1
|
Miquelestorena-Standley E, da Silva AVV, Monnier M, Chadet S, Piollet M, Héraud A, Lemoine R, Bochaton T, Derumeaux G, Roger S, Ivanes F, Angoulvant D. Human peripheral blood mononuclear cells display a temporal evolving inflammatory profile after myocardial infarction and modify myocardial fibroblasts phenotype. Sci Rep 2023; 13:16745. [PMID: 37798364 PMCID: PMC10556078 DOI: 10.1038/s41598-023-44036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
Pathophysiological response after acute myocardial infarction (AMI) is described as a three-stage model involving temporal phenotypic modifications of both immune cells and fibroblasts: a primary inflammatory phase, followed by a reparative phase and a fibrous scar maturation phase. Purinergic receptors, particularly the P2Y11 receptor, have been reported to be involved in the regulation of inflammation after ischemia and could act for the resolution of inflammation after AMI. For the first time, we characterized the immuno-inflammatory and P2Y11 expression profiles of peripheral blood mononuclear cells (PBMC) from AMI patients and analyzed the consequences of presenting these cells to cardiac fibroblasts in vitro. PBMC from 178 patients were collected at various times after reperfused ST-segment elevation AMI, from H0 to M12. Expression level of P2RY11 and genes involved in tolerogenic profile of dendritic cells and T cell polarization were evaluated by RT-PCR. P2Y11 protein expression was assessed by flow cytometry. PBMC and human cardiac fibroblasts (HCF) were cocultured and α-SMA/vimentin ratio was analyzed by flow cytometry. Within the first 48 h after AMI, expression levels of HMOX1, STAT3 and CD4 increased while IDO1 and TBX21/GATA3 ratio decreased. Concomitantly, the expression of P2RY11 increased in both T and B cells. In vitro, PBMC collected at H48 after AMI induced an increase in α-SMA/vimentin ratio in HCF. Our results suggest that human PBMC display an evolving inflammatory profile with reparative characteristics the first two days after AMI and secrete soluble mediators leading to the fibroblastic proteins modification, thus participating to myocardial fibrosis.
Collapse
Affiliation(s)
- Elodie Miquelestorena-Standley
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France.
- Service d'Anatomie et Cytologie Pathologiques, CHRU de Tours, Tours, France.
| | - Ana Valéria Vinhais da Silva
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Marina Monnier
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Stéphanie Chadet
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Marie Piollet
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Audrey Héraud
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Roxane Lemoine
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Thomas Bochaton
- Service de Cardiologie, Hospices Civils de Lyon, Lyon, France
| | - Geneviève Derumeaux
- Service de Physiologie, Hôpital Henri Mondor, AP-HP, Université Paris-Est Créteil, INSERM U955, Créteil, France
| | - Sébastien Roger
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Fabrice Ivanes
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
- Service de Cardiologie, CHRU de Tours, Tours, France
| | - Denis Angoulvant
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
- Service de Cardiologie, CHRU de Tours, Tours, France
| |
Collapse
|
2
|
Fazio A, Evangelisti C, Cappellini A, Mongiorgi S, Koufi FD, Neri I, Marvi MV, Russo M, Ghigo A, Manzoli L, Fiume R, Ratti S. Emerging Roles of Phospholipase C Beta Isozymes as Potential Biomarkers in Cardiac Disorders. Int J Mol Sci 2023; 24:13096. [PMID: 37685903 PMCID: PMC10487445 DOI: 10.3390/ijms241713096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Phospholipase C (PLC) enzymes represent crucial participants in the plasma membrane of mammalian cells, including the cardiac sarcolemmal (SL) membrane of cardiomyocytes. They are responsible for the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) into 1,2-diacylglycerol (DAG) and inositol (1,4,5) trisphosphate (Ins(1,4,5)P3), both essential lipid mediators. These second messengers regulate the intracellular calcium (Ca2+) concentration, which activates signal transduction cascades involved in the regulation of cardiomyocyte activity. Of note, emerging evidence suggests that changes in cardiomyocytes' phospholipid profiles are associated with an increased occurrence of cardiovascular diseases, but the underlying mechanisms are still poorly understood. This review aims to provide a comprehensive overview of the significant impact of PLC on the cardiovascular system, encompassing both physiological and pathological conditions. Specifically, it focuses on the relevance of PLCβ isoforms as potential cardiac biomarkers, due to their implications for pathological disorders, such as cardiac hypertrophy, diabetic cardiomyopathy, and myocardial ischemia/reperfusion injury. Gaining a deeper understanding of the mechanisms underlying PLCβ activation and regulation is crucial for unraveling the complex signaling networks involved in healthy and diseased myocardium. Ultimately, this knowledge holds significant promise for advancing the development of potential therapeutic strategies that can effectively target and address cardiac disorders by focusing on the PLCβ subfamily.
