1
|
Peres Díaz LS, Aisicovich M, Schuman ML, Rosati M, Toblli JE, Uceda A, Giardina G, Landa MS, García SI. Novel Leptin-Cardiac TRH pathway responsible for the cardiac alterations in the Hyperleptinemic obesity. Mol Cell Biochem 2024:10.1007/s11010-024-05008-x. [PMID: 38676812 DOI: 10.1007/s11010-024-05008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024]
Abstract
The association between hypertension and obesity-induced cardiac damage is usually accepted. However, no studies have been focused on cardiac alterations in obesity, independently of blood pressure increase. It is well known that Cardiac TRH induces Left Ventricular Hypertrophy (LVH) and fibrosis, and its inhibition prevents the development of hypertrophy. Also, it has been described that the adiponectin leptin induces TRH expression. Thus, we hypothesized that in obesity, the increase in TRH induced by hyperleptinemia is responsible for LVH, until now mostly attributed to pressure load. We studied obese Agouti mice suffering from hypertension with hyperleptinemia and found a significant LVH development with increased TRH gene expression. Consequently, we found higher fibrotic (collagens and TGF-β) and hypertrophic markers (BNP and β-MHC) expression vs lean black controls. As pressure could explain these results, we treated obese mice with diuretic (hydrochlorothiazide 20 mg/kg/day) since weaning. Diuretic treatment was successful as the diuretic group was normotensive in contrast to control obese mice. Nevertheless, both groups showed LVH development, higher cardiac precursor TRH gene and peptide expressions and elevated fibrotic and hypertrophic markers expression, pointing out that obesity-induced LVH is not due to hypertension. In addition, we performed Cardiac TRH inhibition by specific siRNA injection compared to control siRNA treatment and evaluated cardiac damage. As expected, expressions and protein increase in hypertrophic and fibrotic markers observed in the AG mouse with the native cTRH system were not seen in the AG mouse with the cTRH silencing. Indeed, the AG + TRH-siRNA group showed hypertrophic markers expression and fibrosis measurements similar to the lean BL mice. On the whole, these results point out that the novel Leptin-Cardiac TRH pathway is responsible for the cardiac alterations present in hyperleptinemic obesity, independent of blood pressure, and cTRH long-term silencing since early stages totally prevent LVH development and cardiac fibrosis.
Collapse
Affiliation(s)
- Ludmila Soledad Peres Díaz
- School of Medicine, Institute of Medical Research Alfredo Lanari, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Laboratory of Molecular Cardiology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Maia Aisicovich
- School of Medicine, Institute of Medical Research Alfredo Lanari, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Laboratory of Molecular Cardiology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Mariano Luis Schuman
- School of Medicine, Institute of Medical Research Alfredo Lanari, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Laboratory of Molecular Cardiology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Macarena Rosati
- School of Medicine, Institute of Medical Research Alfredo Lanari, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jorge Eduardo Toblli
- Laboratory of Experimental Medicine, Hospital Alemán, A. Pueyrredón 1640, CABA 1118, Buenos Aires, Argentina
| | - Ana Uceda
- Laboratory of Experimental Medicine, Hospital Alemán, A. Pueyrredón 1640, CABA 1118, Buenos Aires, Argentina
| | - Graciela Giardina
- Laboratory of Experimental Medicine, Hospital Alemán, A. Pueyrredón 1640, CABA 1118, Buenos Aires, Argentina
| | - María Silvina Landa
- School of Medicine, Institute of Medical Research Alfredo Lanari, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Laboratory of Molecular Cardiology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Silvia Inés García
- School of Medicine, Institute of Medical Research Alfredo Lanari, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
- Laboratory of Molecular Cardiology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina.
- Laboratory of Experimental Medicine, Hospital Alemán, A. Pueyrredón 1640, CABA 1118, Buenos Aires, Argentina.
