMCID: PMC7462617 DOI: 10.7554/elife.55124] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022] Open
Abstract
Perturbation of addition of second heart field (SHF) cardiac progenitor cells to the poles of the heart tube results in congenital heart defects (CHD). The transcriptional programs and upstream regulatory events operating in different subpopulations of the SHF remain unclear. Here, we profile the transcriptome and chromatin accessibility of anterior and posterior SHF sub-populations at genome-wide levels and demonstrate that Hoxb1 negatively regulates differentiation in the posterior SHF. Spatial mis-expression of Hoxb1 in the anterior SHF results in hypoplastic right ventricle. Activation of Hoxb1 in embryonic stem cells arrests cardiac differentiation, whereas Hoxb1-deficient mouse embryos display premature cardiac differentiation. Moreover, ectopic differentiation in the posterior SHF of embryos lacking both Hoxb1 and its paralog Hoxa1 results in atrioventricular septal defects. Our results show that Hoxb1 plays a key role in patterning cardiac progenitor cells that contribute to both cardiac poles and provide new insights into the pathogenesis of CHD.
Collapse
Affiliation(s)
- Sonia Stefanovic
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Brigitte Laforest
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | | | - Fabienne Lescroart
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Laurent Argiro
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | | | - David Salgado
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Elise Plaindoux
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | | | - Kristijan Pazur
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustave Carus of TU Dresden, Helmoholtz Zentrum München, German Center for Diabetes Research (DZD), Dresden, Germany
| | - Magali Théveniau-Ruissy
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France.,Aix Marseille Univ, CNRS UMR7288, IBDM, Marseille, France
| | - Christophe Béroud
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Michel Puceat
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Anthony Gavalas
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustave Carus of TU Dresden, Helmoholtz Zentrum München, German Center for Diabetes Research (DZD), Dresden, Germany
| | - Robert G Kelly
- Aix Marseille Univ, CNRS UMR7288, IBDM, Marseille, France
| | - Stephane Zaffran
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| |
Collapse
|
24
|
Ma J, Chen S, Hao L, Sheng W, Chen W, Ma X, Zhang B, Ma D, Huang G. Hypermethylation-mediated down-regulation of lncRNA TBX5-AS1:2 in Tetralogy of Fallot inhibits cell proliferation by reducing TBX5 expression. J Cell Mol Med 2020; 24:6472-6484. [PMID: 32368852 PMCID: PMC7294119 DOI: 10.1111/jcmm.15298] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/06/2019] [Accepted: 03/28/2020] [Indexed: 12/26/2022] Open
Abstract
Tetralogy of Fallot (TOF) is the most common complex congenital heart disease (CHD) with uncertain cause. Although long non‐coding RNAs (lncRNAs) have been implicated in heart development and several CHDs, their role in TOF is not well understood. This study aimed to investigate how dysregulated lncRNAs contribute to TOF. Using Gene Expression Omnibus data mining, bioinformatics analysis and clinical heart tissue sample detecting, we identified a novel antisense lncRNA TBX5‐AS1:2 with unknown function that was significantly down‐regulated in injured cardiac tissues from TOF patients. LncRNA TBX5‐AS1:2 was mainly located in the nucleus of the human embryonic kidney 293 (HEK293T) cells and formed an RNA‐RNA double‐stranded structure in the overlapping region with its sense mRNA T‐box transcription factor 5 (TBX5), which is an important regulator in heart development. Knock‐down of lncRNA TBX5‐AS1:2 via promoter hypermethylation reduced TBX5 expression at both the mRNA and protein levels by affecting its mRNA stability through RNA‐RNA interaction. Moreover, lncRNA TBX5‐AS1:2 knock‐down inhibited the proliferation of HEK293T cells. In conclusion, these results indicated that lncRNA TBX5‐AS1:2 may be involved in TOF by affecting cell proliferation by targeting TBX5.
