1
|
Vemuri V, Kratholm N, Nagarajan D, Cathey D, Abdelbaset-Ismail A, Tan Y, Straughn A, Cai L, Huang J, Kakar SS. Withaferin A as a Potential Therapeutic Target for the Treatment of Angiotensin II-Induced Cardiac Cachexia. Cells 2024; 13:783. [PMID: 38727319 PMCID: PMC11083229 DOI: 10.3390/cells13090783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
In our previous studies, we showed that the generation of ovarian tumors in NSG mice (immune-compromised) resulted in the induction of muscle and cardiac cachexia, and treatment with withaferin A (WFA; a steroidal lactone) attenuated both muscle and cardiac cachexia. However, our studies could not address if these restorations by WFA were mediated by its anti-tumorigenic properties that might, in turn, reduce the tumor burden or WFA's direct, inherent anti-cachectic properties. To address this important issue, in our present study, we used a cachectic model induced by the continuous infusion of Ang II by implanting osmotic pumps in immunocompetent C57BL/6 mice. The continuous infusion of Ang II resulted in the loss of the normal functions of the left ventricle (LV) (both systolic and diastolic), including a significant reduction in fractional shortening, an increase in heart weight and LV wall thickness, and the development of cardiac hypertrophy. The infusion of Ang II also resulted in the development of cardiac fibrosis, and significant increases in the expression levels of genes (ANP, BNP, and MHCβ) associated with cardiac hypertrophy and the chemical staining of the collagen abundance as an indication of fibrosis. In addition, Ang II caused a significant increase in expression levels of inflammatory cytokines (IL-6, IL-17, MIP-2, and IFNγ), NLRP3 inflammasomes, AT1 receptor, and a decrease in AT2 receptor. Treatment with WFA rescued the LV functions and heart hypertrophy and fibrosis. Our results demonstrated, for the first time, that, while WFA has anti-tumorigenic properties, it also ameliorates the cardiac dysfunction induced by Ang II, suggesting that it could be an anticachectic agent that induces direct effects on cardiac muscles.
Collapse
Affiliation(s)
- Vasa Vemuri
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA; (V.V.); (N.K.); (D.N.)
| | - Nicholas Kratholm
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA; (V.V.); (N.K.); (D.N.)
| | - Darini Nagarajan
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA; (V.V.); (N.K.); (D.N.)
| | - Dakotah Cathey
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; (D.C.); (Y.T.); (L.C.); (J.H.)
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA;
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Ahmed Abdelbaset-Ismail
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA;
| | - Yi Tan
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; (D.C.); (Y.T.); (L.C.); (J.H.)
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA;
| | - Alex Straughn
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA;
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; (D.C.); (Y.T.); (L.C.); (J.H.)
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA;
| | - Jiapeng Huang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; (D.C.); (Y.T.); (L.C.); (J.H.)
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Sham S. Kakar
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA; (V.V.); (N.K.); (D.N.)
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA;
| |
Collapse
|
2
|
Järve A, Qadri F, Todiras M, Schmolke S, Bader M. Angiotensin-II receptor type Ia does not contribute to cardiac atrophy following high-thoracic spinal cord injury in mice. Exp Physiol 2020; 105:1316-1325. [PMID: 32515106 DOI: 10.1113/ep088378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/03/2020] [Indexed: 12/27/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the role of the renin-angiotensin system with angiotensin II acting via its receptor AT1a in spinal cord injury-induced cardiac atrophy? What is the main finding and its importance? Knockout of AT1a did not protect mice that had undergone thoracic level 4 transection from cardiac atrophy. There were no histopathological signs but there was reduced load-dependent left ventricular function (lower stroke volume and cardiac output) with preserved ejection fraction. ABSTRACT Spinal cord injury (SCI) leads to cardiac atrophy often accompanied by functional deficits. The renin-angiotensin system (RAS) with angiotensin II (AngII) signalling via its receptor AT1a might contribute to cardiac atrophy post-SCI. We performed spinal cord transection at thoracic level T4 (T4-Tx) or sham-operation in female wild-type mice (WT, n = 27) and mice deficient in AT1a (Agtr1a-/- , n = 27). Echocardiography (0, 7, 21 and 28 days post-SCI) and histology and gene expression analyses at 1 and 2 months post-SCI were performed. We found cardiac atrophy post-SCI: reduced heart weight, reduced estimated left ventricular mass in Agtr1a-/- , and reduced cardiomyocyte diameter in WT mice. Although, the latter as well as stroke volume (SV) and cardiac output (CO) were reduced in Agtr1a-/- mice already at baseline, cardiomyocyte diameter was even smaller in injured Agtr1a-/- mice compared to injured WT mice. SV and CO were reduced in WT mice post-SCI. Ejection fraction and fractional shortening were preserved post-SCI in both genotypes. There were no histological signs of fibrosis and pathology in the cardiac sections of either genotype post-SCI. Gene expression of Agtr1a showed a trend for up-regulation at 2 months post-SCI; angiotensinogen was up-regulated at 2 month post-SCI in both genotypes. AngII receptor type 2 (Agtr2) was up- and down-regulated at 1 and 2 months post-SCI in WT mice, respectively, and Ang-(1-7) receptor (Mas) at 1 and 2 months post-SCI. Atrogin-1/MAFbx and MuRF1, atrophy markers, were not significantly up-regulated post-SCI. Our data show that lack of AT1a does not protect from cardiac atrophy post-SCI.
Collapse
Affiliation(s)
- Anne Järve
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Fatimunnisa Qadri
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Mihail Todiras
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Shirley Schmolke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Charité Universitätsmedizin Berlin, Berlin, Germany.,Institute for Biology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
4
|
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol Rev 2018; 98:505-553. [PMID: 29351514 PMCID: PMC7203574 DOI: 10.1152/physrev.00023.2016] [Citation(s) in RCA: 743] [Impact Index Per Article: 106.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 05/09/2017] [Accepted: 06/18/2017] [Indexed: 12/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1-7)/MAS, whose end point is the metabolite ANG-(1-7). ACE2 and other enzymes can form ANG-(1-7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1-7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1-7) in physiology and disease, with particular emphasis on the brain.
Collapse
Affiliation(s)
- Robson Augusto Souza Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Walkyria Oliveira Sampaio
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Andreia C Alzamora
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Daisy Motta-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Natalia Alenina
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Michael Bader
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Maria Jose Campagnole-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| |
Collapse
|