- School of Medicine, Institute of Medical Research (IDIM), Molecular Cardiology Laboratory and University of Buenos Aires, Institute of Medical Research A. Lanari, National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Combatientes de Malvinas 3150, CABA-1427, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Papini G, Furini G, Matteucci M, Biemmi V, Casieri V, Di Lascio N, Milano G, Chincoli LR, Faita F, Barile L, Lionetti V. Cardiomyocyte-targeting exosomes from sulforaphane-treated fibroblasts affords cardioprotection in infarcted rats. J Transl Med 2023; 21:313. [PMID: 37161563 PMCID: PMC10169450 DOI: 10.1186/s12967-023-04155-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Exosomes (EXOs), tiny extracellular vesicles that facilitate cell-cell communication, are being explored as a heart failure treatment, although the features of the cell source restrict their efficacy. Fibroblasts the most prevalent non-myocyte heart cells, release poor cardioprotective EXOs. A noninvasive method for manufacturing fibroblast-derived exosomes (F-EXOs) that target cardiomyocytes and slow cardiac remodeling is expected. As a cardioprotective isothiocyanate, sulforaphane (SFN)-induced F-EXOs (SFN-F-EXOs) should recapitulate its anti-remodeling properties. METHODS Exosomes from low-dose SFN (3 μM/7 days)-treated NIH/3T3 murine cells were examined for number, size, and protein composition. Fluorescence microscopy, RT-qPCR, and western blot assessed cell size, oxidative stress, AcH4 levels, hypertrophic gene expression, and caspase-3 activation in angiotensin II (AngII)-stressed HL-1 murine cardiomyocytes 12 h-treated with various EXOs. The uptake of fluorescently-labeled EXOs was also measured in cardiomyocytes. The cardiac function of infarcted male Wistar rats intramyocardially injected with different EXOs (1·1012) was examined by echocardiography. Left ventricular infarct size, hypertrophy, and capillary density were measured. RESULTS Sustained treatment of NIH/3T3 with non-toxic SFN concentration significantly enhances the release of CD81 + EXOs rich in TSG101 (Tumor susceptibility gene 101) and Hsp70 (Heat Shock Protein 70), and containing maspin, an endogenous histone deacetylase 1 inhibitor. SFN-F-EXOs counteract angiotensin II (AngII)-induced hypertrophy and apoptosis in murine HL-1 cardiomyocytes enhancing SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a) levels more effectively than F-EXOs. In stressed cardiomyocytes, SFN-F-EXOs boost AcH4 levels by 30% (p < 0.05) and significantly reduce oxidative stress more than F-EXOs. Fluorescence microscopy showed that mouse cardiomyocytes take in SFN-F-EXOs ~ threefold more than F-EXOs. Compared to vehicle-injected infarcted hearts, SFN-F-EXOs reduce hypertrophy, scar size, and improve contractility. CONCLUSIONS Long-term low-dose SFN treatment of fibroblasts enhances the release of anti-remodeling cardiomyocyte-targeted F-EXOs, which effectively prevent the onset of HF. The proposed method opens a new avenue for large-scale production of cardioprotective exosomes for clinical application using allogeneic fibroblasts.
Collapse
Affiliation(s)
- Gaia Papini
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Giulia Furini
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Anesthesiology and Intensive Care Medicine, UOSVD, Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Marco Matteucci
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Vanessa Biemmi
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università Svizzera Italiana, 6900, Lugano, Switzerland
| | - Valentina Casieri
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Nicole Di Lascio
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Giuseppina Milano
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Lucia Rosa Chincoli
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Lucio Barile
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università Svizzera Italiana, 6900, Lugano, Switzerland
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy.
- Anesthesiology and Intensive Care Medicine, UOSVD, Fondazione Toscana G. Monasterio, Pisa, Italy.
