1
|
Papini G, Furini G, Matteucci M, Biemmi V, Casieri V, Di Lascio N, Milano G, Chincoli LR, Faita F, Barile L, Lionetti V. Cardiomyocyte-targeting exosomes from sulforaphane-treated fibroblasts affords cardioprotection in infarcted rats. J Transl Med 2023; 21:313. [PMID: 37161563 PMCID: PMC10169450 DOI: 10.1186/s12967-023-04155-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Exosomes (EXOs), tiny extracellular vesicles that facilitate cell-cell communication, are being explored as a heart failure treatment, although the features of the cell source restrict their efficacy. Fibroblasts the most prevalent non-myocyte heart cells, release poor cardioprotective EXOs. A noninvasive method for manufacturing fibroblast-derived exosomes (F-EXOs) that target cardiomyocytes and slow cardiac remodeling is expected. As a cardioprotective isothiocyanate, sulforaphane (SFN)-induced F-EXOs (SFN-F-EXOs) should recapitulate its anti-remodeling properties. METHODS Exosomes from low-dose SFN (3 μM/7 days)-treated NIH/3T3 murine cells were examined for number, size, and protein composition. Fluorescence microscopy, RT-qPCR, and western blot assessed cell size, oxidative stress, AcH4 levels, hypertrophic gene expression, and caspase-3 activation in angiotensin II (AngII)-stressed HL-1 murine cardiomyocytes 12 h-treated with various EXOs. The uptake of fluorescently-labeled EXOs was also measured in cardiomyocytes. The cardiac function of infarcted male Wistar rats intramyocardially injected with different EXOs (1·1012) was examined by echocardiography. Left ventricular infarct size, hypertrophy, and capillary density were measured. RESULTS Sustained treatment of NIH/3T3 with non-toxic SFN concentration significantly enhances the release of CD81 + EXOs rich in TSG101 (Tumor susceptibility gene 101) and Hsp70 (Heat Shock Protein 70), and containing maspin, an endogenous histone deacetylase 1 inhibitor. SFN-F-EXOs counteract angiotensin II (AngII)-induced hypertrophy and apoptosis in murine HL-1 cardiomyocytes enhancing SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a) levels more effectively than F-EXOs. In stressed cardiomyocytes, SFN-F-EXOs boost AcH4 levels by 30% (p < 0.05) and significantly reduce oxidative stress more than F-EXOs. Fluorescence microscopy showed that mouse cardiomyocytes take in SFN-F-EXOs ~ threefold more than F-EXOs. Compared to vehicle-injected infarcted hearts, SFN-F-EXOs reduce hypertrophy, scar size, and improve contractility. CONCLUSIONS Long-term low-dose SFN treatment of fibroblasts enhances the release of anti-remodeling cardiomyocyte-targeted F-EXOs, which effectively prevent the onset of HF. The proposed method opens a new avenue for large-scale production of cardioprotective exosomes for clinical application using allogeneic fibroblasts.
Collapse
Affiliation(s)
- Gaia Papini
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Giulia Furini
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Anesthesiology and Intensive Care Medicine, UOSVD, Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Marco Matteucci
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Vanessa Biemmi
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università Svizzera Italiana, 6900, Lugano, Switzerland
| | - Valentina Casieri
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Nicole Di Lascio
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Giuseppina Milano
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Lucia Rosa Chincoli
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Lucio Barile
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università Svizzera Italiana, 6900, Lugano, Switzerland
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy.
- Anesthesiology and Intensive Care Medicine, UOSVD, Fondazione Toscana G. Monasterio, Pisa, Italy.
| |
Collapse
|
2
|
Human milk oligosaccharide 2'-fucosyllactose promotes melanin degradation via the autophagic AMPK-ULK1 signaling axis. Sci Rep 2022; 12:13983. [PMID: 35977966 PMCID: PMC9385628 DOI: 10.1038/s41598-022-17896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
There is still an unmet need for development of safer antimelanogenic or melanin-degrading agents for skin hyperpigmentation, induced by intrinsic or extrinsic factors including aging or ultraviolet irradiation. Owing to the relatively low cytotoxicity compared with other chemical materials, several studies have explored the role of 2'-fucosyllactose (2'-FL), the most dominant component of human milk oligosaccharides. Here, we showed that 2'-FL reduced melanin levels in both melanocytic cells and a human skin equivalent three-dimensional in vitro model. Regarding the cellular and molecular mechanism, 2'-FL induced LC3I conversion into LC3II, an autophagy activation marker, followed by the formation of LC3II+/PMEL+ autophagosomes. Comparative transcriptome analysis provided a comprehensive understanding for the up- and downstream cellular processes and signaling pathways of the AMPK–ULK1 signaling axis triggered by 2'-FL treatment. Moreover, 2'-FL activated the phosphorylation of AMPK at Thr172 and of ULK1 at Ser555, which were readily reversed in the presence of dorsomorphin, a specific AMPK inhibitor, with consequent reduction of the 2'-FL-mediated hypopigmentation. Taken together, these findings demonstrate that 2'-FL promotes melanin degradation by inducing autophagy through the AMPK–ULK1 axis. Hence, 2'-FL may represent a new natural melanin-degrading agent for hyperpigmentation.
