1
|
Sharma P, Sharma S, Paliwal S, Jain S. Aminopeptidase A: A Novel Therapeutic Target for Hypertension Management. Cell Biochem Funct 2024; 42:e70008. [PMID: 39445480 DOI: 10.1002/cbf.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
The renin-angiotensin system (RAS) is crucial for regulating and understanding the pathophysiology of hypertension. However, there has been little focus on the breakdown of the active peptide, angiotensin II (AngII). Given that animals lacking aminopeptidase A (APA) exhibit hypertension, it may be concluded that APA is a crucial enzyme in regulating blood pressure by breaking down AngII. It has been also seen that the elevated blood pressure in the spontaneously hypertensive rat (SHR) is caused by the activation of the RAS and a concurrent reduction in renal angiotensin-converting enzyme (ACE) activity. The activity of APA is elevated at the beginning of pre-eclampsia and decreases below the levels seen during a normal pregnancy as pre-eclampsia progresses (particularly, in severe cases). The activity of Serum APA is also heightened after hormone replacement treatment (HRT), perhaps as a response to increasing levels of AngII. Therefore, it is crucial to examine the connection between the activation of the RAS, the levels of AngII in the bloodstream, and the presence of APA in hypertension conditions.
Collapse
Affiliation(s)
- Pragya Sharma
- Department of Pharmacy, Banasthali Vidyapith, Jaipur, Rajasthan, India
| | - Suman Sharma
- Department of Pharmacy, Banasthali Vidyapith, Jaipur, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Jaipur, Rajasthan, India
| | - Smita Jain
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
2
|
Balavoine F, Compere D, Miege F, De Mota N, Keck M, Fer M, Christen A, Martin E, Roche D, Llorens-Cortes C, Rodeschini V. Rational design, synthesis and pharmacological characterization of novel aminopeptidase A inhibitors. Bioorg Med Chem Lett 2024; 113:129940. [PMID: 39233188 DOI: 10.1016/j.bmcl.2024.129940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Aminopeptidase A (APA) is a membrane-bound zinc metallopeptidase involved in the production of angiotensin III, one effector peptide of the brain renin-angiotensin system, making brain APA a relevant pharmacological target for the development of novel therapeutic treatments against hypertension and heart failure. The structure-based design of new APA inhibitors is described, based on previously developed thiol-containing inhibitors and APA crystal structure. Chemical synthesis, in vitro assessment against APA activity, pharmacological and pharmacokinetic profiling were performed, ultimately leading to a potent and selective APA inhibitor.
Collapse
Affiliation(s)
| | - Delphine Compere
- Quantum Genomics, 6 rue Cambacérès, F-75008 Paris, France; Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, F-75005 Paris, France
| | - Frédéric Miege
- Edelris, Bâtiment Bioserra 1 60 av Rockefeller, F-69003 Lyon, France
| | - Nadia De Mota
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, F-75005 Paris, France
| | - Mathilde Keck
- Quantum Genomics, 6 rue Cambacérès, F-75008 Paris, France; Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, F-75005 Paris, France
| | - Mickael Fer
- Edelris, Bâtiment Bioserra 1 60 av Rockefeller, F-69003 Lyon, France
| | - Aude Christen
- Edelris, Bâtiment Bioserra 1 60 av Rockefeller, F-69003 Lyon, France
| | - Emmeline Martin
- Edelris, Bâtiment Bioserra 1 60 av Rockefeller, F-69003 Lyon, France
| | - Didier Roche
- Edelris, Bâtiment Bioserra 1 60 av Rockefeller, F-69003 Lyon, France
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, F-75005 Paris, France.