| |
Collapse
|
3
|
Bhullar SK, Dhalla NS. Angiotensin II-Induced Signal Transduction Mechanisms for Cardiac Hypertrophy. Cells 2022; 11:cells11213336. [PMID: 36359731 PMCID: PMC9657342 DOI: 10.3390/cells11213336] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/29/2022] Open
Abstract
Although acute exposure of the heart to angiotensin (Ang II) produces physiological cardiac hypertrophy and chronic exposure results in pathological hypertrophy, the signal transduction mechanisms for these effects are of complex nature. It is now evident that the hypertrophic response is mediated by the activation of Ang type 1 receptors (AT1R), whereas the activation of Ang type 2 receptors (AT2R) by Ang II and Mas receptors by Ang-(1-7) exerts antihypertrophic effects. Furthermore, AT1R-induced activation of phospholipase C for stimulating protein kinase C, influx of Ca2+ through sarcolemmal Ca2+- channels, release of Ca2+ from the sarcoplasmic reticulum, and activation of sarcolemmal NADPH oxidase 2 for altering cardiomyocytes redox status may be involved in physiological hypertrophy. On the other hand, reduction in the expression of AT2R and Mas receptors, the release of growth factors from fibroblasts for the occurrence of fibrosis, and the development of oxidative stress due to activation of mitochondria NADPH oxidase 4 as well as the depression of nuclear factor erythroid-2 activity for the occurrence of Ca2+-overload and activation of calcineurin may be involved in inducing pathological cardiac hypertrophy. These observations support the view that inhibition of AT1R or activation of AT2R and Mas receptors as well as depression of oxidative stress may prevent or reverse the Ang II-induced cardiac hypertrophy.
Collapse
|
4
|
TRH and TRH-like peptide levels covary with caloric restriction and oral metformin in rat heart and testis. ENDOCRINE AND METABOLIC SCIENCE 2022. [DOI: 10.1016/j.endmts.2022.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
5
|
Wan M, Yin K, Yuan J, Ma S, Xu Q, Li D, Gao H, Gou X. YQFM alleviated cardiac hypertrophy by apoptosis inhibition and autophagy regulation via PI 3K/AKT/mTOR pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114835. [PMID: 34798161 DOI: 10.1016/j.jep.2021.114835] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional compound preparation of Chinese medicine, Yiqi Fumai lyophilized injection (YQFM) has protective effects on various cardiac diseases including cardiac hypertrophy, which is the primary cause of arrhythmia. However, the involved mechanism remains unclear. AIM OF THE STUDY This study was projected to investigate whether YQFM could prevent cardiac hypertrophy and arrhythmia concurrence. MATERIALS AND METHODS The cardiac hypertrophy rats were established by transverse aortic ligation and the H9c2 hypertrophy cardiomyocyte was induced by angiotensin II (AngII). The electrocardiogram (ECG) was conducted to estimate the arrhythmia occurrence of cardiac hypertrophy rats under isoprenaline (iso) treatment. The cardiac related indicators and histopathology were also detected. The protective effects of YQFM on H9c2 hypertrophy cardiomyocyte were determined by the cell size measurement, apoptosis detection and mitochondrial membrane potential measurement. The cardiac hypertrophy relative proteins (ANP and BNP), autophagy related factors (LC3II, p62 and Beclin-1), apoptosis related markers (p53, caspase 3, Bax and Bcl-2) and the PI3K/AKT/mTOR pathway expressions were all measured by Western blot. RESULTS YQFM decreased the arrhythmia occurrence and improved cardiac function in cardiac hypertrophy rats. YQFM also reduced the H9c2 cardiomyocyte size and alleviated the cardiomyocyte apoptosis induced by AngII. In addition, YQFM inhibited cell apoptosis by increasing Bcl-2/Bax ratio and decreasing caspase 3 and p53 expressions in vitro and vivo. Meanwhile, YQFM regulated the autophagy pathway by down-regulating of LC3II and Beclin-1 expressions, as well as up-regulating of p62 expression. Finally, the results showed that YQFM could activate the PI3K/AKT/mTOR pathway by enhancing the p-AKT, p-PI3K and p-mTOR expressions. CONCLUSION Our results displayed that YQFM attenuated the cardiac hypertrophy by apoptosis inhibition and autophagy regulation via PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Meixu Wan
- Tianjin Tasly Pride Pharmaceutical Co., Ltd., 12 Huaihe Road, Beichen District, Tianjin, 300410, China.
| | - Kunkun Yin
- Henan Institute for Food and Drug Control, Zhengzhou, 450008, China.
| | - Jing Yuan
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Shiyan Ma
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 Binshui West Road, Xiqing District, Tianjin, 300100, China.
| | - Qing Xu
- Hebei College of Traditional Chinese Medicine, Shijiazhuang, 050091, China.