Collapse
|
3
|
Alesutan I, Luong TTD, Schelski N, Masyout J, Hille S, Schneider MP, Graham D, Zickler D, Verheyen N, Estepa M, Pasch A, Maerz W, Tomaschitz A, Pilz S, Frey N, Lang F, Delles C, Müller OJ, Pieske B, Eckardt KU, Scherberich J, Voelkl J. Circulating uromodulin inhibits vascular calcification by interfering with pro-inflammatory cytokine signalling. Cardiovasc Res 2021; 117:930-941. [PMID: 32243494 DOI: 10.1093/cvr/cvaa081] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
AIMS Uromodulin is produced exclusively in the kidney and secreted into both urine and blood. Serum levels of uromodulin are correlated with kidney function and reduced in chronic kidney disease (CKD) patients, but physiological functions of serum uromodulin are still elusive. This study investigated the role of uromodulin in medial vascular calcification, a key factor associated with cardiovascular events and mortality in CKD patients. METHODS AND RESULTS Experiments were performed in primary human (HAoSMCs) and mouse (MOVAS) aortic smooth muscle cells, cholecalciferol overload and subtotal nephrectomy mouse models and serum from CKD patients. In three independent cohorts of CKD patients, serum uromodulin concentrations were inversely correlated with serum calcification propensity. Uromodulin supplementation reduced phosphate-induced osteo-/chondrogenic transdifferentiation and calcification of HAoSMCs. In human serum, pro-inflammatory cytokines tumour necrosis factor α (TNFα) and interleukin-1β (IL-1β) co-immunoprecipitated with uromodulin. Uromodulin inhibited TNFα and IL-1β-induced osteo-/chondrogenic signalling and activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated β cells (NF-kB) as well as phosphate-induced NF-kB-dependent transcriptional activity in HAoSMCs. In vivo, adeno-associated virus (AAV)-mediated overexpression of uromodulin ameliorated vascular calcification in mice with cholecalciferol overload. Conversely, cholecalciferol overload-induced vascular calcification was aggravated in uromodulin-deficient mice. In contrast, uromodulin overexpression failed to reduce vascular calcification during renal failure in mice. Carbamylated uromodulin was detected in serum of CKD patients and uromodulin carbamylation inhibited its anti-calcific properties in vitro. CONCLUSIONS Uromodulin counteracts vascular osteo-/chondrogenic transdifferentiation and calcification, at least in part, through interference with cytokine-dependent pro-calcific signalling. In CKD, reduction and carbamylation of uromodulin may contribute to vascular pathology.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Aorta/immunology
- Aorta/metabolism
- Cell Transdifferentiation/drug effects
- Cells, Cultured
- Chondrogenesis
- Cytokines/genetics
- Cytokines/metabolism
- Disease Models, Animal
- Female
- Humans
- Inflammation Mediators/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Knockout
- Middle Aged
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/immunology
- Myocytes, Smooth Muscle/metabolism
- Osteogenesis
- Phenotype
- Protein Carbamylation
- Renal Insufficiency, Chronic/blood
- Renal Insufficiency, Chronic/immunology
- Signal Transduction
- Uromodulin/blood
- Uromodulin/genetics
- Uromodulin/pharmacology
- Vascular Calcification/blood
- Vascular Calcification/immunology
- Vascular Calcification/prevention & control
- Young Adult
- Mice
Collapse
Affiliation(s)
- Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Hessische Strasse 3-4, 10115 Berlin, Germany
| | - Trang T D Luong
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nadeshda Schelski
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jaber Masyout
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Susanne Hille
- Department of Internal Medicine III, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistr. 52, 20246 Hamburg, Germany
| | - Markus P Schneider
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany
- German Chronic Kidney Disease (GCKD) Study
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Daniel Zickler
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nicolas Verheyen
- Department of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Misael Estepa
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Andreas Pasch
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
- Calciscon AG, Aarbergstrasse 5, 2560 Nidau-Biel, Switzerland
- Nierenpraxis Bern, Bubenbergplatz 5, 3011 Bern, Switzerland
- Department of Nephrology, Lindenhofspital, Bremgartenstrasse 117, 3001 Bern, Switzerland
| | - Winfried Maerz
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
- Medical Clinic V (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Ludolf Krehl Street 7-11, 68167 Mannheim, Germany
- Synlab Academy, SYNLAB Holding Deutschland GmbH, P5,7, 68161 Mannheim, Germany
| | | | - Stefan Pilz
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Norbert Frey
- Department of Internal Medicine III, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistr. 52, 20246 Hamburg, Germany