Collapse
Affiliation(s)
- Antonietta Fazio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (C.E.); (A.C.); (S.M.); (F.-D.K.); (I.N.); (M.V.M.); (L.M.)
| | - Camilla Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (C.E.); (A.C.); (S.M.); (F.-D.K.); (I.N.); (M.V.M.); (L.M.)
| | - Alessandra Cappellini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (C.E.); (A.C.); (S.M.); (F.-D.K.); (I.N.); (M.V.M.); (L.M.)
| | - Sara Mongiorgi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (C.E.); (A.C.); (S.M.); (F.-D.K.); (I.N.); (M.V.M.); (L.M.)
| | - Foteini-Dionysia Koufi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (C.E.); (A.C.); (S.M.); (F.-D.K.); (I.N.); (M.V.M.); (L.M.)
| | - Irene Neri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (C.E.); (A.C.); (S.M.); (F.-D.K.); (I.N.); (M.V.M.); (L.M.)
| | - Maria Vittoria Marvi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (C.E.); (A.C.); (S.M.); (F.-D.K.); (I.N.); (M.V.M.); (L.M.)
| | - Michele Russo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Torino, 10126 Torino, Italy; (M.R.); (A.G.)
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Torino, 10126 Torino, Italy; (M.R.); (A.G.)
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (C.E.); (A.C.); (S.M.); (F.-D.K.); (I.N.); (M.V.M.); (L.M.)
| | - Roberta Fiume
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (C.E.); (A.C.); (S.M.); (F.-D.K.); (I.N.); (M.V.M.); (L.M.)
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (C.E.); (A.C.); (S.M.); (F.-D.K.); (I.N.); (M.V.M.); (L.M.)
| |
Collapse
|
3
|
Li Y, Li B, Chen WD, Wang YD. Role of G-protein coupled receptors in cardiovascular diseases. Front Cardiovasc Med 2023; 10:1130312. [PMID: 37342437 PMCID: PMC10277692 DOI: 10.3389/fcvm.2023.1130312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/09/2023] [Indexed: 06/22/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally, with CVDs accounting for nearly 30% of deaths worldwide each year. G-protein-coupled receptors (GPCRs) are the most prominent family of receptors on the cell surface, and play an essential regulating cellular physiology and pathology. Some GPCR antagonists, such as β-blockers, are standard therapy for the treatment of CVDs. In addition, nearly one-third of the drugs used to treat CVDs target GPCRs. All the evidence demonstrates the crucial role of GPCRs in CVDs. Over the past decades, studies on the structure and function of GPCRs have identified many targets for the treatment of CVDs. In this review, we summarize and discuss the role of GPCRs in the function of the cardiovascular system from both vascular and heart perspectives, then analyze the complex ways in which multiple GPCRs exert regulatory functions in vascular and heart diseases. We hope to provide new ideas for the treatment of CVDs and the development of novel drugs.
