1
|
Kondacs L, Parijat P, Cobb AJA, Kampourakis T. Synthesis and Biophysical Characterization of Fingolimod Derivatives as Cardiac Troponin Antagonists. ACS Med Chem Lett 2024; 15:413-417. [PMID: 38505838 PMCID: PMC10945792 DOI: 10.1021/acsmedchemlett.3c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/21/2024] Open
Abstract
Calcium binding to cardiac troponin C (cTnC) in the thin filaments acts as a trigger for cardiac muscle contraction. The N-lobe of cTnC (NcTnC) undergoes a conformational change in the presence of calcium that allows for interaction with the switch region of cardiac troponin I (cTnISP), releasing its inhibitory effect on the thin filament structure. The small molecule fingolimod inhibits cTnC-cTnISP interactions via electrostatic repulsion between its positively charged tail and positively charged residues in cTnISP and acts as a calcium desensitizer of the contractile myofilaments. Here we investigate the structure-activity relationship of the fingolimod hydrophobic headgroup and show that increasing the alkyl chain length increases both its affinity for NcTnC and its inhibitory effect on the NcTnC-cTnISP interaction and that decreasing flexibility completely abolishes these effects. Strikingly, the longer derivatives have no effect on the calcium affinity of cTnC, suggesting that they act as better inhibitors.
Collapse
Affiliation(s)
- Laszlo Kondacs
- Department
of Chemistry, King’s College London, Britannia House, London SE1 1DB, United Kingdom
| | - Priyanka Parijat
- Randall
Centre for Cell and Molecular Biophysics and British Heart Foundation
Centre of Research Excellence, King’s
College London, London SE1 1UL, United Kingdom
| | - Alexander J. A. Cobb
- Department
of Chemistry, King’s College London, Britannia House, London SE1 1DB, United Kingdom
| | - Thomas Kampourakis
- Randall
Centre for Cell and Molecular Biophysics and British Heart Foundation
Centre of Research Excellence, King’s
College London, London SE1 1UL, United Kingdom
| |
Collapse
|
2
|
Higgins WT, Vibhute S, Bennett C, Lindert S. Discovery of Nanomolar Inhibitors for Human Dihydroorotate Dehydrogenase Using Structure-Based Drug Discovery Methods. J Chem Inf Model 2024; 64:435-448. [PMID: 38175956 DOI: 10.1021/acs.jcim.3c01358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
We used a structure-based drug discovery approach to identify novel inhibitors of human dihydroorotate dehydrogenase (DHODH), which is a therapeutic target for treating cancer and autoimmune and inflammatory diseases. In the case of acute myeloid leukemia, no previously discovered DHODH inhibitors have yet succeeded in this clinical application. Thus, there remains a strong need for new inhibitors that could be used as alternatives to the current standard-of-care. Our goal was to identify novel inhibitors of DHODH. We implemented prefiltering steps to omit PAINS and Lipinski violators at the earliest stages of this project. This enriched compounds in the data set that had a higher potential of favorable oral druggability. Guided by Glide SP docking scores, we found 20 structurally unique compounds from the ChemBridge EXPRESS-pick library that inhibited DHODH with IC50, DHODH values between 91 nM and 2.7 μM. Ten of these compounds reduced MOLM-13 cell viability with IC50, MOLM-13 values between 2.3 and 50.6 μM. Compound 16 (IC50, DHODH = 91 nM) inhibited DHODH more potently than the known DHODH inhibitor, teriflunomide (IC50, DHODH = 130 nM), during biochemical characterizations and presented a promising scaffold for future hit-to-lead optimization efforts. Compound 17 (IC50, MOLM-13 = 2.3 μM) was most successful at reducing survival in MOLM-13 cell lines compared with our other hits. The discovered compounds represent excellent starting points for the development and optimization of novel DHODH inhibitors.
Collapse
Affiliation(s)
- William T Higgins
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - Sandip Vibhute
- Medicinal Chemistry Shared Resource, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, United States
| | - Chad Bennett
- Medicinal Chemistry Shared Resource, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, United States
- Drug Development Institute, Ohio State University, Columbus, Ohio 43210, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Hantz ER, Tikunova SB, Belevych N, Davis JP, Reiser PJ, Lindert S. Targeting Troponin C with Small Molecules Containing Diphenyl Moieties: Calcium Sensitivity Effects on Striated Muscles and Structure-Activity Relationship. J Chem Inf Model 2023; 63:3462-3473. [PMID: 37204863 PMCID: PMC10496875 DOI: 10.1021/acs.jcim.3c00196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Despite large investments from academia and industry, heart failure, which results from a disruption of the contractile apparatus, remains a leading cause of death. Cardiac muscle contraction is a calcium-dependent mechanism, which is regulated by the troponin protein complex (cTn) and specifically by the N-terminal domain of its calcium-binding subunit (cNTnC). There is an increasing need for the development of small molecules that increase calcium sensitivity without altering the systolic calcium concentration, thereby strengthening the cardiac function. Here, we examined the effect of our previously identified calcium-sensitizing small molecule, ChemBridge compound 7930079, in the context of several homologous muscle systems. The effect of this molecule on force generation in isolated cardiac trabeculae and slow skeletal muscle fibers was measured. Furthermore, we explored the use of Gaussian accelerated molecular dynamics in sampling highly predictive receptor conformations based on NMR-derived starting structures. Additionally, we took a rational computational approach for lead optimization based on lipophilic diphenyl moieties. This integrated structural-biochemical-physiological approach led to the identification of three novel low-affinity binders, which had similar binding affinities to the known positive inotrope trifluoperazine. The most potent identified calcium sensitizer was compound 16 with an apparent affinity of 117 ± 17 μM.