| | - Florian Lang
- Department of Physiology, Eberhard-Karls University, Wilhelmstr. 56, 72076 Tübingen, Germany
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistr. 52, 20246 Hamburg, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Hessische Strasse 3-4, 10115 Berlin, Germany
- Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany
- German Chronic Kidney Disease (GCKD) Study
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Juergen Scherberich
- Department of Nephrology and Clinical Immunology, Klinikum München-Harlaching, Teaching Hospital of the Ludwig-Maximilians-Universität, Sanatoriumsplatz 2, 81545 München, Germany
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Hessische Strasse 3-4, 10115 Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
4
|
Henze LA, Luong TT, Boehme B, Masyout J, Schneider MP, Brachs S, Lang F, Pieske B, Pasch A, Eckardt KU, Voelkl J, Alesutan I. Impact of C-reactive protein on osteo-/chondrogenic transdifferentiation and calcification of vascular smooth muscle cells. Aging (Albany NY) 2019; 11:5445-5462. [PMID: 31377747 PMCID: PMC6710049 DOI: 10.18632/aging.102130] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/25/2019] [Indexed: 05/01/2023]
Abstract
Medial vascular calcification occurs during the aging process and is strongly accelerated by chronic kidney disease (CKD). Elevated C-reactive protein (CRP) levels are associated with vascular calcification, cardiovascular events and mortality in CKD patients. CRP is an important promoter of vascular inflammation. Inflammatory processes are critically involved in initiation and progression of vascular calcification. Thus, the present study explored a possible impact of CRP on vascular calcification. We found that CRP promoted osteo-/chondrogenic transdifferentiation and aggravated phosphate-induced osteo-/chondrogenic transdifferentiation and calcification of primary human aortic smooth muscle cells (HAoSMCs). These effects were paralleled by increased cellular oxidative stress and corresponding pro-calcific downstream-signaling. Antioxidants or p38 MAPK inhibition suppressed CRP-induced osteo-/chondrogenic signaling and mineralization. Furthermore, silencing of Fc fragment of IgG receptor IIa (FCGR2A) blunted the pro-calcific effects of CRP. Vascular CRP expression was increased in the klotho-hypomorphic mouse model of aging as well as in HAoSMCs during calcifying conditions. In conclusion, CRP augments osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells through mechanisms involving FCGR2A-dependent induction of oxidative stress. Thus, systemic inflammation may actively contribute to the progression of vascular calcification.
Collapse
MESH Headings
- Aging/metabolism
- Aging/pathology
- Animals
- C-Reactive Protein/metabolism
- Cell Transdifferentiation/physiology
- Cells, Cultured
- Chondrogenesis/physiology
- Disease Models, Animal
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Humans
- Klotho Proteins
- Mice
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Osteogenesis/physiology
- Oxidative Stress
- RNA, Small Interfering/genetics
- Receptors, IgG/antagonists & inhibitors
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Signal Transduction
- Vascular Calcification/etiology
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- Laura A. Henze
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany
| | - Trang T.D. Luong
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4040, Austria
| | - Beate Boehme
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany
| | - Jaber Masyout
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany
| | - Markus P. Schneider
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Sebastian Brachs
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin 10115, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 10115, Germany
| | - Florian Lang
- Department of Physiology I, Eberhard-Karls University, Tübingen 72076, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 10115, Germany
- Berlin Institute of Health (BIH), Berlin 10178, Germany
- Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Berlin 13353, Germany
| | - Andreas Pasch
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4040, Austria
- Calciscon AG, 2560 Nidau-Biel, Switzerland
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Jakob Voelkl
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4040, Austria
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 10115, Germany
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Ioana Alesutan
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4040, Austria
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 10115, Germany
- Berlin Institute of Health (BIH), Berlin 10178, Germany
| |
Collapse
|
5
|