Collapse
Affiliation(s)
- Jing Ma
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shiyu Chen
- Department of Biochemistry and Molecular Biology, Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lili Hao
- Department of Biochemistry and Molecular Biology, Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Sheng
- Children's Hospital of Fudan University, Shanghai, China
| | - WeiCheng Chen
- Children's Hospital of Fudan University, Shanghai, China
| | - Xiaojing Ma
- Children's Hospital of Fudan University, Shanghai, China
| | - Bowen Zhang
- Department of Biochemistry and Molecular Biology, Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Duan Ma
- Department of Biochemistry and Molecular Biology, Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Children's Hospital of Fudan University, Shanghai, China
| | - Guoying Huang
- Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
25
|
Abstract
The function of the mammalian heart depends on the interplay between different cardiac cell types. The deployment of these cells, with precise spatiotemporal regulation, is also important during development to establish the heart structure. In this Review, we discuss the diverse origins of cardiac cell types and the lineage relationships between cells of a given type that contribute to different parts of the heart. The emerging lineage tree shows the progression of cell fate diversification, with patterning cues preceding cell type segregation, as well as points of convergence, with overlapping lineages contributing to a given tissue. Several cell lineage markers have been identified. However, caution is required with genetic-tracing experiments in comparison with clonal analyses. Genetic studies on cell populations provided insights into the mechanisms for lineage decisions. In the past 3 years, results of single-cell transcriptomics are beginning to reveal cell heterogeneity and early developmental trajectories. Equating this information with the in vivo location of cells and their lineage history is a current challenge. Characterization of the progenitor cells that form the heart and of the gene regulatory networks that control their deployment is of major importance for understanding the origin of congenital heart malformations and for producing cardiac tissue for use in regenerative medicine.
Collapse
|
26
|
Liu J, Cheng H, Xiang M, Zhou L, Wu B, Moskowitz IP, Zhang K, Xie L. Gata4 regulates hedgehog signaling and Gata6 expression for outflow tract development. PLoS Genet 2019; 15:e1007711. [PMID: 31120883 PMCID: PMC6550424 DOI: 10.1371/journal.pgen.1007711] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 06/05/2019] [Accepted: 05/07/2019] [Indexed: 01/09/2023] Open
Abstract
Dominant mutations of Gata4, an essential cardiogenic transcription factor (TF), were known to cause outflow tract (OFT) defects in both human and mouse, but the underlying molecular mechanism was not clear. In this study, Gata4 haploinsufficiency in mice was found to result in OFT defects including double outlet right ventricle (DORV) and ventricular septum defects (VSDs). Gata4 was shown to be required for Hedgehog (Hh)-receiving progenitors within the second heart field (SHF) for normal OFT alignment. Restored cell proliferation in the SHF by knocking-down Pten failed to rescue OFT defects, suggesting that additional cell events under Gata4 regulation is important. SHF Hh-receiving cells failed to migrate properly into the proximal OFT cushion, which is associated with abnormal EMT and cell proliferation in Gata4 haploinsufficiency. The genetic interaction of Hh signaling and Gata4 is further demonstrated to be important for OFT development. Gata4 and Smo double heterozygotes displayed more severe OFT abnormalities including persistent truncus arteriosus (PTA). Restoration of Hedgehog signaling renormalized SHF cell proliferation and migration, and rescued OFT defects in Gata4 haploinsufficiency. In addition, there was enhanced Gata6 expression in the SHF of the Gata4 heterozygotes. The Gata4-responsive repressive sites were identified within 1kbp upstream of the transcription start site of Gata6 by both ChIP-qPCR and luciferase reporter assay. These results suggested a SHF regulatory network comprising of Gata4, Gata6 and Hh-signaling for OFT development. Gata4 is an important transcription factor that regulates the development of the heart. Human possessing a single copy of Gata4 mutation display congenital heart defects (CHD), including double outlet right ventricle (DORV). DORV is an alignment problem in which both the Aorta and Pulmonary Artery originate from the right ventricle, instead of originating from the left and the right ventricles, respectively. In this study, a Gata4 mutant mouse model was used to study how Gata4 mutations cause DORV. We showed that Gata4 is required in the cardiac precursor cells for the normal alignment of the great arteries. Although Gata4 mutations inhibit the rapid increase in the cardiac precursor cell numbers, resolving this problem does not recover the normal alignment of the great arteries. It indicates that there is a migratory issue of the cardiac precursor cells as they navigate to the great arteries during development. The study further showed that a specific molecular signaling, Hh-signaling and Gata6 are responsible to the Gata4 action in the cardiac precursor cells. Importantly, over-activation of the Hh-signaling pathways rescues the DORV in the Gata4 mutant embryos. This study provides a molecular model to explain the ontogeny of a subtype of CHD.