Collapse
Affiliation(s)
- Eric R. Hantz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Svetlana B. Tikunova
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210
| | - Natalya Belevych
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210
| | - Jonathan P. Davis
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210
| | - Peter J. Reiser
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
4
|
Cool AM, Lindert S. Umbrella Sampling Simulations of Cardiac Thin Filament Reveal Thermodynamic Consequences of Troponin I Inhibitory Peptide Mutations. J Chem Inf Model 2023; 63:3534-3543. [PMID: 37261389 PMCID: PMC10506665 DOI: 10.1021/acs.jcim.3c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The cardiac thin filament comprises F-actin, tropomyosin, and troponin (cTn). cTn is composed of three subunits: troponin C (cTnC), troponin I (cTnI), and troponin T (cTnT). To computationally study the effect of the thin filament on cTn activation events, we employed targeted molecular dynamics followed by umbrella sampling using a model of the thin filament to measure the thermodynamics of cTn transition events. Our simulations revealed that the thin filament causes an increase in the free energy required to open the cTnC hydrophobic patch and causes a more favorable interaction between this region and the cTnI switch peptide. Mutations to the cTn complex can lead to cardiomyopathy, a collection of diseases that present clinically with symptoms of hypertrophy or dilation of the cardiac muscle, leading to impairment of the heart's ability to function normally and ultimately myocardial infarction or heart failure. Upon introduction of cardiomyopathic mutations to R145 of cTnI, we observed a general decrease in the free energy of opening the cTnC hydrophobic patch, which is on par with previous experimental results. These mutations also exhibited a decrease in electrostatic interactions between cTnI-R145 and actin-E334. After introduction of a small molecule to the wild-type cTnI-actin interface to intentionally disrupt intersubunit contacts, we successfully observed similar thermodynamic consequences and disruptions to the same protein-protein contacts as observed with the cardiomyopathic mutations. Computational studies utilizing the cTn complex in isolation would have been unable to observe these effects, highlighting the importance of using a more physiologically relevant thin-filament model to investigate the global consequences of cardiomyopathic mutations to the cTn complex.
Collapse
Affiliation(s)
- Austin M. Cool
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
5
|
Cai F, Kampourakis T, Parijat P, Cockburn KT, Sykes BD. Conversion of a Cardiac Muscle Modulator from an Inhibitor to an Activator. ACS Med Chem Lett 2023; 14:530-533. [PMID: 37077384 PMCID: PMC10108394 DOI: 10.1021/acsmedchemlett.3c00033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The binding of calcium to cardiac troponin C (cTnC) enhances the binding of troponin I (cTnI) switch region to the regulatory domain of cTnC (cNTnC) and triggers muscle contraction. Several molecules alter the response of the sarcomere by targeting this interface; virtually all have an aromatic core that binds to the hydrophobic pocket of cNTnC and an aliphatic tail that interacts with the switch region of cTnI. W7 has been extensively studied, and the positively charged tail has been shown to be important for its inhibitory action. Herein we investigate the importance of the aromatic core of W7 by synthesizing compounds that have the core region of calcium activator dfbp-o with various lengths of the same tail (D-series). These compounds all bind more tightly to cNTnC-cTnI chimera (cChimera) than the analogous W-series compounds and show increased calcium sensitivity of force generation and ATPase activity, demonstrating that the cardiovascular system is tightly balanced.
Collapse
Affiliation(s)
- Fangze Cai
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Thomas Kampourakis
- Randall
Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, United Kingdom
| | - Priyanka Parijat
- Randall
Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, United Kingdom
| | - Kieran T. Cockburn
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Brian D. Sykes
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
6
|
Parijat P, Ponnam S, Attili S, Campbell KS, El-Mezgueldi M, Pfuhl M, Kampourakis T. Discovery of novel cardiac troponin activators using fluorescence polarization-based high throughput screening assays. Sci Rep 2023; 13:5216. [PMID: 36997544 PMCID: PMC10063609 DOI: 10.1038/s41598-023-32476-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The large unmet demand for new heart failure therapeutics is widely acknowledged. Over the last decades the contractile myofilaments themselves have emerged as an attractive target for the development of new therapeutics for both systolic and diastolic heart failure. However, the clinical use of myofilament-directed drugs has been limited, and further progress has been hampered by incomplete understanding of myofilament function on the molecular level and screening technologies for small molecules that accurately reproduce this function in vitro. In this study we have designed, validated and characterized new high throughput screening platforms for small molecule effectors targeting the interactions between the troponin C and troponin I subunits of the cardiac troponin complex. Fluorescence polarization-based assays were used to screen commercially available compound libraries, and hits were validated using secondary screens and orthogonal assays. Hit compound-troponin interactions were characterized using isothermal titration calorimetry and NMR spectroscopy. We identified NS5806 as novel calcium sensitizer that stabilizes active troponin. In good agreement, NS5806 greatly increased the calcium sensitivity and maximal isometric force of demembranated human donor myocardium. Our results suggest that sarcomeric protein-directed screening platforms are suitable for the development of compounds that modulate cardiac myofilament function.
Collapse
Affiliation(s)
- Priyanka Parijat
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
- British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK
| | - Saraswathi Ponnam
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
- British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK
| | - Seetharamaiah Attili
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
- British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK
| | - Kenneth S Campbell
- Division of Cardiovascular Medicine and Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Mohammed El-Mezgueldi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
- British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK
| | - Mark Pfuhl
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
- British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
- British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
7
|
Hantz ER, Tikunova SB, Belevych N, Davis JP, Reiser PJ, Lindert S. Targeting Troponin C with Small Molecules Containing Diphenyl Moieties: Calcium Sensitivity Effects on Striated Muscle and Structure Activity Relationship. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527323. [PMID: 36798160 PMCID: PMC9934531 DOI: 10.1101/2023.02.06.527323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Despite large investments from academia and industry, heart failure, which results from a disruption of the contractile apparatus, remains a leading cause of death. Cardiac muscle contraction is a calcium-dependent mechanism, which is regulated by the troponin protein complex (cTn) and specifically by the N-terminal domain of its calcium binding subunit (cNTnC). There is an increasing need for the development of small molecules that increase calcium sensitivity without altering systolic calcium concentration, thereby strengthening cardiac function. Here, we examined the effect of our previously identified calcium sensitizing small molecule, ChemBridge compound 7930079, in the context of several homologous muscle systems. The effect of this molecule on force generation in isolated cardiac trabeculae and slow skeletal muscle fibers was measured. Furthermore, we explored the use of Gaussian accelerated molecular dynamics in sampling highly predictive receptor conformations based on NMR derived starting structures. Additionally, we took a rational computational approach for lead optimization based on lipophilic diphenyl moieties. This led to the identification of three novel low affinity binders, which had similar binding affinities to known positive inotrope trifluoperazine. The most potent identified calcium sensitizer was compound 16 with an apparent affinity of 117 ± 17 μM .