Schanstra JP, Luong TT, Makridakis M, Van Linthout S, Lygirou V, Latosinska A, Alesutan I, Boehme B, Schelski N, Von Lewinski D, Mullen W, Nicklin S, Delles C, Feuillet G, Denis C, Lang F, Pieske B, Bascands JL, Mischak H, Saulnier-Blache JS, Voelkl J, Vlahou A, Klein J. Systems biology identifies cytosolic PLA2 as a target in vascular calcification treatment. JCI Insight 2019; 4:125638. [PMID: 31092728 DOI: 10.1172/jci.insight.125638] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/17/2019] [Indexed: 01/15/2023] Open
Abstract
Although cardiovascular disease (CVD) is the leading cause of morbimortality worldwide, promising new drug candidates are lacking. We compared the arterial high-resolution proteome of patients with advanced versus early-stage CVD to predict, from a library of small bioactive molecules, drug candidates able to reverse this disease signature. Of the approximately 4000 identified proteins, 100 proteins were upregulated and 52 were downregulated in advanced-stage CVD. Arachidonyl trifluoromethyl ketone (AACOCF3), a cytosolic phospholipase A2 (cPLA2) inhibitor was predicted as the top drug able to reverse the advanced-stage CVD signature. Vascular cPLA2 expression was increased in patients with advanced-stage CVD. Treatment with AACOCF3 significantly reduced vascular calcification in a cholecalciferol-overload mouse model and inhibited osteoinductive signaling in vivo and in vitro in human aortic smooth muscle cells. In conclusion, using a systems biology approach, we have identified a potentially new compound that prevented typical vascular calcification in CVD in vivo. Apart from the clear effect of this approach in CVD, such strategy should also be able to generate novel drug candidates in other complex diseases.
Collapse
Affiliation(s)
- Joost P Schanstra
- Institute of Cardiovascular and Metabolic Disease, INSERM, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Trang Td Luong
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Manousos Makridakis
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Sophie Van Linthout
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Vasiliki Lygirou
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Ioana Alesutan
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Beate Boehme
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Nadeshda Schelski
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | | | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Stuart Nicklin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Guylène Feuillet
- Institute of Cardiovascular and Metabolic Disease, INSERM, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Colette Denis
- Institute of Cardiovascular and Metabolic Disease, INSERM, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Florian Lang
- Department of Physiology I, University of Tubingen, Tubingen, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Jean-Loup Bascands
- INSERM, U1188, Université de La Réunion, Sainte-Clotilde, La Réunion, France
| | | | - Jean-Sebastien Saulnier-Blache
- Institute of Cardiovascular and Metabolic Disease, INSERM, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Jakob Voelkl
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany.,Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Antonia Vlahou
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Julie Klein
- Institute of Cardiovascular and Metabolic Disease, INSERM, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| |
Collapse
|
6
|
Andjelković A, Mordas A, Bruinsma L, Ketola A, Cannino G, Giordano L, Dhandapani PK, Szibor M, Dufour E, Jacobs HT. Expression of the Alternative Oxidase Influences Jun N-Terminal Kinase Signaling and Cell Migration. Mol Cell Biol 2018; 38:e00110-18. [PMID: 30224521 PMCID: PMC6275184 DOI: 10.1128/mcb.00110-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/11/2018] [Accepted: 09/11/2018] [Indexed: 12/25/2022] Open
Abstract
Downregulation of Jun N-terminal kinase (JNK) signaling inhibits cell migration in diverse model systems. In Drosophila pupal development, attenuated JNK signaling in the thoracic dorsal epithelium leads to defective midline closure, resulting in cleft thorax. Here we report that concomitant expression of the Ciona intestinalis alternative oxidase (AOX) was able to compensate for JNK pathway downregulation, substantially correcting the cleft thorax phenotype. AOX expression also promoted wound-healing behavior and single-cell migration in immortalized mouse embryonic fibroblasts (iMEFs), counteracting the effect of JNK pathway inhibition. However, AOX was not able to rescue developmental phenotypes resulting from knockdown of the AP-1 transcription factor, the canonical target of JNK, nor its targets and had no effect on AP-1-dependent transcription. The migration of AOX-expressing iMEFs in the wound-healing assay was differentially stimulated by antimycin A, which redirects respiratory electron flow through AOX, altering the balance between mitochondrial ATP and heat production. Since other treatments affecting mitochondrial ATP did not stimulate wound healing, we propose increased mitochondrial heat production as the most likely primary mechanism of action of AOX in promoting cell migration in these various contexts.