Collapse
Affiliation(s)
- Jielin Liu
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, Texas, United States of America
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Henghui Cheng
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, Texas, United States of America
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Menglan Xiang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Lun Zhou
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bingruo Wu
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, United States of America
| | - Ivan P. Moskowitz
- Departments of Pathology and Pediatrics, The University of Chicago, Chicago, Illinois, United States of America
| | - Ke Zhang
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, Texas, United States of America
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America
| | - Linglin Xie
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, Texas, United States of America
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- * E-mail:
| |
Collapse
|
27
|
Kranc W, Brązert M, Celichowski P, Bryja A, Nawrocki MJ, Ożegowska K, Jankowski M, Jeseta M, Pawelczyk L, Bręborowicz A, Rachoń D, Skowroński MT, Bruska M, Zabel M, Nowicki M, Kempisty B. 'Heart development and morphogenesis' is a novel pathway for human ovarian granulosa cell differentiation during long‑term in vitro cultivation‑a microarray approach. Mol Med Rep 2019; 19:1705-1715. [PMID: 30628715 PMCID: PMC6390010 DOI: 10.3892/mmr.2019.9837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/06/2018] [Indexed: 01/22/2023] Open
Abstract
Granulosa cells (GCs) have many functions in the endocrine system. Most notably, they produce progesterone following ovulation. However, it has recently been proven that GCs can change their properties when subjected to long-term culture. In the present study, GCs were collected from hyper-stimulated ovarian follicles during in vitro fertilization procedures. They were grown in vitro, in a long-term manner. RNA was collected following 1, 7, 15 and 30 days of culture. Expression microarrays were used for analysis, which allowed to identify groups of genes characteristic for particular cellular processes. In addition, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to validate the obtained results. Two ontological groups characteristic for processes associated with the development and morphogenesis of the heart were identified during the analyses: ‘Heart development’ and ‘heart morphogenesis’. The results of the microarrays revealed that the highest change in expression was demonstrated by the lysyl Oxidase, oxytocin receptor, nexilin F-actin binding protein, and cysteine-rich protein 3 genes. The lowest change was exhibited by odd-skipped related transcription factor 1, plakophilin 2, transcription growth factor-β receptor 1, and kinesin family member 3A. The direction of changes was confirmed by RT-qPCR results. In the present study, it was suggested that GCs may have the potential to differentiate towards other cell types under long-term in vitro culture conditions. Thus, genes belonging to the presented ontological groups can be considered as novel markers of proliferation and differentiation of GCs towards the heart muscle cells.
Collapse
Affiliation(s)
- Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 60‑781 Poznań, Poland
| | - Maciej Brązert
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60‑535 Poznań, Poland
| | - Piotr Celichowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60‑781 Poznań, Poland
| | - Artur Bryja
- Department of Anatomy, Poznan University of Medical Sciences, 60‑781 Poznań, Poland
| | - Mariusz J Nawrocki
- Department of Anatomy, Poznan University of Medical Sciences, 60‑781 Poznań, Poland
| | - Katarzyna Ożegowska
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60‑535 Poznań, Poland
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60‑781 Poznań, Poland
| | - Michal Jeseta
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 62500 Brno, Czech Republic
| | - Leszek Pawelczyk
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60‑535 Poznań, Poland
| | - Andrzej Bręborowicz
- Department of Pathophysiology, Poznań University of Medical Sciences, 60‑806 Poznań, Poland
| | - Dominik Rachoń
- Department of Clinical and Experimental Endocrinology, Medical University of Gdańsk, 80‑211 Gdańsk, Poland
| | - Mariusz T Skowroński
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10‑719 Olsztyn, Poland
| | - Małgorzata Bruska
- Department of Anatomy, Poznan University of Medical Sciences, 60‑781 Poznań, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50‑368 Wroclaw, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60‑781 Poznań, Poland