Collapse
Affiliation(s)
- Eric R. Hantz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Svetlana B. Tikunova
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210
| | - Natalya Belevych
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210
| | - Jonathan P. Davis
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210
| | - Peter J. Reiser
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210,Correspondence to: Department of Chemistry and Biochemistry, Ohio State University, 2114 Newman & Wolfrom Laboratory, 100 W. 18th Avenue, Columbus, OH 43210, 614-292-8284 (office), 614-292-1685 (fax),
| |
Collapse
|
8
|
Hantz ER, Lindert S. Computational Exploration and Characterization of Potential Calcium Sensitizing Mutations in Cardiac Troponin C. J Chem Inf Model 2022; 62:6201-6208. [PMID: 36383927 PMCID: PMC10497304 DOI: 10.1021/acs.jcim.2c01132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Calcium-dependent heart muscle contraction is regulated by the cardiac troponin protein complex (cTn) and specifically by the N-terminal domain of its calcium binding subunit (cNTnC). cNTnC contains one calcium binding site (site II), and altered calcium binding in this site has been studied for decades. It has been previously shown that cNTnC mutants, which increase calcium sensitization may have therapeutic benefits, such as restoring cardiac muscle contractility and functionality post-myocardial infarction events. Here, we computationally characterized eight mutations for their potential effects on calcium binding affinity in site II of cNTnC. We utilized two distinct methods to estimate calcium binding: adaptive steered molecular dynamics (ASMD) and thermodynamic integration (TI). We observed a sensitizing trend for all mutations based on the employed ASMD methodology. The TI results showed excellent agreement with experimentally known calcium binding affinities in wild-type cNTnC. Based on the TI results, five mutants were predicted to increase calcium sensitivity in site II. This study presents an interesting comparison of the two computational methods, which have both been shown to be valuable tools in characterizing the impacts of calcium sensitivity in mutant cNTnC systems.
Collapse
Affiliation(s)
- Eric R. Hantz
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, 43210
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, 43210
| |
Collapse
|
9
|
Cool AM, Lindert S. Umbrella Sampling Simulations Measure Switch Peptide Binding and Hydrophobic Patch Opening Free Energies in Cardiac Troponin. J Chem Inf Model 2022; 62:5666-5674. [PMID: 36283742 PMCID: PMC9712266 DOI: 10.1021/acs.jcim.2c00508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cardiac troponin (cTn) complex is an important regulatory protein in heart contraction. Upon binding of Ca2+, cTn undergoes a conformational shift that allows the troponin I switch peptide (cTnISP) to be released from the actin filament and bind to the troponin C hydrophobic patch (cTnCHP). Mutations and modifications to this complex can change its sensitivity to Ca2+ and alter the energetics of the transition from the Ca2+-unbound, cTnISP-unbound form to the Ca2+-bound, cTnISP-bound form. We utilized targeted molecular dynamics (TMD) to obtain a trajectory of this transition pathway, followed by umbrella sampling to estimate the free energy associated with the cTnISP-cTnCHP binding and the cTnCHP opening events for wild-type (WT) cTn. We were able to reproduce experimental values for the cTnISP-cTnCHP binding event and obtain cTnCHP opening free energies in agreement with previous computational measurements of smaller cTnC systems. This excellent agreement for WT cTn demonstrated the strength of computational methods in studying the dynamics and energetics of the cTn complex. We then introduced mutations to the cTn complex that cause cardiomyopathy or alter its Ca2+ sensitivity and observed a general decrease in the free energy of opening the cTnCHP. For these same mutations, we observed no general trend in the effect on the cTnISP-cTnCHP binding event. Our method sets the stage for future computational studies on this system that predict the consequences of yet uncharacterized mutations on cTn dynamics and energetics.
Collapse
Affiliation(s)
- Austin M. Cool
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
10
|
Mahmud Z, Tikunova S, Belevych N, Wagg CS, Zhabyeyev P, Liu PB, Rasicci DV, Yengo CM, Oudit GY, Lopaschuk GD, Reiser PJ, Davis JP, Hwang PM. Small Molecule RPI-194 Stabilizes Activated Troponin to Increase the Calcium Sensitivity of Striated Muscle Contraction. Front Physiol 2022; 13:892979. [PMID: 35755445 PMCID: PMC9213791 DOI: 10.3389/fphys.2022.892979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Small molecule cardiac troponin activators could potentially enhance cardiac muscle contraction in the treatment of systolic heart failure. We designed a small molecule, RPI-194, to bind cardiac/slow skeletal muscle troponin (Cardiac muscle and slow skeletal muscle share a common isoform of the troponin C subunit.) Using solution NMR and stopped flow fluorescence spectroscopy, we determined that RPI-194 binds to cardiac troponin with a dissociation constant KD of 6-24 μM, stabilizing the activated complex between troponin C and the switch region of troponin I. The interaction between RPI-194 and troponin C is weak (KD 311 μM) in the absence of the switch region. RPI-194 acts as a calcium sensitizer, shifting the pCa50 of isometric contraction from 6.28 to 6.99 in mouse slow skeletal muscle fibers and from 5.68 to 5.96 in skinned cardiac trabeculae at 100 μM concentration. There is also some cross-reactivity with fast skeletal muscle fibers (pCa50 increases from 6.27 to 6.52). In the slack test performed on the same skinned skeletal muscle fibers, RPI-194 slowed the velocity of unloaded shortening at saturating calcium concentrations, suggesting that it slows the rate of actin-myosin cross-bridge cycling under these conditions. However, RPI-194 had no effect on the ATPase activity of purified actin-myosin. In isolated unloaded mouse cardiomyocytes, RPI-194 markedly decreased the velocity and amplitude of contractions. In contrast, cardiac function was preserved in mouse isolated perfused working hearts. In summary, the novel troponin activator RPI-194 acts as a calcium sensitizer in all striated muscle types. Surprisingly, it also slows the velocity of unloaded contraction, but the cause and significance of this is uncertain at this time. RPI-194 represents a new class of non-specific troponin activator that could potentially be used either to enhance cardiac muscle contractility in the setting of systolic heart failure or to enhance skeletal muscle contraction in neuromuscular disorders.