| | | |
Collapse
|
3
|
Yin X, Yin X, Pan X, Zhang J, Fan X, Li J, Zhai X, Jiang L, Hao P, Wang J, Chen Y. Post-myocardial infarction fibrosis: Pathophysiology, examination, and intervention. Front Pharmacol 2023; 14:1070973. [PMID: 37056987 PMCID: PMC10086160 DOI: 10.3389/fphar.2023.1070973] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Cardiac fibrosis plays an indispensable role in cardiac tissue homeostasis and repair after myocardial infarction (MI). The cardiac fibroblast-to-myofibroblast differentiation and extracellular matrix collagen deposition are the hallmarks of cardiac fibrosis, which are modulated by multiple signaling pathways and various types of cells in time-dependent manners. Our understanding of the development of cardiac fibrosis after MI has evolved in basic and clinical researches, and the regulation of fibrotic remodeling may facilitate novel diagnostic and therapeutic strategies, and finally improve outcomes. Here, we aim to elaborate pathophysiology, examination and intervention of cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Xiaoying Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinxin Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Pan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jingyu Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinhui Fan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaxin Li
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxuan Zhai
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lijun Jiang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Panpan Hao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
4
|
Montalescot G, Alexander JH, Cequier-Fillat A, Solomon SD, Redheuil A, Hudec M, Silvain J, Kachenoura N, Janas A, Orban M, Josse I, Balavoine F, Besse B. Firibastat Versus Ramipril After Acute Mechanical Reperfusion of Anterior Myocardial Infarction: A Phase 2 Study. Am J Cardiovasc Drugs 2023; 23:207-217. [PMID: 36757536 DOI: 10.1007/s40256-023-00567-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Preclinical data suggest that central renin-angiotensin system blockade by the brain aminopeptidase-A inhibitor firibastat can improve left ventricular ejection fraction (LVEF) after myocardial infarction (MI). OBJECTIVES This study aimed to compare the effect of firibastat versus ramipril on post-MI LVEF. METHODS In this phase 2, randomized, double-blind trial, patients selected within 24 h of first acute anterior MI treated by primary percutaneous coronary intervention were randomly assigned (1:1:1) to firibastat 100 mg, firibastat 500 mg or ramipril 5 mg, each twice daily for 12 weeks. The primary endpoint was change in LVEF on cardiac magnetic resonance imaging (cMRI) from baseline to day 84 in the modified intent-to-treat (mITT) population (at least one dose received and one follow-up cMRI available) for each treatment group. RESULTS From June 4, 2019 to April 12, 2021, 294 patients were randomized and 229 were evaluable for the mITT analysis. After 12 weeks, mean ± standard deviation (SD) percent change in LVEF was 5.6 ± 1.2 with firibastat 100 mg, 5.3 ± 1.1 with firibastat 500 mg and 5.7 ± 1.1 with ramipril. The absolute ± SE adjusted difference in LVEF change from baseline between firibastat 500 mg and ramipril was - 0.36 ± 1.32% (p = 0.79). Occurrence of treatment-related adverse events was similar in the three groups. CONCLUSIONS Firibastat was not superior to ramipril for prevention of left ventricular dysfunction after first acute anterior MI, and their safety profiles were similar. REGISTRATION ClinicalTrials.gov identifier NCT03715998.
Collapse
Affiliation(s)
- Gilles Montalescot
- Sorbonne Université, ACTION Group, INSERM UMRS1166, Institut de Cardiologie, Hôpital Pitié-Salpêtrière (AP-HP), 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | | | - Angel Cequier-Fillat
- Heart Disease Institute, Bellvitge University Hospital, University of Barcelona, Barcelona, Spain
| | - Scott D Solomon
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alban Redheuil
- Sorbonne Universités, INSERM 1146, CNRS 7371, Laboratoire d'Imagerie Biomédicale, Paris, France
| | - Martin Hudec
- Department of Acute Cardiology, SUSCCH, a.s., Cesta K Nemocnici 1, Banska Bystrica, Slovakia
| | - Johanne Silvain
- Sorbonne Université, ACTION Group, INSERM UMRS1166, Institut de Cardiologie, Hôpital Pitié-Salpêtrière (AP-HP), 47-83 Boulevard de l'Hôpital, 75013, Paris, France
| | - Nadjia Kachenoura
- Sorbonne Universités, INSERM 1146, CNRS 7371, Laboratoire d'Imagerie Biomédicale, Paris, France
| | - Adam Janas
- 10th Department of Interventional Cardiology, Electrophysiology and Electrostimulation, American Heart of Poland, Tychy, Poland
| | - Marek Orban
- Department of Acute Cardiology, NÚSCH, a.s., Pod Krásnou hôrkou 1, Bratislava, Slovakia
| | | | | | | |
Collapse
|
5
|
Mao X, Tretter V, Zhu Y, Kraft F, Vigl B, Poglitsch M, Ullrich R, Abraham D, Krenn K. Combined angiotensin-converting enzyme and aminopeptidase inhibition for treatment of experimental ventilator-induced lung injury in mice. Front Physiol 2023; 14:1109452. [PMID: 37064885 PMCID: PMC10097933 DOI: 10.3389/fphys.2023.1109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/16/2023] [Indexed: 04/18/2023] Open
Abstract