| | - Dekun Li
- Tianjin Tasly Pride Pharmaceutical Co., Ltd., 12 Huaihe Road, Beichen District, Tianjin, 300410, China.
| | - Hui Gao
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 Binshui West Road, Xiqing District, Tianjin, 300100, China.
| | - Xiangbo Gou
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 Binshui West Road, Xiqing District, Tianjin, 300100, China.
| |
Collapse
|
6
|
The Role of NRF2 in Obesity-Associated Cardiovascular Risk Factors. Antioxidants (Basel) 2022; 11:antiox11020235. [PMID: PMID: 35204118 PMCID: PMC8868420 DOI: 10.3390/antiox11020235] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
The raising prevalence of obesity is associated with an increased risk for cardiovascular diseases (CVDs), particularly coronary artery disease (CAD), and heart failure, including atrial fibrillation, ventricular arrhythmias and sudden death. Obesity contributes directly to incident cardiovascular risk factors, including hyperglycemia or diabetes, dyslipidemia, and hypertension, which are involved in atherosclerosis, including structural and functional cardiac alterations, which lead to cardiac dysfunction. CVDs are the main cause of morbidity and mortality worldwide. In obesity, visceral and epicardial adipose tissue generate inflammatory cytokines and reactive oxygen species (ROS), which induce oxidative stress and contribute to the pathogenesis of CVDs. Nuclear factor erythroid 2-related factor 2 (NRF2; encoded by Nfe2l2 gene) protects against oxidative stress and electrophilic stress. NRF2 participates in the regulation of cell inflammatory responses and lipid metabolism, including the expression of over 1000 genes in the cell under normal and stressed environments. NRF2 is downregulated in diabetes, hypertension, and inflammation. Nfe2l2 knockout mice develop structural and functional cardiac alterations, and NRF2 deficiency in macrophages increases atherosclerosis. Given the endothelial and cardiac protective effects of NRF2 in experimental models, its activation using pharmacological or natural products is a promising therapeutic approach for obesity and CVDs. This review provides a comprehensive summary of the current knowledge on the role of NRF2 in obesity-associated cardiovascular risk factors.
Collapse
|
7
|
Nadeem MS, Kazmi I, Ullah I, Muhammad K, Anwar F. Allicin, an Antioxidant and Neuroprotective Agent, Ameliorates Cognitive Impairment. Antioxidants (Basel) 2021; 11:87. [PMID: 35052591 PMCID: PMC8772758 DOI: 10.3390/antiox11010087] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/08/2023] Open
Abstract
Allicin (diallylthiosulfinate) is a defense molecule produced by cellular contents of garlic (Allium sativum L.). On tissue damage, the non-proteinogenic amino acid alliin (S-allylcysteine sulfoxide) is converted to allicin in an enzyme-mediated process catalysed by alliinase. Allicin is hydrophobic in nature, can efficiently cross the cellular membranes and behaves as a reactive sulfur species (RSS) inside the cells. It is physiologically active molecule with the ability to oxidise the thiol groups of glutathione and between cysteine residues in proteins. Allicin has shown anticancer, antimicrobial, antioxidant properties and also serves as an efficient therapeutic agent against cardiovascular diseases. In this context, the present review describes allicin as an antioxidant, and neuroprotective molecule that can ameliorate the cognitive abilities in case of neurodegenerative and neuropsychological disorders. As an antioxidant, allicin fights the reactive oxygen species (ROS) by downregulation of NOX (NADPH oxidizing) enzymes, it can directly interact to reduce the cellular levels of different types of ROS produced by a variety of peroxidases. Most of the neuroprotective actions of allicin are mediated via redox-dependent pathways. Allicin inhibits neuroinflammation by suppressing the ROS production, inhibition of TLR4/MyD88/NF-κB, P38 and JNK pathways. As an inhibitor of cholinesterase and (AChE) and butyrylcholinesterase (BuChE) it can be applied to manage the Alzheimer's disease, helps to maintain the balance of neurotransmitters in case of autism spectrum disorder (ASD) and attention deficit hyperactive syndrome (ADHD). In case of acute traumatic spinal cord injury (SCI) allicin protects neuron damage by regulating inflammation, apoptosis and promoting the expression levels of Nrf2 (nuclear factor erythroid 2-related factor 2). Metal induced neurodegeneration can also be attenuated and cognitive abilities of patients suffering from neurological diseases can be ameliorates by allicin administration.