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60‑781 Poznań, Poland
| |
Collapse
|
28
|
Evolutionarily conserved Tbx5- Wnt2/2b pathway orchestrates cardiopulmonary development. Proc Natl Acad Sci U S A 2018; 115:E10615-E10624. [PMID: 30352852 DOI: 10.1073/pnas.1811624115] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Codevelopment of the lungs and heart underlies key evolutionary innovations in the transition to terrestrial life. Cardiac specializations that support pulmonary circulation, including the atrial septum, are generated by second heart field (SHF) cardiopulmonary progenitors (CPPs). It has been presumed that transcription factors required in the SHF for cardiac septation, e.g., Tbx5, directly drive a cardiac morphogenesis gene-regulatory network. Here, we report instead that TBX5 directly drives Wnt ligands to initiate a bidirectional signaling loop between cardiopulmonary mesoderm and the foregut endoderm for endodermal pulmonary specification and, subsequently, atrial septation. We show that Tbx5 is required for pulmonary specification in mice and amphibians but not for swim bladder development in zebrafish. TBX5 is non-cell-autonomously required for pulmonary endoderm specification by directly driving Wnt2 and Wnt2b expression in cardiopulmonary mesoderm. TBX5 ChIP-sequencing identified cis-regulatory elements at Wnt2 sufficient for endogenous Wnt2 expression domains in vivo and required for Wnt2 expression in precardiac mesoderm in vitro. Tbx5 cooperated with Shh signaling to drive Wnt2b expression for lung morphogenesis. Tbx5 haploinsufficiency in mice, a model of Holt-Oram syndrome, caused a quantitative decrement of mesodermal-to-endodermal Wnt signaling and subsequent endodermal-to-mesodermal Shh signaling required for cardiac morphogenesis. Thus, Tbx5 initiates a mesoderm-endoderm-mesoderm signaling loop in lunged vertebrates that provides a molecular basis for the coevolution of pulmonary and cardiac structures required for terrestrial life.
Collapse
|
29
|
Aoki H, Horie M. Electrical disorders in atrial septal defect: genetics and heritability. J Thorac Dis 2018; 10:S2848-S2853. [PMID: 30305944 DOI: 10.21037/jtd.2018.02.53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Atrial septal defect (ASD) is one of the most common types of congenital heart diseases (CHDs). Most ASDs occur sporadically, but some are inherited and associated with cardiac conduction defects such as atrioventricular block (AVB) or bundle branch block. Mutations in genes encoding transcription factor gene TBX5 and NKX2-5, were found in Holt-Oram syndrome (HOS) and ASD with atrioventricular (AV) conduction defects, respectively. HOS is characterized by upper limb anomaly in addition to ASD and AVB (heart-hand syndrome). ASD associated with NKX2-5 is rare but is reported to cause sudden cardiac death (SCD) or cardiomyopathy. We provide a review of these two diseases.
Collapse
Affiliation(s)
- Hisaaki Aoki
- Department of Pediatric Cardiology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Minoru Horie
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Ohtsu, Shiga, Japan
| |
Collapse
|
30
|
Li N, Zhou H, Tang Q. miR-133: A Suppressor of Cardiac Remodeling? Front Pharmacol 2018; 9:903. [PMID: 30174600 PMCID: PMC6107689 DOI: 10.3389/fphar.2018.00903] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/23/2018] [Indexed: 01/28/2023] Open
Abstract
Cardiac remodeling, which is characterized by mechanical and electrical remodeling, is a significant pathophysiological process involved in almost all forms of heart diseases. MicroRNAs (miRNAs) are a group of non-coding RNAs of 20–25 nucleotides in length that primarily regulate gene expression by promoting mRNA degradation or post-transcriptional repression in a sequence-specific manner. Three miR-133 genes have been identified in the human genome, miR-133a-1, miR-133a-2, and miR-133b, which are located on chromosomes 18, 20, and 6, respectively. These miRNAs are mainly expressed in muscle tissues and appear to repress the expression of non-muscle genes. Based on accumulating evidence, miR-133 participates in the proliferation, differentiation, survival, hypertrophic growth, and electrical conduction of cardiac cells, which are essential for cardiac fibrosis, cardiac hypertrophy, and arrhythmia. Nevertheless, the roles of miR-133 in cardiac remodeling are ambiguous, and the mechanisms are also sophisticated, involving many target genes and signaling pathways, such as RhoA, MAPK, TGFβ/Smad, and PI3K/Akt. Therefore, in this review, we summarize the critical roles of miR-133 and its potential mechanisms in cardiac remodeling.