Collapse
Affiliation(s)
- Zabed Mahmud
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Svetlana Tikunova
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Natalya Belevych
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Cory S Wagg
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Pavel Zhabyeyev
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Philip B Liu
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - David V Rasicci
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, University Park, PA, United States
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, University Park, PA, United States
| | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Gary D Lopaschuk
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Peter J Reiser
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Peter M Hwang
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Cai F, Kampourakis T, Cockburn KT, Sykes BD. Drugging the Sarcomere, a Delicate Balance: Position of N-Terminal Charge of the Inhibitor W7. ACS Chem Biol 2022; 17:1495-1504. [PMID: 35649123 DOI: 10.1021/acschembio.2c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
W7 is a sarcomere inhibitor that decreases the calcium sensitivity of force development in cardiac muscle. W7 binds to the interface of the regulatory domain of cardiac troponin C (cNTnC) and the switch region of troponin I (cTnI), decreasing the binding of cTnI to cNTnC, presumably by electrostatic repulsion between the -NH3+ group of W7 and basic amino acids in cTnI. W7 analogs with a -CO2- tail are inactive. To evaluate the importance of the location of the charged -NH3+, we used a series of compounds W4, W6, W8, and W9, which have three less, one less, one more, and two more methylene groups in the tail region than W7. W6, W8, and W9 all bind tighter to cNTnC-cTnI chimera (cChimera) than W7, while W4 binds weaker. W4 and, strikingly, W6 have no effect on calcium sensitivity of force generation, while W8 and W9 decrease calcium sensitivity, but less than W7. The structures of the cChimera-W6 and cChimera-W8 complexes reveal that W6 and W8 bind to the same hydrophobic cleft as W7, with the aliphatic tail taking a similar route to the surface. NMR relaxation data show that internal flexibility in the tail of W7 is very limited. Alignment of the cChimera-W7 structure with the recent cryoEM structures of the cardiac sarcomere in the diastolic and systolic states reveals the critical location of the amino group. Small molecule induced structural changes can therefore affect the tightly balanced equilibrium between tethered components required for rapid contraction.
Collapse
Affiliation(s)
- Fangze Cai
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom
| | - Kieran T Cockburn
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Brian D Sykes
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
12
|
Abstract
Abstract
Machine learning (ML) has revolutionised the field of structure-based drug design (SBDD) in recent years. During the training stage, ML techniques typically analyse large amounts of experimentally determined data to create predictive models in order to inform the drug discovery process. Deep learning (DL) is a subfield of ML, that relies on multiple layers of a neural network to extract significantly more complex patterns from experimental data, and has recently become a popular choice in SBDD. This review provides a thorough summary of the recent DL trends in SBDD with a particular focus on de novo drug design, binding site prediction, and binding affinity prediction of small molecules.
Collapse
|
13
|
Yan C, Sack JS. X-ray structure of a human cardiac muscle troponin C/troponin I chimera in two crystal forms. Acta Crystallogr F Struct Biol Commun 2022; 78:17-24. [PMID: 34981771 PMCID: PMC8725003 DOI: 10.1107/s2053230x21012395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/22/2021] [Indexed: 01/03/2023] Open
Abstract
The X-ray crystal structure of a human cardiac muscle troponin C/troponin I chimera has been determined in two different crystal forms and shows a conformation of the complex that differs from that previously observed by NMR. The chimera consists of the N-terminal domain of troponin C (cTnC; residues 1-80) fused to the switch region of troponin I (cTnI; residues 138-162). In both crystal forms, the cTnI residues form a six-turn α-helix that lays across the hydrophobic groove of an adjacent cTnC molecule in the crystal structure. In contrast to previous models, the cTnI helix runs in a parallel direction relative to the cTnC groove and completely blocks the calcium desensitizer binding site of the cTnC-cTnI interface.
Collapse
Affiliation(s)
- Chunhong Yan
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - John S. Sack
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA,Correspondence e-mail:
| |
Collapse
|
14
|
Cai F, Kampourakis T, Klein BA, Sykes BD. A Potent Fluorescent Reversible-Covalent Inhibitor of Cardiac Muscle Contraction. ACS Med Chem Lett 2021; 12:1503-1507. [PMID: 34531960 DOI: 10.1021/acsmedchemlett.1c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/19/2021] [Indexed: 11/28/2022] Open
Abstract
Compounds that directly modulate the response of the cardiac sarcomere have potential in the treatment of cardiac disease. While a number of sarcomere activators have been discovered and extensively studied, very few inhibitors have been identified. We report a potent cardiac sarcomere inhibitor, DN-F01, targeting the cardiac muscle thin filament protein troponin complex. Functional studies show that DN-F01 has a strong inhibitory calcium-dependent effect on cardiac myofibrillar ATPase activity with an IC50 value of 11 ± 4 nmol/L. DN-F01 is shown to bind to a cardiac troponin C-troponin I chimera (cChimera) with a K D of ∼50 nM using fluorescence spectroscopy, indicating that troponin is the likely target for DN-F01. NMR titrations of DN-F01 to C35S and A-Cys cChimera show covalent and noncovalent binding of DN-F01 bound to the calcium-saturated cChimera.