Collapse
Affiliation(s)
- Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| | - Inam Ullah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan; (I.U.); (K.M.)
| | - Khushi Muhammad
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan; (I.U.); (K.M.)
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| |
Collapse
|
8
|
Schuman ML, Peres Diaz LS, Aisicovich M, Ingallina F, Toblli JE, Landa MS, García SI. Cardiac Thyrotropin-releasing Hormone Inhibition Improves Ventricular Function and Reduces Hypertrophy and Fibrosis After Myocardial Infarction in Rats. J Card Fail 2021; 27:796-807. [PMID: 33865967 DOI: 10.1016/j.cardfail.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/11/2021] [Accepted: 04/06/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cardiac thyrotropin-releasing hormone (TRH) is a tripeptide with still unknown functions. We demonstrated that the left ventricle (LV) TRH system is hyperactivated in spontaneously hypertensive rats and its inhibition prevented cardiac hypertrophy and fibrosis. Therefore, we evaluated whether in vivo cardiac TRH inhibition could improve myocardial function and attenuate ventricular remodeling in a rat model of myocardial infarction (MI). METHODS AND RESULTS In Wistar rats, MI was induced by a permanent left anterior descending coronary artery ligation. A coronary injection of a specific small interfering RNA against TRH was applied simultaneously. The control group received a scrambled small interfering RNA. Cardiac remodeling variables were evaluated one week later. In MI rats, TRH inhibition decreased LV end-diastolic (1.049 ± 0.102 mL vs 1.339 ± 0.102 mL, P < .05), and end-systolic volumes (0.282 ± 0.043 mL vs 0.515 ± 0.037 mL, P < .001), and increased LV ejection fraction (71.89 ± 2.80% vs 65.69 ± 2.85%, P < .05). Although both MI groups presented similar infarct size, small interfering RNA against TRH treatment attenuated the cardiac hypertrophy index and myocardial interstitial collagen deposition in the peri-infarct myocardium. These effects were accompanied by attenuation in the rise of transforming growth factor-β, collagen I, and collagen III, as well as the fetal genes (atrial natriuretic peptide, B-type natriuretic peptide, and beta myosin heavy chain) expression in the peri-infarct region. In addition, the expression of Hif1α and vascular endothelial growth factor significantly increased compared with all groups. CONCLUSIONS Cardiac TRH inhibition improves LV systolic function and attenuates ventricular remodeling after MI. These novel findings support the idea that TRH inhibition may serve as a new therapeutic strategy against the progression of heart failure.
Collapse
Affiliation(s)
- Mariano L Schuman
- University of Buenos Aires, School of Medicine, Institute of Medical Research A. Lanari, Ciudad Autónoma de Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), University of Buenos Aires (UBA), Institute of Medical Research (IDIM), Department of Molecular Cardiology, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ludmila S Peres Diaz
- University of Buenos Aires, School of Medicine, Institute of Medical Research A. Lanari, Ciudad Autónoma de Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), University of Buenos Aires (UBA), Institute of Medical Research (IDIM), Department of Molecular Cardiology, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maia Aisicovich
- University of Buenos Aires, School of Medicine, Institute of Medical Research A. Lanari, Ciudad Autónoma de Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), University of Buenos Aires (UBA), Institute of Medical Research (IDIM), Department of Molecular Cardiology, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Ingallina
- University of Buenos Aires, School of Medicine, Institute of Medical Research A. Lanari, Ciudad Autónoma de Buenos Aires, Argentina; University of Buenos Aires (UBA), School of Medicine, Institute of Medical Research "Alfredo Lanari," Department of Cardiology, Ciudad Autonoma de Buenos Aires, Argentina
| | - Jorge E Toblli
- Laboratory of Experimental Medicine, Hospital Alemán, Ciudad Autonoma de Buenos Aires, Argentina
| | - Maria S Landa
- University of Buenos Aires, School of Medicine, Institute of Medical Research A. Lanari, Ciudad Autónoma de Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), University of Buenos Aires (UBA), Institute of Medical Research (IDIM), Department of Molecular Cardiology, Ciudad Autónoma de Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), University of Buenos Aires (UBA), Institute of Medical Research (IDIM), Department of Molecular Genetics and Biology of Complex Diseases, Ciudad Autonoma de Buenos Aires, Argentina
| | - Silvia I García
- University of Buenos Aires, School of Medicine, Institute of Medical Research A. Lanari, Ciudad Autónoma de Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), University of Buenos Aires (UBA), Institute of Medical Research (IDIM), Department of Molecular Cardiology, Ciudad Autónoma de Buenos Aires, Argentina; Laboratory of Experimental Medicine, Hospital Alemán, Ciudad Autonoma de Buenos Aires, Argentina.