Collapse
Affiliation(s)
- Yuanqiang Li
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Boyu Li
- Department of Gastroenterology and Hematology, The People's Hospital of Hebi, Henan, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Medicine, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
4
|
Antonelli A, Scarpa ES, Bruzzone S, Astigiano C, Piacente F, Bruschi M, Fraternale A, Di Buduo CA, Balduini A, Magnani M. Anoxia Rapidly Induces Changes in Expression of a Large and Diverse Set of Genes in Endothelial Cells. Int J Mol Sci 2023; 24:ijms24065157. [PMID: 36982232 PMCID: PMC10049254 DOI: 10.3390/ijms24065157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Sinusoidal endothelial cells are the predominant vascular surface of the bone marrow and constitute the functional hematopoietic niche where hematopoietic stem and progenitor cells receive cues for self-renewal, survival, and differentiation. In the bone marrow hematopoietic niche, the oxygen tension is usually very low, and this condition affects stem and progenitor cell proliferation and differentiation and other important functions of this region. Here, we have investigated in vitro the response of endothelial cells to a marked decrease in O2 partial pressure to understand how the basal gene expression of some relevant biological factors (i.e., chemokines and interleukins) that are fundamental for the intercellular communication could change in anoxic conditions. Interestingly, mRNA levels of CXCL3, CXCL5, and IL-34 genes are upregulated after anoxia exposure but become downmodulated by sirtuin 6 (SIRT6) overexpression. Indeed, the expression levels of some other genes (such as Leukemia Inhibitory Factor (LIF)) that were not significantly affected by 8 h anoxia exposure become upregulated in the presence of SIRT6. Therefore, SIRT6 mediates also the endothelial cellular response through the modulation of selected genes in an extreme hypoxic condition.
Collapse
Affiliation(s)
- Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | | | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Cecilia Astigiano
- Department of Experimental Medicine, Section of Biochemistry, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Michela Bruschi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | | | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Department of Biomedical Engineering, Tufts University in Boston, Boston, MA 02111, USA
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence:
| |
Collapse
|
5
|
Zhuang Y, Yu ML, Lu SF. Purinergic signaling in myocardial ischemia-reperfusion injury. Purinergic Signal 2023; 19:229-243. [PMID: 35254594 PMCID: PMC9984618 DOI: 10.1007/s11302-022-09856-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/18/2022] [Indexed: 10/18/2022] Open
Abstract
Purines and their derivatives, extensively distributed in the body, act as a class of extracellular signaling molecules via a rich array of receptors, also known as purinoceptors (P1, P2X, and P2Y). They mediate multiple intracellular signal transduction pathways and participate in various physiological and pathological cell behaviors. Since the function in myocardial ischemia-reperfusion injury (MIRI), this review summarized the involvement of purinergic signal transduction in diversified pathological processes, including energy metabolism disorder, oxidative stress injury, calcium overload, inflammatory immune response, platelet aggregation, coronary vascular dysfunction, and cell necrosis and apoptosis. Moreover, increasing evidence suggests that purinergic signaling also mediates the prevention and treatment of MIRI, such as ischemic conditioning, pharmacological intervention, and some other therapies. In conclusion, this review exhibited that purinergic signaling mediates the complex processes of MIRI which shows its promising application and prospecting in the future.
Collapse
Affiliation(s)
- Yi Zhuang
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, 138 Xian-lin Avenue, Qixia District, Nanjing, 210023, Jiangsu Province, China
| | - Mei-Ling Yu
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, 138 Xian-lin Avenue, Qixia District, Nanjing, 210023, Jiangsu Province, China
| | - Sheng-Feng Lu
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, 138 Xian-lin Avenue, Qixia District, Nanjing, 210023, Jiangsu Province, China. .,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
6
|
Gruenbacher G, Gander H, Dobler G, Rahm A, Klaver D, Thurnher M. The human G protein-coupled ATP receptor P2Y 11 is a target for anti-inflammatory strategies. Br J Pharmacol 2021; 178:1541-1555. [PMID: 33463722 PMCID: PMC9328440 DOI: 10.1111/bph.15379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 12/24/2022] Open
Abstract
Background and Purpose The ATP receptor P2Y11, which couples to Gq and Gs proteins, senses cell stress and promotes cytoprotective responses. P2Y11 receptors are upregulated during differentiation of M2 macrophages. However, it is unclear whether and how P2Y11 receptors contribute to the anti‐inflammatory properties of M2 macrophages. Experimental Approach Transcriptome and secretome profiling of ectopic P2Y11 receptors was used to analyse their signalling and function. Findings were validated in human monocyte‐derived M2 macrophages. The suramin analogue NF340 and P2Y11 receptor‐knockout cells confirmed that agonist‐mediated responses were specific to P2Y11 receptor stimulation. Key Results Temporal transcriptome profiling of P2Y11 receptor stimulation showed a strong and tightly controlled response of IL‐1 receptors, including activation of the IL‐1 receptor target genes, IL6 and IL8. Secretome profiling confirmed the presence of IL‐6 and IL‐8 proteins and additionally identified soluble tumour necrosis factor receptor 1 and 2 (sTNFR1 and sTNFR2) as targets of P2Y11 receptor activation. Raised levels of intracellular cAMP in M2 macrophages, after inhibition of phosphodiesterases (PDE), especially PDE4, strongly increased P2Y11 receptor‐induced release of sTNFR2 through ectodomain shedding mediated by TNF‐α converting enzyme (TACE/ADAM17). Both IL‐1α and IL‐1ß synergistically enhanced P2Y11 receptor‐ induced IL‐6 and IL‐8 secretion and release of sTNFR2. During lipopolysaccharide‐induced activation of TLR4, which shares the downstream signalling pathway with IL‐1 receptors, P2Y11 receptors specifically prevented secretion of TNF‐α. Conclusions and Implications Targeting P2Y11 receptors activates IL‐1 receptor signalling to promote sTNFR2 release and suppress TLR4 signalling to prevent TNF‐α secretion, thus facilitating resolution of inflammation.