Collapse
Affiliation(s)
- Ana Andjelković
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Amelia Mordas
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Lyon Bruinsma
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Annika Ketola
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Giuseppe Cannino
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Luca Giordano
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Praveen K Dhandapani
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marten Szibor
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eric Dufour
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Howard T Jacobs
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
AMP-Activated Protein Kinase (AMPK)-Dependent Regulation of Renal Transport. Int J Mol Sci 2018; 19:ijms19113481. [PMID: 30404151 PMCID: PMC6274953 DOI: 10.3390/ijms19113481] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023] Open
Abstract
AMP-activated kinase (AMPK) is a serine/threonine kinase that is expressed in most cells and activated by a high cellular AMP/ATP ratio (indicating energy deficiency) or by Ca2+. In general, AMPK turns on energy-generating pathways (e.g., glucose uptake, glycolysis, fatty acid oxidation) and stops energy-consuming processes (e.g., lipogenesis, glycogenesis), thereby helping cells survive low energy states. The functional element of the kidney, the nephron, consists of the glomerulus, where the primary urine is filtered, and the proximal tubule, Henle's loop, the distal tubule, and the collecting duct. In the tubular system of the kidney, the composition of primary urine is modified by the reabsorption and secretion of ions and molecules to yield final excreted urine. The underlying membrane transport processes are mainly energy-consuming (active transport) and in some cases passive. Since active transport accounts for a large part of the cell's ATP demands, it is an important target for AMPK. Here, we review the AMPK-dependent regulation of membrane transport along nephron segments and discuss physiological and pathophysiological implications.
Collapse
|
8
|
Tuffaha R, Voelkl J, Pieske B, Lang F, Alesutan I. Role of PKB/SGK-dependent phosphorylation of GSK-3α/β in vascular calcification during cholecalciferol overload in mice. Biochem Biophys Res Commun 2018; 503:2068-2074. [PMID: 30119888 DOI: 10.1016/j.bbrc.2018.07.161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022]
Abstract
Medial vascular calcification is a highly regulated process involving osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells. Both, protein kinase B (PKB) and serum- and glucocorticoid-inducible kinase 1 (SGK1) are involved in the intracellular signaling of vascular calcification and both phosphorylate and inactivate glycogen synthase kinase 3 (GSK-3). The present study explored whether PKB/SGK-dependent phosphorylation of GSK-3α/β is involved in vascular calcification. Experiments were performed in Gsk-3α/β double knockin mice lacking functional PKB/SGK phosphorylation sites (gsk-3KI) and corresponding wild-type mice (gsk-3WT) following high-dosed cholecalciferol treatment as well as ex vivo in aortic ring explants from gsk-3KI and gsk-3WT mice treated without and with phosphate. In gsk-3WT mice, high-dosed cholecalciferol induced vascular calcification and aortic osteo-/chondrogenic signaling, shown by increased expression of osteogenic markers Msx2, Cbfa1 and tissue-nonspecific alkaline phosphatase (Alpl). All these effects were suppressed in aortic tissue from gsk-3KI mice. Cholecalciferol decreased aortic Gsk-3α/β phosphorylation (Ser21/9) in gsk-3WT mice, while no phosphorylation was observed in gsk-3KI mice. Moreover, the mRNA expression of type III sodium-dependent phosphate transporter (Pit1) and plasminogen activator inhibitor 1 (Pai1) was increased following cholecalciferol treatment in aortic tissue of gsk-3WT mice, effects again blunted in gsk-3KI mice. In addition, phosphate treatment induced mineral deposition and osteogenic markers expression in aortic ring explants from gsk-3WT mice, effects reduced in aortic ring explants from gsk-3KI mice. In conclusion, vascular PKB/SGK-dependent phosphorylation of GSK-3α/β contributes to the osteoinductive signaling leading to vascular calcification.
Collapse
Affiliation(s)
- Rashad Tuffaha
- Department of Physiology I, Eberhard-Karls University, Wilhelmstr. 56, 72076 Tübingen, Germany
| | - Jakob Voelkl
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Hessische Str. 3-4, 10115 Berlin, Germany.