| |
Collapse
|
9
|
Peres Diaz LS, Schuman ML, Aisicovich M, Toblli JE, Pirola CJ, Landa MS, García SI. Short-term doxorubicin cardiotoxic effects: involvement of cardiac Thyrotropin Releasing Hormone system. Life Sci 2020; 261:118346. [DOI: 10.1016/j.lfs.2020.118346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/12/2020] [Accepted: 08/22/2020] [Indexed: 12/27/2022]
|
10
|
Cardiovascular and body weight regulation changes in transgenic mice overexpressing thyrotropin-releasing hormone (TRH). J Physiol Biochem 2020; 76:599-608. [PMID: 32914279 DOI: 10.1007/s13105-020-00765-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/02/2020] [Indexed: 11/27/2022]
Abstract
Thyrotropin-releasing hormone (TRH) plays several roles as a hormone/neuropeptide. Diencephalic TRH (dTRH) participates in the regulation of blood pressure in diverse animal models, independently of the thyroid status. The present study aimed to evaluate whether chronic overexpression of TRH in mice affects cardiovascular and metabolic variables. We developed a transgenic (TG) mouse model that overexpresses dTrh. Despite having higher food consumption and water intake, TG mice showed significantly lower body weight respect to controls. Also, TG mice presented higher blood pressure, heart rate, and locomotor activity independently of thyroid hormone levels. These results and the higher urine noradrenaline excretion observed in TG mice suggest a higher metabolic rate mediated by sympathetic overflow. Cardiovascular changes were impeded by siRNA inhibition of the diencephalic Trh overexpression. Also, the silencing of dTRH in the TG mice normalized urine noradrenaline excretion, supporting the view that the cardiovascular effects of TRH involve the sympathetic system. Overall, we show that congenital dTrh overexpression leads to an increase in blood pressure accompanied by changes in body weight and food consumption mediated by a higher sympathetic overflow. These results provide new evidence confirming the participation of TRH in cardiovascular and body weight regulation.
Collapse
|
11
|
Liao Y, Li H, Cao H, Dong Y, Gao L, Liu Z, Ge J, Zhu H. Therapeutic silencing miR-146b-5p improves cardiac remodeling in a porcine model of myocardial infarction by modulating the wound reparative phenotype. Protein Cell 2020; 12:194-212. [PMID: 32845445 PMCID: PMC7895884 DOI: 10.1007/s13238-020-00750-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022] Open
Abstract
Fibrotic remodeling is an adverse consequence of immune response-driven phenotypic modulation of cardiac cells following myocardial infarction (MI). MicroRNA-146b (miR-146b) is an active regulator of immunomodulation, but its function in the cardiac inflammatory cascade and its clinical implication in fibrotic remodeling following MI remain largely unknown. Herein, miR-146b-5p was found to be upregulated in the infarcted myocardium of mice and the serum of myocardial ischemia patients. Gain- and loss-of-function experiments demonstrated that miR-146b-5p was a hypoxia-induced regulator that governed the pro-fibrotic phenotype transition of cardiac cells. Overexpression of miR-146b-5p activated fibroblast proliferation, migration, and fibroblast-to-myofibroblast transition, impaired endothelial cell function and stress survival, and disturbed macrophage paracrine signaling. Interestingly, the opposite effects were observed when miR-146b-5p expression was inhibited. Luciferase assays and rescue studies demonstrated that the miR-146b-5p target genes mediating the above phenotypic modulations included interleukin 1 receptor associated kinase 1 (IRAK1) and carcinoembryonic antigen related cell adhesion molecule 1 (CEACAM1). Local delivery of a miR-146b-5p antagomir significantly reduced fibrosis and cell death, and upregulated capillary and reparative macrophages in the infarcted myocardium to restore cardiac remodeling and function in both mouse and porcine MI models. Local inhibition of miR-146b-5p may represent a novel therapeutic approach to treat cardiac fibrotic remodeling and dysfunction following MI.