Collapse
Affiliation(s)
- Ning Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
31
|
Yi X, Jiang X, Li X, Jiang DS. Histone lysine methylation and congenital heart disease: From bench to bedside (Review). Int J Mol Med 2017; 40:953-964. [PMID: 28902362 DOI: 10.3892/ijmm.2017.3115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/21/2017] [Indexed: 11/05/2022] Open
Abstract
Histone post-translational modifications (PTM) as one of the key epigenetic regulatory mechanisms that plays critical role in various biological processes, including regulating chromatin structure dynamics and gene expression. Histone lysine methyltransferase contributes to the establishment and maintenance of differential histone methylation status, which can recognize histone methylated sites and build an association between these modifications and their downstream processes. Recently, it was found that abnormalities in the histone lysine methylation level or pattern may lead to the occurrence of many types of cardiovascular diseases, such as congenital heart disease (CHD). In order to provide new theoretical basis and targets for the treatment of CHD from the view of developmental biology and genetics, this review discusses and elaborates on the association between histone lysine methylation modifications and CHD.
Collapse
Affiliation(s)
- Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaoyan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
32
|
Gata4 potentiates second heart field proliferation and Hedgehog signaling for cardiac septation. Proc Natl Acad Sci U S A 2017; 114:E1422-E1431. [PMID: 28167794 DOI: 10.1073/pnas.1605137114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
GATA4, an essential cardiogenic transcription factor, provides a model for dominant transcription factor mutations in human disease. Dominant GATA4 mutations cause congenital heart disease (CHD), specifically atrial and atrioventricular septal defects (ASDs and AVSDs). We found that second heart field (SHF)-specific Gata4 heterozygote embryos recapitulated the AVSDs observed in germline Gata4 heterozygote embryos. A proliferation defect of SHF atrial septum progenitors and hypoplasia of the dorsal mesenchymal protrusion, rather than anlage of the atrioventricular septum, were observed in this model. Knockdown of the cell-cycle repressor phosphatase and tensin homolog (Pten) restored cell-cycle progression and rescued the AVSDs. Gata4 mutants also demonstrated Hedgehog (Hh) signaling defects. Gata4 acts directly upstream of Hh components: Gata4 activated a cis-regulatory element at Gli1 in vitro and occupied the element in vivo. Remarkably, SHF-specific constitutive Hh signaling activation rescued AVSDs in Gata4 SHF-specific heterozygous knockout embryos. Pten expression was unchanged in Smoothened mutants, and Hh pathway genes were unchanged in Pten mutants, suggesting pathway independence. Thus, both the cell-cycle and Hh-signaling defects caused by dominant Gata4 mutations were required for CHD pathogenesis, suggesting a combinatorial model of disease causation by transcription factor haploinsufficiency.
Collapse
|
33
|
Lewis ZR, Hanken J. Convergent evolutionary reduction of atrial septation in lungless salamanders. J Anat 2017; 230:16-29. [PMID: 27558020 PMCID: PMC5192874 DOI: 10.1111/joa.12535] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2016] [Indexed: 02/01/2023] Open
Abstract
Nearly two thirds of the approximately 700 species of living salamanders are lungless. These species respire entirely through the skin and buccopharyngeal mucosa. Lung loss dramatically impacts the configuration of the circulatory system but the effects of evolutionary lung loss on cardiac morphology have long been controversial. For example, there is presumably little need for an atrial septum in lungless salamanders due to the absence of pulmonary veins and the presence of a single source of mixed blood flowing into the heart, but whether lungless salamanders possess an atrial septum and whether the sinoatrial aperture is located in the left or right atrium are unresolved; authors have stated opposing claims since the late 1800s. Here, we use micro-computed tomography (μ-CT) imaging, gross dissection and histological reconstruction to compare cardiac morphology among lungless plethodontid salamanders (Plethodontidae), salamanders with lungs, and the convergently lungless species Onychodactylus japonicus (Hynobiidae). Plethodontid salamanders have partial atrial septa and incomplete separation of the atrium into left and right halves. Partial septation is also seen in O. japonicus. Hence, lungless salamanders from two lineages convergently evolved similar morphology of the atrial septum. The partial septum in lungless salamanders can make it appear that the sinoatrial aperture is in the left atrium, but this interpretation is incorrect. Outgroup comparisons demonstrate that the aperture is located in a posterodorsal extension of the right atrium into the left side of the heart. Independent evolutionary losses of the atrial septum may have a similar developmental basis. In mammals, the lungs induce formation of the atrial septum by secreting morphogens to neighboring mesenchyme. We hypothesize that the lungs induce atrial septum development in amphibians in a similar fashion to mammals, and that atrial septum reduction in lungless salamanders is a direct result of lunglessness.