Introduction: Ventilator-induced lung injury (VILI) may aggravate critical illness. Although angiotensin-converting enzyme (ACE) inhibition has beneficial effects in ventilator-induced lung injury, its clinical application is impeded by concomitant hypotension. We hypothesized that the aminopeptidase inhibitor ALT-00 may oppose the hypotension induced by an angiotensin-converting enzyme inhibitor, and that this combination would activate the alternative renin-angiotensin system (RAS) axis to counteract ventilator-induced lung injury. Methods: In separate experiments, C57BL/6 mice were mechanically ventilated with low (LVT, 6 mL/kg) and high tidal volumes (HVT, 30 mL/kg) for 4 h or remained unventilated (sham). High tidal volume-ventilated mice were treated with lisinopril (0.15 μg/kg/min) ± ALT-00 at 2.7, 10 or 100 μg/kg/min. Blood pressure was recorded at baseline and after 4 h. Lung histology was evaluated for ventilator-induced lung injury and the angiotensin (Ang) metabolite profile in plasma (equilibrium levels of Ang I, Ang II, Ang III, Ang IV, Ang 1-7, and Ang 1-5) was measured with liquid chromatography tandem mass spectrometry at the end of the experiment. Angiotensin concentration-based markers for renin, angiotensin-converting enzyme and alternative renin-angiotensin system activities were calculated. Results: High tidal volume-ventilated mice treated with lisinopril showed a significant drop in the mean arterial pressure at 4 h compared to baseline, which was prevented by adding ALT-00 at 10 and 100 μg/kg/min. Ang I, Ang II and Ang 1-7 plasma equilibrium levels were elevated in the high tidal volumes group versus the sham group. Lisinopril reduced Ang II and slightly increased Ang I and Ang 1-7 levels versus the untreated high tidal volumes group. Adding ALT-00 at 10 and 100 μg/kg/min increased Ang I and Ang 1-7 levels versus the high tidal volume group, and partly prevented the downregulation of Ang II levels caused by lisinopril. The histological lung injury score was higher in the high tidal volume group versus the sham and low tidal volume groups, and was attenuated by lisinopril ± ALT-00 at all dose levels. Conclusion: Combined angiotensin-converting enzyme plus aminopeptidase inhibition prevented systemic hypotension and maintained the protective effect of lisinopril. In this study, a combination of lisinopril and ALT-00 at 10 μg/kg/min appeared to be the optimal approach, which may represent a promising strategy to counteract ventilator-induced lung injury that merits further exploration.
Collapse
Affiliation(s)
- Xinjun Mao
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
- Department of Anesthesiology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Verena Tretter
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Yi Zhu
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Felix Kraft
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | - Roman Ullrich
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
- Department of Anesthesiology and Intensive Care Medicine, AUVA Trauma Center Vienna, Vienna, Austria
- *Correspondence: Roman Ullrich,
| | - Dietmar Abraham
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Katharina Krenn
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
O'Connor AT, Haspula D, Alanazi AZ, Clark MA. Roles of Angiotensin III in the brain and periphery. Peptides 2022; 153:170802. [PMID: 35489649 DOI: 10.1016/j.peptides.2022.170802] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Angiotensin (Ang) III, a biologically active peptide of the renin angiotensin system (RAS) is predominantly known for its central effects on blood pressure. Our understanding of the RAS has evolved from the simplified, classical RAS, a hormonal system regulating blood pressure to a complex system affecting numerous biological processes. Ang II, the main RAS peptide has been widely studied, and its deleterious effects when overexpressed is well-documented. However, other components of the RAS such as Ang III are not well studied. This review examines the molecular and biological actions of Ang III and provides insight into Ang III's potential role in metabolic diseases.
Collapse
Affiliation(s)
- Ann Tenneil O'Connor
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD NIH-20892, USA
| | - Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
7
|
Rossi A, Mikail N, Bengs S, Haider A, Treyer V, Buechel RR, Wegener S, Rauen K, Tawakol A, Bairey Merz CN, Regitz-Zagrosek V, Gebhard C. Heart-brain interactions in cardiac and brain diseases: why sex matters. Eur Heart J 2022; 43:3971-3980. [PMID: 35194633 PMCID: PMC9794190 DOI: 10.1093/eurheartj/ehac061] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease and brain disorders, such as depression and cognitive dysfunction, are highly prevalent conditions and are among the leading causes limiting patient's quality of life. A growing body of evidence has shown an intimate crosstalk between the heart and the brain, resulting from a complex network of several physiological and neurohumoral circuits. From a pathophysiological perspective, both organs share common risk factors, such as hypertension, diabetes, smoking or dyslipidaemia, and are similarly affected by systemic inflammation, atherosclerosis, and dysfunction of the neuroendocrine system. In addition, there is an increasing awareness that physiological interactions between the two organs play important roles in potentiating disease and that sex- and gender-related differences modify those interactions between the heart and the brain over the entire lifespan. The present review summarizes contemporary evidence of the effect of sex on heart-brain interactions and how these influence pathogenesis, clinical manifestation, and treatment responses of specific heart and brain diseases.