Collapse
Affiliation(s)
- Yiteng Liao
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.,Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hao Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.,Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hao Cao
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yun Dong
- Department of Ultrasound in Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Lei Gao
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhongmin Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China. .,Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
| | - Hongming Zhu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
12
|
Charli JL, Rodríguez-Rodríguez A, Hernández-Ortega K, Cote-Vélez A, Uribe RM, Jaimes-Hoy L, Joseph-Bravo P. The Thyrotropin-Releasing Hormone-Degrading Ectoenzyme, a Therapeutic Target? Front Pharmacol 2020; 11:640. [PMID: 32457627 PMCID: PMC7225337 DOI: 10.3389/fphar.2020.00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Thyrotropin releasing hormone (TRH: Glp-His-Pro-NH2) is a peptide mainly produced by brain neurons. In mammals, hypophysiotropic TRH neurons of the paraventricular nucleus of the hypothalamus integrate metabolic information and drive the secretion of thyrotropin from the anterior pituitary, and thus the activity of the thyroid axis. Other hypothalamic or extrahypothalamic TRH neurons have less understood functions although pharmacological studies have shown that TRH has multiple central effects, such as promoting arousal, anorexia and anxiolysis, as well as controlling gastric, cardiac and respiratory autonomic functions. Two G-protein-coupled TRH receptors (TRH-R1 and TRH-R2) transduce TRH effects in some mammals although humans lack TRH-R2. TRH effects are of short duration, in part because the peptide is hydrolyzed in blood and extracellular space by a M1 family metallopeptidase, the TRH-degrading ectoenzyme (TRH-DE), also called pyroglutamyl peptidase II. TRH-DE is enriched in various brain regions but is also expressed in peripheral tissues including the anterior pituitary and the liver, which secretes a soluble form into blood. Among the M1 metallopeptidases, TRH-DE is the only member with a very narrow specificity; its best characterized biological substrate is TRH, making it a target for the specific manipulation of TRH activity. Two other substrates of TRH-DE, Glp-Phe-Pro-NH2 and Glp-Tyr-Pro-NH2, are also present in many tissues. Analogs of TRH resistant to hydrolysis by TRH-DE have prolonged central efficiency. Structure-activity studies allowed the identification of residues critical for activity and specificity. Research with specific inhibitors has confirmed that TRH-DE controls TRH actions. TRH-DE expression by β2-tanycytes of the median eminence of the hypothalamus allows the control of TRH flux into the hypothalamus-pituitary portal vessels and may regulate serum thyrotropin secretion. In this review we describe the critical evidences that suggest that modification of TRH-DE activity in tanycytes, and/or in other brain regions, may generate beneficial consequences in some central and metabolic disorders and identify potential drawbacks and missing information needed to test these hypotheses.