Collapse
Affiliation(s)
- Georg Gruenbacher
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubert Gander
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriele Dobler
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Rahm
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Klaver
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Thurnher
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
P2Y11 Agonism Prevents Hypoxia/Reoxygenation- and Angiotensin II-Induced Vascular Dysfunction and Intimal Hyperplasia Development. Int J Mol Sci 2021; 22:ijms22020855. [PMID: 33467058 PMCID: PMC7829863 DOI: 10.3390/ijms22020855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/02/2021] [Accepted: 01/11/2021] [Indexed: 01/18/2023] Open
Abstract
Vascular dysfunction in cardiovascular diseases includes vasomotor response impairments, endothelial cells (ECs) activation, and smooth muscle cells (SMCs) proliferation and migration to the intima. This results in intimal hyperplasia and vessel failure. We previously reported that activation of the P2Y11 receptor (P2Y11R) in human dendritic cells, cardiofibroblasts and cardiomyocytes was protective against hypoxia/reoxygenation (HR) lesions. In this study, we investigated the role of P2Y11R signaling in vascular dysfunction. P2Y11R activity was modulated using its pharmacological agonist NF546 and antagonist NF340. Rat aortic rings were exposed to angiotensin II (AngII) and evaluated for their vasomotor response. The P2Y11R agonist NF546 reduced AngII-induced vascular dysfunction by promoting EC-dependent vasorelaxation, through an increased nitric oxide (NO) bioavailability and reduced AngII-induced H2O2 release; these effects were prevented by the use of the P2Y11R antagonist NF340. Human vascular SMCs and ECs were subjected to AngII or H/R simulation in vitro. P2Y11R agonist modulated vasoactive factors in human ECs, that is, endothelial nitric oxide synthase (eNOS) and endothelin-1, reduced SMC proliferation and prevented the switch towards a synthetic phenotype. H/R and AngII increased ECs secretome-induced SMC proliferation, an effect prevented by P2Y11R activation. Thus, our data suggest that P2Y11R activation may protect blood vessels from HR-/AngII-induced injury and reduce vascular dysfunctions. These results open the way for new vasculoprotective interventions.