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Hessische Str. 3-4, 10115 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch Str. 2, 10178 Berlin, Germany; Department of Internal Medicine and Cardiology, German Heart Center Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Florian Lang
- Department of Physiology I, Eberhard-Karls University, Wilhelmstr. 56, 72076 Tübingen, Germany
| | - Ioana Alesutan
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Hessische Str. 3-4, 10115 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch Str. 2, 10178 Berlin, Germany
| |
Collapse
|
9
|
Voelkl J, Tuffaha R, Luong TTD, Zickler D, Masyout J, Feger M, Verheyen N, Blaschke F, Kuro-O M, Tomaschitz A, Pilz S, Pasch A, Eckardt KU, Scherberich JE, Lang F, Pieske B, Alesutan I. Zinc Inhibits Phosphate-Induced Vascular Calcification through TNFAIP3-Mediated Suppression of NF- κB. J Am Soc Nephrol 2018; 29:1636-1648. [PMID: 29654213 DOI: 10.1681/asn.2017050492] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 02/23/2018] [Indexed: 12/12/2022] Open
Abstract
Background The high cardiovascular morbidity and mortality of patients with CKD may result in large part from medial vascular calcification, a process promoted by hyperphosphatemia and involving osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs). Reduced serum zinc levels have frequently been observed in patients with CKD, but the functional relevance of this remains unclear.Methods We performed experiments in primary human aortic VSMCs; klotho-hypomorphic (kl/kl), subtotal nephrectomy, and cholecalciferol-overload mouse calcification models; and serum samples from patients with CKD.Results In cultured VSMCs, treatment with zinc sulfate (ZnSO4) blunted phosphate-induced calcification, osteo-/chondrogenic signaling, and NF-κB activation. ZnSO4 increased the abundance of zinc-finger protein TNF-α-induced protein 3 (TNFAIP3, also known as A20), a suppressor of the NF-κB pathway, by zinc-sensing receptor ZnR/GPR39-dependent upregulation of TNFAIP3 gene expression. Silencing of TNFAIP3 in VSMCs blunted the anticalcific effects of ZnSO4 under high phosphate conditions. kl/kl mice showed reduced plasma zinc levels, and ZnSO4 supplementation strongly blunted vascular calcification and aortic osteoinduction and upregulated aortic Tnfaip3 expression. ZnSO4 ameliorated vascular calcification in mice with chronic renal failure and mice with cholecalciferol overload. In patients with CKD, serum zinc concentrations inversely correlated with serum calcification propensity. Finally, ZnSO4 ameliorated the osteoinductive effects of uremic serum in VSMCs.Conclusions Zinc supplementation ameliorates phosphate-induced osteo-/chondrogenic transdifferentiation of VSMCs and vascular calcification through an active cellular mechanism resulting from GPR39-dependent induction of TNFAIP3 and subsequent suppression of the NF-κB pathway. Zinc supplementation may be a simple treatment to reduce the burden of vascular calcification in CKD.
Collapse
Affiliation(s)
- Jakob Voelkl
- Department of Internal Medicine and Cardiology, Charité- Universitätsmedizin Berlin, Berlin, Germany;
| | - Rashad Tuffaha
- Department of Physiology I, Eberhard-Karls University, Tübingen, Germany
| | - Trang T D Luong
- Department of Internal Medicine and Cardiology, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Zickler
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jaber Masyout
- Department of Internal Medicine and Cardiology, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Martina Feger
- Department of Physiology I, Eberhard-Karls University, Tübingen, Germany
| | - Nicolas Verheyen
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Florian Blaschke
- Department of Internal Medicine and Cardiology, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Makoto Kuro-O
- Center for Molecular Medicine, Jichi Medical University, Japan
| | - Andreas Tomaschitz
- Department of Cardiology, Medical University of Graz, Graz, Austria.,Division of Internal Medicine, Specialist Clinic of Rehabilitation Bad Gleichenberg, Bad Gleichenberg, Austria
| | - Stefan Pilz
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Juergen E Scherberich
- Department of Nephrology and Clinical Immunology, Klinikum München-Harlaching, Teaching Hospital of the Ludwig-Maximilians-Universität, München, Germany
| | - Florian Lang
- Department of Physiology I, Eberhard-Karls University, Tübingen, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité- Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany; and.,Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Berlin, Germany
| | - Ioana Alesutan
- Department of Internal Medicine and Cardiology, Charité- Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany; and
| |
Collapse
|
10
|
Wang B, Nie J, Wu L, Hu Y, Wen Z, Dong L, Zou MH, Chen C, Wang DW. AMPKα2 Protects Against the Development of Heart Failure by Enhancing Mitophagy via PINK1 Phosphorylation. Circ Res 2017; 122:712-729. [PMID: 29284690 DOI: 10.1161/circresaha.117.312317] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/20/2017] [Accepted: 12/27/2017] [Indexed: 01/28/2023]
Abstract