Collapse
Affiliation(s)
- Fangze Cai
- Department of Biochemistry, University of Alberta, Edmonton AB T6G 2R3, Canada
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, United Kingdom
| | - Brittney A. Klein
- Department of Biochemistry, University of Alberta, Edmonton AB T6G 2R3, Canada
| | - Brian D. Sykes
- Department of Biochemistry, University of Alberta, Edmonton AB T6G 2R3, Canada
| |
Collapse
|
15
|
Mahmud Z, Dhami PS, Rans C, Liu PB, Hwang PM. Dilated Cardiomyopathy Mutations and Phosphorylation disrupt the Active Orientation of Cardiac Troponin C. J Mol Biol 2021; 433:167010. [PMID: 33901537 DOI: 10.1016/j.jmb.2021.167010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/07/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022]
Abstract
Cardiac troponin (cTn) is made up of three subunits, cTnC, cTnI, and cTnT. The regulatory N-terminal domain of cTnC (cNTnC) controls cardiac muscle contraction in a calcium-dependent manner. We show that calcium-saturated cNTnC can adopt two different orientations, with the "active" orientation consistent with the 2020 cryo-EM structure of the activated cardiac thin filament by Yamada et al. Using solution NMR 15N R2 relaxation analysis, we demonstrate that the two domains of cTnC tumble independently (average R2 10 s-1), being connected by a flexible linker. However, upon addition of cTnI1-77, the complex tumbles as a rigid unit (R2 30 s-1). cTnI phosphomimetic mutants S22D/S23D, S41D/S43D and dilated cardiomyopathy- (DCM-)associated mutations cTnI K35Q, cTnC D75Y, and cTnC G159D destabilize the active orientation of cNTnC, with intermediate 15N R2 rates (R2 17-23 s-1). The active orientation of cNTnC is stabilized by the flexible tails of cTnI, cTnI1-37 and cTnI135-209. Surprisingly, when cTnC is incorporated into complexes lacking these tails (cTnC-cTnI38-134, cTnC-cTnT223-288, or cTnC-cTnI38-134-cTnT223-288), the cNTnC domain is still immobilized, revealing a new interaction between cNTnC and the IT-arm that stabilizes a "dormant" orientation. We propose that the calcium sensitivity of the cardiac troponin complex is regulated by an equilibrium between active and dormant orientations, which can be shifted through post-translational modifications or DCM-associated mutations.
Collapse
Affiliation(s)
- Zabed Mahmud
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Prabhpaul S Dhami
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Caleb Rans
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Philip B Liu
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Peter M Hwang
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
16
|
Li MX, Mercier P, Hartman JJ, Sykes BD. Structural Basis of Tirasemtiv Activation of Fast Skeletal Muscle. J Med Chem 2021; 64:3026-3034. [PMID: 33703886 DOI: 10.1021/acs.jmedchem.0c01412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Troponin regulates the calcium-mediated activation of skeletal muscle. Muscle weakness in diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy occurs from diminished neuromuscular output. The first direct fast skeletal troponin activator, tirasemtiv, amplifies the response of muscle to neuromuscular input. Tirasemtiv binds selectively and strongly to fast skeletal troponin, slowing the rate of calcium release and sensitizing muscle to calcium. We report the solution NMR structure of tirasemtiv bound to a fast skeletal troponin C-troponin I chimera. The structure reveals that tirasemtiv binds in a hydrophobic pocket between the regulatory domain of troponin C and the switch region of troponin I, which overlaps with that of Anapoe in the X-ray structure of skeletal troponin. Multiple interactions stabilize the troponin C-troponin I interface, increase the affinity of troponin C for the switch region of fast skeletal troponin I, and drive the equilibrium toward the active state.
Collapse
Affiliation(s)
- Monica X Li
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Pascal Mercier
- National High Field NMR Centre, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - James J Hartman
- Cytokinetics, Inc., South San Francisco, California 94080, United States
| | - Brian D Sykes
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
17
|
Parijat P, Kondacs L, Alexandrovich A, Gautel M, Cobb AJA, Kampourakis T. High Throughput Screen Identifies Small Molecule Effectors That Modulate Thin Filament Activation in Cardiac Muscle. ACS Chem Biol 2021; 16:225-235. [PMID: 33315370 DOI: 10.1021/acschembio.0c00908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Current therapeutic interventions for both heart disease and heart failure are largely insufficient and associated with undesired side effects. Biomedical research has emphasized the role of sarcomeric protein function for the normal performance and energy efficiency of the heart, suggesting that directly targeting the contractile myofilaments themselves using small molecule effectors has therapeutic potential and will likely result in greater drug efficacy and selectivity. In this study, we developed a robust and highly reproducible fluorescence polarization-based high throughput screening (HTS) assay that directly targets the calcium-dependent interaction between cardiac troponin C (cTnC) and the switch region of cardiac troponin I (cTnISP), with the aim of identifying small molecule effectors of the cardiac thin filament activation pathway. We screened a commercially available small molecule library and identified several hit compounds with both inhibitory and activating effects. We used a range of biophysical and biochemical methods to characterize hit compounds and identified fingolimod, a sphingosin-1-phosphate receptor modulator, as a new troponin-based small molecule effector. Fingolimod decreased the ATPase activity and calcium sensitivity of demembranated cardiac muscle fibers in a dose-dependent manner, suggesting that the compound acts as a calcium desensitizer. We investigated fingolimod's mechanism of action using a combination of computational studies, biophysical methods, and synthetic chemistry, showing that fingolimod bound to cTnC repels cTnISP via mainly electrostatic repulsion of its positively charged tail. These results suggest that fingolimod is a potential new lead compound/scaffold for the development of troponin-directed heart failure therapeutics.