Collapse
|
8
|
Jin D, Han F. FOXF1 ameliorates angiotensin II-induced cardiac fibrosis in cardiac fibroblasts through inhibiting the TGF-β1/Smad3 signaling pathway. J Recept Signal Transduct Res 2020; 40:493-500. [PMID: 32496870 DOI: 10.1080/10799893.2020.1772299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiac fibrosis is a pathological feature common to a variety of heart diseases such as myocardial infarction, arrhythmias, cardiomyopathies and heart failure. The molecular mechanism underlying the cardiac fibrosis is still unclear. Forkhead box F1 (FOXF1), a member of the forkhead transcription factor superfamily, plays critical roles in the development of hepatic fibrosis. However, whether FOXF1 is involved in the pathogenesis of cardiac fibrosis remains to be elucidated. The present study aimed to investigate the role of FOXF1 and its mechanisms in regulating cardiac fibrosis. The results demonstrated that FOXF1 was downregulated in Ang II-induced CFs. Overexpression of FOXF1 inhibited angiotensin II (Ang II)-induced proliferation, migration and oxidative stress in cardiac fibroblasts (CFs). Overexpression of FOXF1 also reduced the expression of alpha-smooth muscle actin (a-SMA) in Ang II-induced CFs, suggesting that overexpression of FOXF1 prevented the differentiation of CFs to myofibroblasts. Furthermore, the production of extracellular matrix (ECM) components including type I collagen and fibronectin were reduced by overexpression of FOXF1 in Ang II-induced CFs. Furthermore, overexpression of FOXF1 prevented Ang II-induced activation of transforming growth factor beta 1 (TGF-β1)/Smad3 pathway in CFs. In conclusion, the results of the present study indicated that FOXF1 acted as a key regulator of pathological cardiac fibrosis, and overexpression of FOXF1 ameliorated cardiac fibrosis by inhabiting the TGF-β1/Smad3 signaling pathway. These results indicated that FOXF1 may be a novel target for attenuating cardiac fibrosis.
Collapse
|
9
|
Dănilă MD, Piollet M, Aburel OM, Angoulvant D, Lefort C, Chadet S, Roger S, Muntean MD, Ivanes F. Modulation of P2Y11-related purinergic signaling in inflammation and cardio-metabolic diseases. Eur J Pharmacol 2020; 876:173060. [PMID: 32142768 DOI: 10.1016/j.ejphar.2020.173060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/22/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Chronic inflammation is the hallmark of cardiovascular pathologies with a major role in both disease progression and occurrence of long-term complications. The massive release of ATP during the inflammatory process activates various purinergic receptors, including P2Y11. This receptor is less studied but ubiquitously expressed in all cells relevant for cardiovascular pathology: cardiomyocytes, fibroblasts, endothelial and immune cells. While several studies suggested a potential pro-inflammatory role for P2Y11 receptors, recent literature data are supportive of an anti-inflammatory profile characterized by the immunosuppression of dendritic cells, inhibition of fibroblast proliferation and of cytokines and ATP secretion. Moreover, modulation of its activity appears to mediate the positive inotropic effect of ATP and mitigate endothelial dysfunction, thus rendering this receptor a promising therapeutic target in the cardiovascular disease armamentarium. The aim of the present review is to summarize the current available knowledge on P2Y11-related purinergic signaling in the setting of inflammation and cardio-metabolic diseases.
Collapse
Affiliation(s)
- Maria-Daniela Dănilă
- Department of Functional Sciences - Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania
| | - Marie Piollet
- EA4245 Transplantation Immunity Inflammation, Faculty of Medicine - Tours University& Loire Valley Cardiovascular Collaboration, Tours, F37000, France
| | - Oana-Maria Aburel
- Department of Functional Sciences - Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania; Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania
| | - Denis Angoulvant
- EA4245 Transplantation Immunity Inflammation, Faculty of Medicine - Tours University& Loire Valley Cardiovascular Collaboration, Tours, F37000, France; Cardiology Department, Trousseau Hospital, CHRU de Tours, F37000, Tours, France
| | - Claudie Lefort
- EA4245 Transplantation Immunity Inflammation, Faculty of Medicine - Tours University& Loire Valley Cardiovascular Collaboration, Tours, F37000, France
| | - Stéphanie Chadet
- EA4245 Transplantation Immunity Inflammation, Faculty of Medicine - Tours University& Loire Valley Cardiovascular Collaboration, Tours, F37000, France
| | - Sebastien Roger
- EA4245 Transplantation Immunity Inflammation, Faculty of Medicine - Tours University& Loire Valley Cardiovascular Collaboration, Tours, F37000, France
| | - Mirela-Danina Muntean
- Department of Functional Sciences - Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania; Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania.