RATIONALE Mitochondrial dysfunction plays an important role in heart failure (HF). However, the molecular mechanisms regulating mitochondrial functions via selective mitochondrial autophagy (mitophagy) are poorly understood. OBJECTIVE We sought to determine the role of AMPK (AMP-activated protein kinase) in selective mitophagy during HF. METHODS AND RESULTS An isoform shift from AMPKα2 to AMPKα1 was observed in failing heart samples from HF patients and transverse aortic constriction-induced mice, accompanied by decreased mitophagy and mitochondrial function. The recombinant adeno-associated virus Serotype 9-mediated overexpression of AMPKα2 in mouse hearts prevented the development of transverse aortic constriction-induced chronic HF by increasing mitophagy and improving mitochondrial function. In contrast, AMPKα2-/- mutant mice exhibited an exacerbation of the early progression of transverse aortic constriction-induced HF via decreases in cardiac mitophagy. In isolated adult mouse cardiomyocytes, AMPKα2 overexpression mechanistically rescued the impairment of mitophagy after phenylephrine stimulation for 24 hours. Genetic knockdown of AMPKα2, but not AMPKα1, by short interfering RNA suppressed the early phase (6 hours) of phenylephrine-induced compensatory increases in mitophagy. Furthermore, AMPKα2 specifically interacted with phosphorylated PINK1 (PTEN-induced putative kinase 1) at Ser495 after phenylephrine stimulation. Subsequently, phosphorylated PINK1 recruited the E3 ubiquitin ligase, Parkin, to depolarized mitochondria, and then enhanced the role of the PINK1-Parkin-SQSTM1 (sequestosome-1) pathway involved in cardiac mitophagy. This increase in cardiac mitophagy was accompanied by the elimination of damaged mitochondria, improvement in mitochondrial function, decrease in reactive oxygen species production, and apoptosis of cardiomyocytes. Finally, Ala mutation of PINK1 at Ser495 partially suppressed AMPKα2 overexpression-induced mitophagy and improvement of mitochondrial function in phenylephrine-stimulated cardiomyocytes, whereas Asp (phosphorylation mimic) mutation promoted mitophagy after phenylephrine stimulation. CONCLUSIONS In failing hearts, the dominant AMPKα isoform switched from AMPKα2 to AMPKα1, which accelerated HF. The results show that phosphorylation of Ser495 in PINK1 by AMPKα2 was essential for efficient mitophagy to prevent the progression of HF.
Collapse
Affiliation(s)
- Bei Wang
- From the Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College (B.W., J.N., L.W., Z.W.,C.C., D.W.W.), Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders (B.W., J.N., L.W., Z.W.,C.C., D.W.W.), and Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College (B.W., Y.H., L.D.), Huazhong University of Science and Technology, Wuhan, China; and Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.)
| | - Jiali Nie
- From the Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College (B.W., J.N., L.W., Z.W.,C.C., D.W.W.), Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders (B.W., J.N., L.W., Z.W.,C.C., D.W.W.), and Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College (B.W., Y.H., L.D.), Huazhong University of Science and Technology, Wuhan, China; and Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.)
| | - Lujin Wu
- From the Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College (B.W., J.N., L.W., Z.W.,C.C., D.W.W.), Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders (B.W., J.N., L.W., Z.W.,C.C., D.W.W.), and Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College (B.W., Y.H., L.D.), Huazhong University of Science and Technology, Wuhan, China; and Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.)
| | - Yangyang Hu
- From the Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College (B.W., J.N., L.W., Z.W.,C.C., D.W.W.), Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders (B.W., J.N., L.W., Z.W.,C.C., D.W.W.), and Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College (B.W., Y.H., L.D.), Huazhong University of Science and Technology, Wuhan, China; and Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.)
| | - Zheng Wen
- From the Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College (B.W., J.N., L.W., Z.W.,C.C., D.W.W.), Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders (B.W., J.N., L.W., Z.W.,C.C., D.W.W.), and Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College (B.W., Y.H., L.D.), Huazhong University of Science and Technology, Wuhan, China; and Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.)
| | - Lingli Dong
- From the Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College (B.W., J.N., L.W., Z.W.,C.C., D.W.W.), Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders (B.W., J.N., L.W., Z.W.,C.C., D.W.W.), and Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College (B.W., Y.H., L.D.), Huazhong University of Science and Technology, Wuhan, China; and Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.)
| | - Ming-Hui Zou
- From the Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College (B.W., J.N., L.W., Z.W.,C.C., D.W.W.), Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders (B.W., J.N., L.W., Z.W.,C.C., D.W.W.), and Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College (B.W., Y.H., L.D.), Huazhong University of Science and Technology, Wuhan, China; and Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.)