Collapse
Affiliation(s)
- Priyanka Parijat
- Randall Centre for Cell and Molecular Biophysics, King’s College London, and British Heart Foundation Centre of Research Excellence, London SE1 1UL, United Kingdom
| | - Laszlo Kondacs
- Department of Chemistry, King’s College London, 7 Trinity Street, London, SE1 1DB, United Kingdom
| | - Alexander Alexandrovich
- Randall Centre for Cell and Molecular Biophysics, King’s College London, and British Heart Foundation Centre of Research Excellence, London SE1 1UL, United Kingdom
| | - Mathias Gautel
- Randall Centre for Cell and Molecular Biophysics, King’s College London, and British Heart Foundation Centre of Research Excellence, London SE1 1UL, United Kingdom
| | - Alexander J. A. Cobb
- Department of Chemistry, King’s College London, 7 Trinity Street, London, SE1 1DB, United Kingdom
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, King’s College London, and British Heart Foundation Centre of Research Excellence, London SE1 1UL, United Kingdom
| |
Collapse
|
18
|
Kapoor M, Das S, Biswas A, Malgulwar PB, Devi NK, Seth S, Bhargava B, Rao VR. D190Y mutation in C-terminal tail region of TNNI3 gene causing severe form of restrictive cardiomyopathy with mild hypertrophy in an Indian patient. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
19
|
Cai F, Robertson IM, Kampourakis T, Klein BA, Sykes BD. The Role of Electrostatics in the Mechanism of Cardiac Thin Filament Based Sensitizers. ACS Chem Biol 2020; 15:2289-2298. [PMID: 32633482 DOI: 10.1021/acschembio.0c00519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Heart muscle contraction is regulated by calcium binding to cardiac troponin C. This induces troponin I (cTnI) switch region binding to the regulatory domain of troponin C (cNTnC), pulling the cTnI inhibitory region off actin and triggering muscle contraction. Small molecules targeting this cNTnC-cTnI interface have potential in the treatment of heart disease. Most of these have an aromatic core which binds to the hydrophobic core of cNTnC, and a polar and often charged 'tail'. The calmodulin antagonist W7 is unique in that it acts as calcium desensitizer. W7 binds to the interface of cNTnC and cTnI switch region and weakens cTnI binding, possibly by electrostatic repulsion between the positively charged terminal amino group of W7 and the positively charged RRVR144-147 region of cTnI. To evaluate the role of electrostatics, we synthesized A7, where the amino group of W7 was replaced with a carboxyl group. We determined the high-resolution solution NMR structure of A7 bound to a cNTnC-cTnI chimera. The structure shows that A7 does not change the overall conformation of the cNTnC-cTnI interface, and the naphthalene ring of A7 sits in the same hydrophobic pocket as that of W7, but the charged tail takes a different route to the surface of the complex, especially with respect to the position of the switch region of cTnI. We measured the affinities of A7 for cNTnC and the cNTnC-cTnI complex and that of the cTnI switch peptide for the cNTnC-A7 complex. We also compared the binding of W7 and A7 for two cNTnC-cTnI chimeras, differing in the presence or absence of the RRVR region of cTnI. A7 decreased the binding affinity of cTnI to cNTnC substantially less than W7 and bound more tightly to the more positively charged chimera. We tested the effects of W7 and A7 on the force-calcium relation of demembranated rat right ventricular trabeculae and demonstrated that A7 has a much weaker desensitization effect than W7. We also synthesized A6, which has one less methylene group on the hydrocarbon chain than A7. A6 did not affect binding of cTnI switch peptide nor change the calcium sensitivity of ventricular trabeculae. These results suggest that the negative inotropic effect of W7 may result from a combination of electrostatic repulsion and steric hindrance with cTnI.
Collapse
Affiliation(s)
- Fangze Cai
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Ian M. Robertson
- Ministry of Health, Government of Alberta, Edmonton, AB T5J 1S6, Canada
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, United Kingdom
| | - Brittney A. Klein
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Brian D. Sykes
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
20
|
Coldren WH, Tikunova SB, Davis JP, Lindert S. Discovery of Novel Small-Molecule Calcium Sensitizers for Cardiac Troponin C: A Combined Virtual and Experimental Screening Approach. J Chem Inf Model 2020; 60:3648-3661. [PMID: 32633957 DOI: 10.1021/acs.jcim.0c00452] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heart failure is a leading cause of death throughout the world and is triggered by a disruption of the cardiac contractile machinery. This machinery is regulated in a calcium-dependent manner by the protein complex troponin. Calcium binds to the N-terminal domain of cardiac troponin C (cNTnC) setting into motion the cascade of events leading to muscle contraction. Because of the severity and prevalence of heart failure, there is a strong need to develop small-molecule therapeutics designed to increase the calcium sensitivity of cardiac troponin in order to treat this devastating condition. Molecules that are able to stabilize an open configuration of cNTnC and additionally facilitate the binding of the cardiac troponin I (cTnI) switch peptide have the potential to enable increased calcium sensitization and strengthened cardiac function. Here, we employed a high throughput virtual screening methodology built upon the ability of computational docking to reproduce known experimental results and to accurately recognize cNTnC conformations conducive to small molecule binding using a receiver operator characteristic curve analysis. This approach combined with concurrent stopped-flow kinetic experimental verification led to the identification of a number of sensitizers, which slowed the calcium off-rate. An initial hit, compound 4, was identified with medium affinity (84 ± 30 μM). Through refinement, a calcium sensitizing agent, compound 5, with an apparent affinity of 1.45 ± 0.09 μM was discovered. This molecule is one of the highest affinity calcium sensitizers known to date.
Collapse
Affiliation(s)
- William H Coldren
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - Svetlana B Tikunova
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Ohio State University, Columbus, Ohio 43210, United States
| | - Jonathan P Davis
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Ohio State University, Columbus, Ohio 43210, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
21
|
Bowman JD, Lindert S. Computational Studies of Cardiac and Skeletal Troponin. Front Mol Biosci 2019; 6:68. [PMID: 31448287 PMCID: PMC6696891 DOI: 10.3389/fmolb.2019.00068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022] Open
Abstract
Troponin is a key regulatory protein in muscle contraction, consisting of three subunits troponin C (TnC), troponin I (TnI), and troponin T (TnT). Calcium association to TnC initiates contraction by causing a series of dynamic and conformational changes that allow the switch peptide of TnI to bind and subsequently cross bridges to form between the thin and thick filament of the sarcomere. Owing to its pivotal role in contraction regulation, troponin has been the focus of numerous computational studies over the last decade. These studies elegantly supplemented a large volume of experimental work and focused on the structure, dynamics and function of the whole troponin complex, individual subunits, and even on segments of the thin filament. Molecular dynamics, Brownian dynamics, and free energy simulations have been used to elucidate the conformational dynamics and underlying free energy landscape of troponin, calcium, and switch peptide binding, as well as the effect of disease mutations, small molecules and post-translational modifications such as phosphorylation. Frequently, simulations have been used to confirm or explain experimental observations. Computer-aided drug discovery tools have been employed to identify novel potential calcium sensitizing agents binding to the TnC-TnI interface. Finally, Markov modeling has contributed to simulating contraction within the sarcomere on the mesoscale. Here we are reviewing and classifying the existing computational work on troponin and its subunits, outline current gaps in simulations elucidating troponin's role in contraction and suggest potential future developments in the field.