| | - Fabrice Ivanes
- EA4245 Transplantation Immunity Inflammation, Faculty of Medicine - Tours University& Loire Valley Cardiovascular Collaboration, Tours, F37000, France; Cardiology Department, Trousseau Hospital, CHRU de Tours, F37000, Tours, France
| |
Collapse
|
10
|
The Association of Ascorbic Acid, Deferoxamine and N-Acetylcysteine Improves Cardiac Fibroblast Viability and Cellular Function Associated with Tissue Repair Damaged by Simulated Ischemia/Reperfusion. Antioxidants (Basel) 2019; 8:antiox8120614. [PMID: 31817022 PMCID: PMC6943610 DOI: 10.3390/antiox8120614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022] Open
Abstract
Acute myocardial infarction is one of the leading causes of death worldwide and thus, an extensively studied disease. Nonetheless, the effects of ischemia/reperfusion injury elicited by oxidative stress on cardiac fibroblast function associated with tissue repair are not completely understood. Ascorbic acid, deferoxamine, and N-acetylcysteine (A/D/N) are antioxidants with known cardioprotective effects, but the potential beneficial effects of combining these antioxidants in the tissue repair properties of cardiac fibroblasts remain unknown. Thus, the aim of this study was to evaluate whether the pharmacological association of these antioxidants, at low concentrations, could confer protection to cardiac fibroblasts against simulated ischemia/reperfusion injury. To test this, neonatal rat cardiac fibroblasts were subjected to simulated ischemia/reperfusion in the presence or absence of A/D/N treatment added at the beginning of simulated reperfusion. Cell viability was assessed using trypan blue staining, and intracellular reactive oxygen species (ROS) production was assessed using a 2′,7′-dichlorofluorescin diacetate probe. Cell death was measured by flow cytometry using propidium iodide. Cell signaling mechanisms, differentiation into myofibroblasts and pro-collagen I production were determined by Western blot, whereas migration was evaluated using the wound healing assay. Our results show that A/D/N association using a low concentration of each antioxidant increased cardiac fibroblast viability, but that their separate administration did not provide protection. In addition, A/D/N association attenuated oxidative stress triggered by simulated ischemia/reperfusion, induced phosphorylation of pro-survival extracellular-signal-regulated kinases 1/2 (ERK1/2) and PKB (protein kinase B)/Akt, and decreased phosphorylation of the pro-apoptotic proteins p38- mitogen-activated protein kinase (p38-MAPK) and c-Jun-N-terminal kinase (JNK). Moreover, treatment with A/D/N also reduced reperfusion-induced apoptosis, evidenced by a decrease in the sub-G1 population, lower fragmentation of pro-caspases 9 and 3, as well as increased B-cell lymphoma-extra large protein (Bcl-xL)/Bcl-2-associated X protein (Bax) ratio. Furthermore, simulated ischemia/reperfusion abolished serum-induced migration, TGF-β1 (transforming growth factor beta 1)-mediated cardiac fibroblast-to-cardiac myofibroblast differentiation, and angiotensin II-induced pro-collagen I synthesis, but these effects were prevented by treatment with A/D/N. In conclusion, this is the first study where a pharmacological combination of A/D/N, at low concentrations, protected cardiac fibroblast viability and function after simulated ischemia/reperfusion, and thereby represents a novel therapeutic approach for cardioprotection.
Collapse
|
11
|
Stimulation of P2Y11 receptor protects human cardiomyocytes against Hypoxia/Reoxygenation injury and involves PKCε signaling pathway. Sci Rep 2019; 9:11613. [PMID: 31406184 PMCID: PMC6690895 DOI: 10.1038/s41598-019-48006-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022] Open
Abstract
Sterile inflammation is a key determinant of myocardial reperfusion injuries. It participates in infarct size determination in acute myocardial infarction and graft rejection following heart transplantation. We previously showed that P2Y11 exerted an immunosuppressive role in human dendritic cells, modulated cardiofibroblasts’ response to ischemia/reperfusion in vitro and delayed graft rejection in an allogeneic heterotopic heart transplantation model. We sought to investigate a possible role of P2Y11 in the cellular response of cardiomyocytes to ischemia/reperfusion. We subjected human AC16 cardiomyocytes to 5 h hypoxia/1 h reoxygenation (H/R). P2Y11R (P2Y11 receptor) selective agonist NF546 and/or antagonist NF340 were added at the onset of reoxygenation. Cellular damages were assessed by LDH release, MTT assay and intracellular ATP level; intracellular signaling pathways were explored. The role of P2Y11R in mitochondria-derived ROS production and mitochondrial respiration was investigated. In vitro H/R injuries were significantly reduced by P2Y11R stimulation at reoxygenation. This protection was suppressed with P2Y11R antagonism. P2Y11R stimulation following H2O2-induced oxidative stress reduced mitochondria-derived ROS production and damages through PKCε signaling pathway activation. Our results suggest a novel protective role of P2Y11 in cardiomyocytes against reperfusion injuries. Pharmacological post-conditioning targeting P2Y11R could therefore contribute to improve myocardial ischemia/reperfusion outcomes in acute myocardial infarction and cardiac transplantation.