Collapse
Affiliation(s)
- Zachary R. Lewis
- Department of Organismic and Evolutionary Biology, and Museum of Comparative ZoologyHarvard UniversityCambridgeMAUSA
| | - James Hanken
- Department of Organismic and Evolutionary Biology, and Museum of Comparative ZoologyHarvard UniversityCambridgeMAUSA
| |
Collapse
|
34
|
Zhang KK, Xiang M, Zhou L, Liu J, Curry N, Heine Suñer D, Garcia-Pavia P, Zhang X, Wang Q, Xie L. Gene network and familial analyses uncover a gene network involving Tbx5/Osr1/Pcsk6 interaction in the second heart field for atrial septation. Hum Mol Genet 2016; 25:1140-51. [PMID: 26744331 PMCID: PMC4764195 DOI: 10.1093/hmg/ddv636] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/21/2015] [Accepted: 12/30/2015] [Indexed: 12/12/2022] Open
Abstract
Atrial septal defects (ASDs) are a common human congenital heart disease (CHD) that can be induced by genetic abnormalities. Our previous studies have demonstrated a genetic interaction between Tbx5 and Osr1 in the second heart field (SHF) for atrial septation. We hypothesized that Osr1 and Tbx5 share a common signaling networking and downstream targets for atrial septation. To identify this molecular networks, we acquired the RNA-Seq transcriptome data from the posterior SHF of wild-type, Tbx5(+/) (-), Osr1(+/-), Osr1(-/-) and Tbx5(+/-)/Osr1(+/-) mutant embryos. Gene set analysis was used to identify the Kyoto Encyclopedia of Genes and Genomes pathways that were affected by the doses of Tbx5 and Osr1. A gene network module involving Tbx5 and Osr1 was identified using a non-parametric distance metric, distance correlation. A subset of 10 core genes and gene-gene interactions in the network module were validated by gene expression alterations in posterior second heart field (pSHF) of Tbx5 and Osr1 transgenic mouse embryos, a time-course gene expression change during P19CL6 cell differentiation. Pcsk6 was one of the network module genes that were linked to Tbx5. We validated the direct regulation of Tbx5 on Pcsk6 using immunohistochemical staining of pSHF, ChIP-quantitative polymerase chain reaction and luciferase reporter assay. Importantly, we identified Pcsk6 as a novel gene associated with ASD via a human genotyping study of an ASD family. In summary, our study implicated a gene network involving Tbx5, Osr1 and Pcsk6 interaction in SHF for atrial septation, providing a molecular framework for understanding the role of Tbx5 in CHD ontogeny.
Collapse
Affiliation(s)
- Ke K Zhang
- Department of Pathology, School of Medicine and Health Sciences, ND INBRE Bioinformatics Core, University of North Dakota, Grand Forks, ND 58202, USA
| | - Menglan Xiang
- Department of Basic Sciences, School of Medicine and Health Sciences and ND INBRE Bioinformatics Core, University of North Dakota, Grand Forks, ND 58202, USA
| | - Lun Zhou
- Department of Basic Sciences, School of Medicine and Health Sciences and Department of Gerontology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jielin Liu
- Department of Basic Sciences, School of Medicine and Health Sciences and
| | - Nathan Curry
- Department of Basic Sciences, School of Medicine and Health Sciences and
| | - Damian Heine Suñer
- Laboratori de Genetica Molecular, Hospital Son Espases, Palma de Mallorca 07010, Spain
| | - Pablo Garcia-Pavia
- Department of Cardiology, Heart Failure and Inherited Cardiac Diseases Unit, Hospital Universitario Puerta de Hierro Majadahonda, Manuel de Falla, 1, 28222 Majadahonda, Madrid, Spain
| | - Xiaohua Zhang
- Nemours Research Institute, Nemours Children's hospital, Orlando, FL 32827, USA
| | - Qin Wang
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA, Department of Molecular Medicine and Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA and
| | - Linglin Xie
- Department of Basic Sciences, School of Medicine and Health Sciences and Department of Nutrition and Food Science, Texas A&M University, Cater-Mattil Hall Rm 217B, TAMU 2253, College Station, TX 77843, USA
| |
Collapse
|