Collapse
Affiliation(s)
- Alexia Rossi
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland,Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Nidaa Mikail
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland,Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland,Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Ahmed Haider
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland,Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland,Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Ronny Ralf Buechel
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Susanne Wegener
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Katrin Rauen
- Department of Geriatric Psychiatry, Psychiatric Hospital, Zurich, Switzerland,Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Ahmed Tawakol
- Cardiovascular Imaging Research Center, Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - C Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Vera Regitz-Zagrosek
- Charité, Universitätsmedizin Berlin, Berlin, Germany,University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
8
|
Current Knowledge about the New Drug Firibastat in Arterial Hypertension. Int J Mol Sci 2022; 23:ijms23031459. [PMID: 35163378 PMCID: PMC8836050 DOI: 10.3390/ijms23031459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Hypertension significantly increases the risk of cardiovascular disease. Currently, effective standard pharmacological treatment is available in the form of diuretics, ACE inhibitors, angiotensin II receptor blockers and calcium channel blockers. These all help to decrease blood pressure in hypertensive patients, each with their own mechanism. Recently, firibastat, a new first-in-class antihypertensive drug has been developed. Firibastat is a prodrug that when crossing the blood-brain barrier, is cleaved into two active EC33 molecules. EC33 is the active molecule that inhibits the enzyme aminopeptidase A. Aminopeptidase A converts angiotensin II to angiotensin III. Angiotensin III usually has three central mechanisms that increase blood pressure, so by inhibiting this enzyme activity, a decrease in blood pressure is seen. Firibastat is an antihypertensive drug that affects the brain renin angiotensin system by inhibiting aminopeptidase A. Clinical trials with firibastat have been performed in animals and humans. No severe adverse effects related to firibastat treatment have been reported. Results from studies show that firibastat is generally well tolerated and safe to use in hypertensive patients. The aim of this review is to investigate the current knowledge about firibastat in the treatment of hypertension.
Collapse
|
9
|
Boitard SE, Keck M, Deloux R, Girault-Sotias PE, Marc Y, De Mota N, Compere D, Agbulut O, Balavoine F, Llorens-Cortes C. QGC606, a best-in-class orally active centrally acting aminopeptidase A inhibitor prodrug, for treating heart failure following myocardial infarction. Can J Cardiol 2022; 38:815-827. [DOI: 10.1016/j.cjca.2022.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/02/2022] Open
|
10
|
Firibastat: a Novel Treatment for Hypertension. Curr Hypertens Rep 2021; 23:46. [PMID: 34950965 DOI: 10.1007/s11906-021-01163-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the unique mechanism of firibastat, a new antihypertension medication. Hypertension continues to be a highly prevalent public health issue. RECENT FINDINGS Firibastat is a novel agent developed to treat hypertension. As the first member in the class of centrally acting agents to target the brain renin angiotensin system, firibastat offers new pathways to consider and enhances the regimen of agents currently available to treat hypertension. Recent clinical trials have demonstrated effectiveness and safety in mild hypertension as well as resistant hypertension. This review introduces firibastat as a new therapeutic class of treatment for hypertension focused on the renin angiotensin system in the brain. Early studies have shown a significant reduction in blood pressure with minimal side effects particularly in patients who are difficult to treat.
Collapse
|
11
|
Mascolo A, di Mauro G, Cappetta D, De Angelis A, Torella D, Urbanek K, Berrino L, Nicoletti GF, Capuano A, Rossi F. Current and future therapeutic perspective in chronic heart failure. Pharmacol Res 2021; 175:106035. [PMID: 34915125 DOI: 10.1016/j.phrs.2021.106035] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Abstract
The incidence of heart failure is primarily flat or declining for a presumably reflecting better management of cardiovascular diseases, but that of heart failure with preserved ejection fraction (HFpEF) is probably increasing for the lack of an established effective treatment. Moreover, there is no specific pharmacological treatment for patients with heart failure with mildly reduced ejection fraction (HFmrEF) since no substantial prospective randomized clinical trial has been performed exclusively in such population. According to the recent 2021 European Society of Cardiology (ESC) guidelines, the triad composed of an Angiotensin Converting Enzyme inhibitor or Angiotensin Receptor-Neprilysin Inhibitor (ARNI), a beta-blocker, and a Mineralcorticoid Receptor Antagonist is the cornerstone therapy for all patients with heart failure with reduced ejection fraction (HFrEF) but a substantial gap exists for patients with HFpEF/HFmrEF. Despite the important role of the Renin-Angiotensin-Aldosterone System (RAAS) in heart failure pathophysiology, RAAS blockers were found ineffective for HFpEF patients. Indeed, even the new drug class of ARNI was found effective only in HFrEF patients. In this regard, a therapeutic alternative may be represented by drug stimulating the non-classic RAAS (ACE2 and A1-7) as well as other emerging drug classes (such as SGLT2 inhibitors). Reflecting on this global health burden and the gap in treatments among heart failure phenotypes, we summarize the leading players of heart failure pathophysiology, the available pharmacological treatments for each heart failure phenotype, and that in future development.