Collapse
|
12
|
Ischemia Reperfusion Injury Produces, and Ischemic Preconditioning Prevents, Rat Cardiac Fibroblast Differentiation: Role of K ATP Channels. J Cardiovasc Dev Dis 2019; 6:jcdd6020022. [PMID: 31167469 PMCID: PMC6617075 DOI: 10.3390/jcdd6020022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/04/2023] Open
Abstract
Ischemic preconditioning (IPC) and activation of ATP-sensitive potassium channels (KATP) protect cardiac myocytes from ischemia reperfusion (IR) injury. We investigated the influence of IR injury, IPC and KATP in isolated rat cardiac fibroblasts. Hearts were removed under isoflurane anesthesia. IR was simulated in vitro by application and removal of paraffin oil over pelleted cells. Ischemia (30, 60 and 120 min) followed by 60 min reperfusion resulted in significant differentiation of fibroblasts into myofibroblasts in culture (mean % fibroblasts ± SEM in IR vs. time control: 12 ± 1% vs. 63 ± 2%, 30 min ischemia; 15 ± 3% vs. 71 ± 4%, 60 min ischemia; 8 ± 1% vs. 55 ± 2%, 120 min ischemia). IPC (15 min ischemia, 30 min reperfusion) significantly attenuated IR-induced fibroblast differentiation (52 ± 3%) compared to 60 min IR. IPC was mimicked by opening KATP with pinacidil (50 μM; 43 ± 6%) and by selectively opening mitochondrial KATP (mKATP) with diazoxide (100 μM; 53 ± 3%). Furthermore, IPC was attenuated by inhibiting KATP with glibenclamide (10 μM; 23 ± 5%) and by selectively blocking mKATP with 5-hydroxydecanoate (100 μM; 22 ± 9%). These results suggest that (a) IR injury evoked cardiac fibroblast to myofibroblast differentiation, (b) IPC attenuated IR-induced fibroblast differentiation, (c) KATP were involved in IPC and (d) this protection involved selective activation of mKATP.
Collapse
|
13
|
Brand CS, Lighthouse JK, Trembley MA. Protective transcriptional mechanisms in cardiomyocytes and cardiac fibroblasts. J Mol Cell Cardiol 2019; 132:1-12. [PMID: 31042488 DOI: 10.1016/j.yjmcc.2019.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Heart failure is the leading cause of morbidity and mortality worldwide. Several lines of evidence suggest that physical activity and exercise can pre-condition the heart to improve the response to acute cardiac injury such as myocardial infarction or ischemia/reperfusion injury, preventing the progression to heart failure. It is becoming more apparent that cardioprotection is a concerted effort between multiple cell types and converging signaling pathways. However, the molecular mechanisms of cardioprotection are not completely understood. What is clear is that the mechanisms underlying this protection involve acute activation of transcriptional activators and their corresponding gene expression programs. Here, we review the known stress-dependent transcriptional programs that are activated in cardiomyocytes and cardiac fibroblasts to preserve function in the adult heart after injury. Focus is given to prominent transcriptional pathways such as mechanical stress or reactive oxygen species (ROS)-dependent activation of myocardin-related transcription factors (MRTFs) and transforming growth factor beta (TGFβ), and gene expression that positively regulates protective PI3K/Akt signaling. Together, these pathways modulate both beneficial and pathological responses to cardiac injury in a cell-specific manner.