| | - Chen Chen
- From the Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College (B.W., J.N., L.W., Z.W.,C.C., D.W.W.), Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders (B.W., J.N., L.W., Z.W.,C.C., D.W.W.), and Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College (B.W., Y.H., L.D.), Huazhong University of Science and Technology, Wuhan, China; and Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.).
| | - Dao Wen Wang
- From the Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College (B.W., J.N., L.W., Z.W.,C.C., D.W.W.), Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders (B.W., J.N., L.W., Z.W.,C.C., D.W.W.), and Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College (B.W., Y.H., L.D.), Huazhong University of Science and Technology, Wuhan, China; and Center for Molecular and Translational Medicine, Georgia State University, Atlanta (M.-H.Z.).
| |
Collapse
|
11
|
Feng Y, Zhang Y, Xiao H. AMPK and cardiac remodelling. SCIENCE CHINA-LIFE SCIENCES 2017; 61:14-23. [PMID: 29170891 DOI: 10.1007/s11427-017-9197-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/11/2017] [Indexed: 12/17/2022]
Abstract
Cardiac remodelling is generally accepted as a critical process in the progression of heart failure. Myocyte hypertrophy, inflammatory responses and cardiac fibrosis are the main pathological changes associated with cardiac remodelling. AMP-activated protein kinase (AMPK) is known as an energy sensor and a regulator of cardiac metabolism under normal and ischaemic conditions. Additionally, AMPK has been shown to play roles in cardiac remodelling extending well beyond metabolic regulation. In this review, we discuss the currently defined roles of AMPK in cardiac remodelling and summarize the effects of AMPK on cardiac hypertrophy, inflammatory responses and fibrosis and the molecular mechanisms underlying these effects. In addition, we discuss some pharmacological activators of AMPK that are promising treatments for cardiac remodelling.
Collapse
Affiliation(s)
- Yenan Feng
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Youyi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| |
Collapse
|
12
|
Kim N, Jung Y, Nam M, Sun Kang M, Lee MK, Cho Y, Choi EK, Hwang GS, Soo Kim H. Angiotensin II affects inflammation mechanisms via AMPK-related signalling pathways in HL-1 atrial myocytes. Sci Rep 2017; 7:10328. [PMID: 28871102 PMCID: PMC5583339 DOI: 10.1038/s41598-017-09675-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/27/2017] [Indexed: 11/30/2022] Open
Abstract
Inflammation is a common cause of cardiac arrhythmia. Angiotensin ІІ (Ang ІІ) is a major contributing factor in the pathogenesis of cardiac inflammation; however, its underlying molecular mechanism remains unclear. Here, we explored the effect of Ang ІІ on inflammatory mechanisms and oxidative stress using HL-1 atrial myocytes. We showed that Ang ІІ activated c-Jun N-terminal kinase (JNK) phosphorylation and other inflammatory markers, such as transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α). Ang ІІ decreased oxygen consumption rate, which resulted in reactive oxygen species (ROS) generation and inhibition of ROS blocked Ang II-mediated JNK phosphorylation and TGF-β1 induction. Ang ІІ induced the expression of its specific receptor, AT1R. Ang II-induced intracellular calcium production associated with Ang ІІ-mediated signalling pathways. In addition, the generated ROS and calcium stimulated AMPK phosphorylation. Inhibiting AMPK blocked Ang II-mediated JNK and TGF-β signalling pathways. Ang ІІ concentration, along with TGF-β1 and tumor necrosis factor-α levels, was slightly increased in plasma of patients with atrial fibrillation. Taken together, these results suggest that Ang ІІ induces inflammation mechanisms through an AMPK-related signalling pathway. Our results provide new molecular targets for the development of therapeutics for inflammation-related conditions, such as atrial fibrillation.
Collapse
Affiliation(s)
- Nami Kim
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
| | - Youngae Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
| | - Miso Nam
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
| | - Mi Sun Kang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
| | - Min Kyung Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
| | - Youngjin Cho
- Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Eue-Keun Choi
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea. .,Chemistry & Nanoscience, Ewha Womans University, Seoul, Republic of Korea.
| | - Hyeon Soo Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| |
Collapse
|
13
|
Role of AMP-activated protein kinase α1 in angiotensin-II-induced renal Tgfß-activated kinase 1 activation. Biochem Biophys Res Commun 2016; 476:267-272. [DOI: 10.1016/j.bbrc.2016.05.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 05/22/2016] [Indexed: 01/12/2023]
|