Collapse
Affiliation(s)
- Jacob D Bowman
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, United States
| |
Collapse
|
22
|
Klein BA, Robertson IM, Reiz B, Kampourakis T, Li L, Sykes BD. Thioimidate Bond Formation between Cardiac Troponin C and Nitrile-containing Compounds. ACS Med Chem Lett 2019; 10:1007-1012. [PMID: 32426091 PMCID: PMC7227049 DOI: 10.1021/acsmedchemlett.9b00168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/15/2019] [Indexed: 12/16/2022] Open
Abstract
We have investigated the mechanism and reactivity of covalent bond formation between cysteine-84 of the regulatory domain of cardiac troponin C and compounds containing a nitrile moiety similar to the calcium sensitizer levosimendan. The results of modifications to the levosimendan framework ranged from a large increase in covalent bond formation to complete inactivity. We present the biological activity of one of the most potent compounds. Limitations, including compound solubility and degradation at acidic pH, have prevented thorough investigation of the potential of these compounds. Our studies reveal the efficacious nature of the malononitrile moiety in targeting cNTnC and its potential in future cardiotonic drug design.
Collapse
Affiliation(s)
- Brittney A. Klein
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ian M. Robertson
- Ministry of Health, Government of Alberta, Edmonton, Alberta T5J 1S6, Canada
| | - Béla Reiz
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Thomas Kampourakis
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, London, SE1 1UL, U.K
| | - Liang Li
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Brian D. Sykes
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
23
|
Bowman JD, Coldren WH, Lindert S. Mechanism of Cardiac Troponin C Calcium Sensitivity Modulation by Small Molecules Illuminated by Umbrella Sampling Simulations. J Chem Inf Model 2019; 59:2964-2972. [PMID: 31141358 DOI: 10.1021/acs.jcim.9b00256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiac troponin C (cTnC) binds intracellular calcium and subsequently cardiac troponin I (cTnI), initiating cardiac muscle contraction. Due to its role in contraction, cTnC has been a therapeutic target in the search for small molecules to treat conditions that interfere with normal muscle contraction like the heritable cardiomyopathies. Structural studies have shown the binding location of small molecules such as bepridil, dfbp-o, 3-methyldiphenylamine (DPA), and W7 to be a hydrophobic pocket in the regulatory domain of cTnC (cNTnC) but have not shown the influence of these small molecules on the energetics of opening this domain. Here we describe an application of an umbrella sampling method used to elucidate the impact these calcium sensitivity modulators have on the free energy of cNTnC hydrophobic patch opening. We found that all these molecules lowered the free energy of opening in the absence of the cTnI, with bepridil facilitating the least endergonic transformation. In the presence of cTnI, however, we saw a stabilization of the open configuration due to DPA and dfbp-o binding, and a destabilization of the open configuration imparted by bepridil and W7. Predicted poor binding molecule NSC34337 left the hydrophobic patch in under 3 ns in conventional MD simulations suggesting that only hydrophobic patch binders stabilized the open conformation. In conclusion, this study presents a novel approach to study the impact of small molecules on hydrophobic patch opening through umbrella sampling, and it proposes mechanisms for calcium sensitivity modulation.
Collapse
Affiliation(s)
- Jacob D Bowman
- Department of Chemistry and Biochemistry , Ohio State University , 2114 Newman & Wolfrom Laboratory, 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| | - William H Coldren
- Department of Chemistry and Biochemistry , Ohio State University , 2114 Newman & Wolfrom Laboratory, 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry , Ohio State University , 2114 Newman & Wolfrom Laboratory, 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| |
Collapse
|
24
|
Szatkowski L, Lynn ML, Holeman T, Williams MR, Baldo AP, Tardiff JC, Schwartz SD. Proof of Principle that Molecular Modeling Followed by a Biophysical Experiment Can Develop Small Molecules that Restore Function to the Cardiac Thin Filament in the Presence of Cardiomyopathic Mutations. ACS OMEGA 2019; 4:6492-6501. [PMID: 31342001 PMCID: PMC6649307 DOI: 10.1021/acsomega.8b03340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/28/2019] [Indexed: 06/10/2023]
Abstract
This article reports a coupled computational experimental approach to design small molecules aimed at targeting genetic cardiomyopathies. We begin with a fully atomistic model of the cardiac thin filament. To this we dock molecules using accepted computational drug binding methodologies. The candidates are screened for their ability to repair alterations in biophysical properties caused by mutation. Hypertrophic and dilated cardiomyopathies caused by mutation are initially biophysical in nature, and the approach we take is to correct the biophysical insult prior to irreversible cardiac damage. Candidate molecules are then tested experimentally for both binding and biophysical properties. This is a proof of concept study-eventually candidate molecules will be tested in transgenic animal models of genetic (sarcomeric) cardiomyopathies.