Collapse
Affiliation(s)
- Cameron S Brand
- Department of Pharmacology, School of Medicine, University of California - San Diego, 9500 Gilman Drive, Biomedical Sciences Building, La Jolla, CA 92093, USA.
| | - Janet K Lighthouse
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY 14624, USA.
| | - Michael A Trembley
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Bourguignon T, Benoist L, Chadet S, Miquelestorena-Standley E, Fromont G, Ivanes F, Angoulvant D. Stimulation of murine P2Y11-like purinoreceptor protects against hypoxia/reoxygenation injury and decreases heart graft rejection lesions. J Thorac Cardiovasc Surg 2018; 158:780-790.e1. [PMID: 30711276 DOI: 10.1016/j.jtcvs.2018.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Myocardial ischemia reperfusion is a major cause of cell injury during cardiac transplantation and is responsible for increased graft rejection. Several in vitro studies demonstrated the protective effect of P2Y11-like purinoreceptor stimulation in the context of myocardial ischemia/reperfusion. In this study, we hypothesized a possible cardioprotective role of P2Y11R stimulation against ischemia/reperfusion lesions and validated its clinical effect in vivo in a heart transplantation model. METHODS We subjected H9c2 rat cardiomyocyte-derived cell line to 5 hours of hypoxia and 1 hour of reoxygenation. P2Y11R selective agonist NF546 and antagonist NF340 were added at the onset of reoxygenation. Cell injuries were assessed by microculture tetrazolium reduction and intracellular adenosine triphosphate level. Clinical effect of P2Y11R stimulation was further investigated in vivo. Hearts from BALB/c mice were transplanted intra-abdominally into allogenic C57BL/6 mice (n = 104). Recipient mice were injected with P2Y11R agonist. Mice in the sham group were injected with saline solution. In the control group, hearts from C57BL/6 were transplanted into syngeneic C57BL/6 mice. Rejection lesions were investigated using histology and immunohistochemistry at days 3, 5, and 7 after transplantation. We measured caspase activities to quantify apoptosis. Production of proinflammatory and anti-inflammatory cytokines was investigated. RESULTS P2Y11R stimulation at the onset of reoxygenation significantly reduced in vitro hypoxia/reoxygenation injuries. This protection was suppressed with P2Y11R antagonist. In vivo, cardiac allograft survival was significantly prolonged after P2Y11R stimulation. Rejection lesions, classified according to the International Society of Heart Lung Transplantation guidelines and quantified using the mean number of inflammatory cells per field, were significantly reduced in the treated group. At day 5 after transplantation, P2Y11R agonist pretreated allografts also demonstrated less apoptotic lesions. CONCLUSIONS Our data suggest a novel cardioprotective role of P2Y11R at the onset of reoxygenation/reperfusion against reperfusion injuries. Pharmacologic conditioning using P2Y11 agonist may be beneficial after cardiac transplantation in improving myocardial ischemia/reperfusion outcomes and decreasing graft rejection lesions.
Collapse
Affiliation(s)
- Thierry Bourguignon
- EA4245 Transplantation, Immunologie et Inflammation, Loire Valley Cardiovascular Collaboration and FHU SUPORT, Tours University, Tours, France; Department of Cardiac Surgery, Tours University Hospital, Tours, France.
| | - Lauriane Benoist
- EA4245 Transplantation, Immunologie et Inflammation, Loire Valley Cardiovascular Collaboration and FHU SUPORT, Tours University, Tours, France
| | - Stéphanie Chadet
- EA4245 Transplantation, Immunologie et Inflammation, Loire Valley Cardiovascular Collaboration and FHU SUPORT, Tours University, Tours, France
| | - Elodie Miquelestorena-Standley
- EA4245 Transplantation, Immunologie et Inflammation, Loire Valley Cardiovascular Collaboration and FHU SUPORT, Tours University, Tours, France; Department of Pathophysiology, Tours University Hospital and Tours University, Tours, France
| | - Gaëlle Fromont
- Department of Pathophysiology, Tours University Hospital and Tours University, Tours, France
| | - Fabrice Ivanes
- EA4245 Transplantation, Immunologie et Inflammation, Loire Valley Cardiovascular Collaboration and FHU SUPORT, Tours University, Tours, France; Department of Cardiology, Tours University Hospital, Tours, France
| | - Denis Angoulvant
- EA4245 Transplantation, Immunologie et Inflammation, Loire Valley Cardiovascular Collaboration and FHU SUPORT, Tours University, Tours, France; Department of Cardiology, Tours University Hospital, Tours, France
| |
Collapse
|