Collapse
Affiliation(s)
- Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | | | | | | | | | | | | |
Collapse
|
13
|
Ba L, Gao J, Chen Y, Qi H, Dong C, Pan H, Zhang Q, Shi P, Song C, Guan X, Cao Y, Sun H. Allicin attenuates pathological cardiac hypertrophy by inhibiting autophagy via activation of PI3K/Akt/mTOR and MAPK/ERK/mTOR signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152765. [PMID: 31005720 DOI: 10.1016/j.phymed.2018.11.025] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cardiac hypertrophy is an adaptive response of the myocardium to pressure or volume overload. Recent evidences indicate that allicin can prevent cardiac hypertrophy. However, it is not clear whether allicin alleviates cardiac hypertrophy by inhibiting autophagy. PURPOSE We aimed to investigate the effects of allicin on pressure overload-induced cardiac hypertrophy, and further to clarify the related mechanism. STUDY DESIGN/METHODS Cardiac hypertrophy was successfully established by abdominal aortic constriction (AAC) in rats, and cardiomyocytes hypertrophy was simulated by angiotensin II (Ang II) in vitro. Hemodynamic parameters were monitored by organism function experiment system in vivo. The changes of cell surface area were observed using HE and immunofluorescence staining in vivoand in vitro, respectively. The expressions of cardiac hypertrophy relative protein (BNP and β-MHC), autophagy marker protein (LC3-II and Beclin-1), Akt, PI3K and ERK were detected by western blot. RESULTS Allicin could improve cardiac function, and reduce cardiomyocytes size, and decrease BNP and β-MHC protein expressions. Further results showed that allicin could lower LC3-II and Beclin-1 protein expressions both in vivo and in vitro experiments. And pharmacological inhibitor of mTOR, rapamycin could antagonize the effects of allicin on Ang II-induced cardiac hypertrophy and autophagy. Simultaneously, allicin could promote the expressions of p-Akt, p-PI3K and p-ERK protein. CONCLUSION These findings reveal a novel mechanism of allicin attenuating cardiac hypertrophy which allicin could inhibit excessive autophagy via activating PI3K/Akt/mTOR and MAPK/ERK/mTOR signaling pathways.
Collapse
Affiliation(s)
- Lina Ba
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Jingquan Gao
- Department of Clinical Nursing, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Yunping Chen
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Hanping Qi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Chonghui Dong
- Department of Pharmacy, Fifth Clinical College of Harbin Medical University, Daqing, Heilongjiang 163316, China
| | - Hao Pan
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Qianhui Zhang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Pilong Shi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Chao Song
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Xueying Guan
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China.
| | - Hongli Sun
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
14
|
Chen D, Li Z, Bao P, Chen M, Zhang M, Yan F, Xu Y, Ji C, Hu X, Sanchis D, Zhang Y, Ye J. Nrf2 deficiency aggravates Angiotensin II-induced cardiac injury by increasing hypertrophy and enhancing IL-6/STAT3-dependent inflammation. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1253-1264. [PMID: 30668979 DOI: 10.1016/j.bbadis.2019.01.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND NF-E2-related factor 2 (Nrf2) is a transcription factor playing cytoprotective effects in various pathological processes including oxidative stress and cardiac hypertrophy. Despite being a potential therapeutic target to treat several cardiomyopathies, the signaling underlying Nrf2-dependent cardioprotective action remains largely uncharacterized. AIM This study aimed to explore the signaling mediating the role of Nrf2 in the development of hypertensive cardiac pathogenesis by analyzing the response to Angiotensin II (Ang II) in the presence or absence of Nrf2 expression, both in vivo and in vitro. RESULTS Our results indicated that Nrf2 deficiency exacerbated cardiac damage triggered by Ang II infusion. Mechanistically, our study shows that Ang II-triggered hypertrophy and inflammation is exacerbated in the absence of Nrf2 expression and points to the involvement of the IL-6/STAT3 signaling pathway in this event. Indeed, our results show that IL-6 abundance triggered by Ang II is increased in the absence of Nrf2 and demonstrate the requirement of IL-6 in STAT3 activation and cardiac inflammation induced by Ang II. CONCLUSION Our results show that Nrf2 is important for the protection of the heart against Ang II-induced cardiac hypertrophy and inflammation by mechanisms involving the regulation of IL-6/STAT3-dependent signaling.
Collapse
Affiliation(s)
- Dandan Chen
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Zhe Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular research Institute, Wuhan University, Wuhan 430060, China; Hubei key Laboratory of Cardiology, Wuhan 430060, China
| | - Peiqing Bao
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Miao Chen
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Miao Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210006, China
| | - Yitao Xu
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W120NN, United Kingdom
| | - Caoyu Ji
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210006, China
| | - Xinyue Hu
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Daniel Sanchis
- Institut de Recerca Biomedica de Lleida (IRBLLEIDA), Universitat de Lleida, Edifici Biomedicina-I. Av. Rovira Roure, 80, 25198 Lleida, Spain.
| | - Yubin Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China.
| | - Junmei Ye
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China.
| |
Collapse
|