Collapse
Affiliation(s)
- Lukasz Szatkowski
- Department
of Chemistry and Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Melissa L. Lynn
- Department of Physiological
Sciences and Department of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Teryn Holeman
- Department of Physiological
Sciences and Department of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Michael R. Williams
- Department
of Chemistry and Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Anthony P. Baldo
- Department
of Chemistry and Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Jil C. Tardiff
- Department of Physiological
Sciences and Department of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Steven D. Schwartz
- Department
of Chemistry and Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
25
|
Structure and proteolytic susceptibility of the inhibitory C-terminal tail of cardiac troponin I. Biochim Biophys Acta Gen Subj 2019; 1863:661-671. [DOI: 10.1016/j.bbagen.2019.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/22/2018] [Accepted: 01/14/2019] [Indexed: 01/17/2023]
|
26
|
Tikunova SB, Cuesta A, Price M, Li MX, Belevych N, Biesiadecki BJ, Reiser PJ, Hwang PM, Davis JP. 3-Chlorodiphenylamine activates cardiac troponin by a mechanism distinct from bepridil or TFP. J Gen Physiol 2018; 151:9-17. [PMID: 30442775 PMCID: PMC6314390 DOI: 10.1085/jgp.201812131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/02/2018] [Indexed: 01/14/2023] Open
Abstract
Cardiac troponin activators could be beneficial in systolic heart failure. Tikunova et al. demonstrate that, unlike previously known calcium sensitizers, the small molecule 3-chlorodiphenylamine does not activate isolated cardiac troponin C but instead activates the intact troponin complex. Despite extensive efforts spanning multiple decades, the development of highly effective Ca2+ sensitizers for the heart remains an elusive goal. Existing Ca2+ sensitizers have other targets in addition to cardiac troponin (cTn), which can lead to adverse side effects, such as hypotension or arrhythmias. Thus, there is a need to design Ca2+-sensitizing drugs with higher affinity and selectivity for cTn. Previously, we determined that many compounds based on diphenylamine (DPA) were able to bind to a cTnC–cTnI chimera with moderate affinity (Kd ∼10–120 µM). Of these compounds, 3-chlorodiphenylamine (3-Cl-DPA) bound most tightly (Kd of 10 µM). Here, we investigate 3-Cl-DPA further and find that it increases the Ca2+ sensitivity of force development in skinned cardiac muscle. Using NMR, we show that, like the known Ca2+ sensitizers, trifluoperazine (TFP) and bepridil, 3-Cl-DPA is able to bind to the isolated N-terminal domain (N-domain) of cTnC (Kd of 6 µM). However, while the bulky molecules of TFP and bepridil stabilize the open state of the N-domain of cTnC, the small and flexible 3-Cl-DPA molecule is able to bind without stabilizing this open state. Thus, unlike TFP, which drastically slows the rate of Ca2+ dissociation from the N-domain of isolated cTnC in a dose-dependent manner, 3-Cl-DPA has no effect on the rate of Ca2+ dissociation. On the other hand, the affinity of 3-Cl-DPA for a cTnC–TnI chimera is at least an order of magnitude higher than that of TFP or bepridil, likely because 3-Cl-DPA is less disruptive of cTnI binding to cTnC. Therefore, 3-Cl-DPA has a bigger effect on the rate of Ca2+ dissociation from the entire cTn complex than TFP and bepridil. Our data suggest that 3-Cl-DPA activates the cTn complex via a unique mechanism and could be a suitable scaffold for the development of novel treatments for systolic heart failure.
Collapse
Affiliation(s)
- Svetlana B Tikunova
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH
| | - Andres Cuesta
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH
| | - Morgan Price
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH
| | - Monica X Li
- Departments of Medicine and Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Natalya Belevych
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH
| | | | - Peter J Reiser
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH
| | - Peter M Hwang
- Departments of Medicine and Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH
| |
Collapse
|
27
|
Li MX, Gelozia S, Danmaliki GI, Wen Y, Liu PB, Lemieux MJ, West FG, Sykes BD, Hwang PM. The calcium sensitizer drug MCI-154 binds the structural C-terminal domain of cardiac troponin C. Biochem Biophys Rep 2018; 16:145-151. [PMID: 30417133 PMCID: PMC6218639 DOI: 10.1016/j.bbrep.2018.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 11/27/2022] Open
Abstract
The compound MCI-154 was previously shown to increase the calcium sensitivity of cardiac muscle contraction. Using solution NMR spectroscopy, we demonstrate that MCI-154 interacts with the calcium-sensing subunit of the cardiac troponin complex, cardiac troponin C (cTnC). Surprisingly, however, it binds only to the structural C-terminal domain of cTnC (cCTnC), and not to the regulatory N-terminal domain (cNTnC) that determines the calcium sensitivity of cardiac muscle. Physiologically, cTnC is always bound to cardiac troponin I (cTnI), so we examined its interaction with MCI-154 in the presence of two soluble constructs, cTnI1–77 and cTnI135–209, which contain all of the segments of cTnI known to interact with cTnC. Neither the cTnC-cTnI1–77 complex nor the cTnC-cTnI135–209 complex binds to MCI-154. Since residues 39–60 of cTnI are known to bind tightly to the cCTnC domain to form a structured core that is invariant throughout the cardiac cycle, we conclude that MCI-154 does not bind to cTnC when it is part of the intact cardiac troponin complex. Thus, MCI-154 likely exerts its calcium sensitizing effect by interacting with a target other than cardiac troponin. MCI-154 is a small molecule calcium sensitizer in cardiac muscle. The N-domain of cardiac troponin C controls calcium sensitivity in cardiac muscle. MCI-154 binds weakly to the promiscuous C-terminal domain of troponin C. Cardiac troponin C does not bind MCI-154 in the presence of troponin I. MCI-154 does not exert its calcium sensitizing effect directly through troponin C.
Collapse
Affiliation(s)
- Monica X Li
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Shorena Gelozia
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Gaddafi I Danmaliki
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Yurong Wen
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.,School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Philip B Liu
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Frederick G West
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Brian D Sykes
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Peter M Hwang
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2R3.,Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
28
|
Cai F, Hwang PM, Sykes BD. Structural Changes Induced by the Binding of the Calcium Desensitizer W7 to Cardiac Troponin. Biochemistry 2018; 57:6461-6469. [DOI: 10.1021/acs.biochem.8b00882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Fangze Cai
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Peter M. Hwang
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Brian D. Sykes
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
29
|
Danmaliki GI, Liu PB, Hwang PM. Stereoselective Deuteration in Aspartate, Asparagine, Lysine, and Methionine Amino Acid Residues Using Fumarate as a Carbon Source for Escherichia coli in D2O. Biochemistry 2017; 56:6015-6029. [DOI: 10.1021/acs.biochem.7b00991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gaddafi I. Danmaliki
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta Canada T6G 2H7
| | - Philip B. Liu
- Department
of Medicine, University of Alberta, Edmonton, Alberta Canada T6G 2R3
| | - Peter M. Hwang
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta Canada T6G 2H7
- Department
of Medicine, University of Alberta, Edmonton, Alberta Canada T6G 2R3
| |
Collapse
|