Collapse
Affiliation(s)
- Annamaria Mascolo
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Via Costantinopoli 16, 80138 Naples, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy.
| | - Gabriella di Mauro
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Via Costantinopoli 16, 80138 Naples, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Daniele Torella
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Konrad Urbanek
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Liberato Berrino
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Giovanni Francesco Nicoletti
- Plastic Surgery Unit, University of Campania "Luigi Vanvitelli, Multidisciplinary Department of Medical Surgical and Dental Sciences, Napoli, Italy
| | - Annalisa Capuano
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Via Costantinopoli 16, 80138 Naples, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Francesco Rossi
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Via Costantinopoli 16, 80138 Naples, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
12
|
High-Fat Diets Modify the Proteolytic Activities of Dipeptidyl-Peptidase IV and the Regulatory Enzymes of the Renin-Angiotensin System in Cardiovascular Tissues of Adult Wistar Rats. Biomedicines 2021; 9:biomedicines9091149. [PMID: 34572336 PMCID: PMC8470673 DOI: 10.3390/biomedicines9091149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/17/2021] [Accepted: 09/01/2021] [Indexed: 01/02/2023] Open
Abstract
(1) Background: The replacement of diets high in saturated fat (SAFA) with monounsaturated fatty acids (MUFA) is associated with better cardiovascular function and is related to the modulation of the activity of the local renin–angiotensin system (RAS) and the collagenase activity of dipeptidyl peptidase IV (DPP-IV). The objective of the work was to verify the capacity of different types of dietary fat on the regulatory activities of RAS and DPP-IV. (2) Methods: Male Wistar rats were fed for 24 weeks with three different diets: the standard diet (S), the standard diet supplemented with virgin olive oil (20%) (VOO), or with butter (20%) plus cholesterol (0.1%) (Bch). The proteolytic activities were determined by fluorometric methods in the soluble (sol) and membrane-bound (mb) fractions of the left ventricle and atrium, aorta, and plasma samples. (3) Results: With the VOO diet, angiotensinase values were significantly lower than with the Bch diet in the aorta (GluAP and ArgAP (mb)), ventricle (ArgAP (mb)) and atrium (CysAP (sol)). Significant decreases in DPP-IV (mb) activity occurred with the Bch diet in the atrium and aorta. The VOO diet significantly reduced the activity of the cardiac damage marker LeuAP (mb) in the ventricle and aorta, except for LeuAP (sol) in the ventricle, which was reduced with the Bch diet. (4) Conclusions: The introduction into the diet of a source rich in MUFA would have a beneficial cardiovascular effect on RAS homeostasis and cardiovascular functional stability.
Collapse
|
13
|
Pavo N, Prausmüller S, Spinka G, Goliasch G, Bartko PE, Wurm R, Arfsten H, Strunk G, Poglitsch M, Domenig O, Mascherbauer J, Uyanik-Ünal K, Hengstenberg C, Zuckermann A, Hülsmann M. Myocardial Angiotensin Metabolism in End-Stage Heart Failure. J Am Coll Cardiol 2021; 77:1731-1743. [PMID: 33832600 DOI: 10.1016/j.jacc.2021.01.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND The myocardium exhibits an adaptive tissue-specific renin-angiotensin system (RAS), and local dysbalance may circumvent the desired effects of pharmacologic RAS inhibition, a mainstay of heart failure with reduced ejection fraction (HFrEF) therapy. OBJECTIVES This study sought to investigate human myocardial tissue RAS regulation of the failing heart in the light of current therapy. METHODS Fifty-two end-stage HFrEF patients undergoing heart transplantation (no RAS inhibitor: n = 9; angiotensin-converting enzyme [ACE] inhibitor: n = 28; angiotensin receptor blocker [ARB]: n = 8; angiotensin receptor neprilysin-inhibitor [ARNi]: n = 7) were enrolled. Myocardial angiotensin metabolites and enzymatic activities involved in the metabolism of the key angiotensin peptides angiotensin 1-8 (AngII) and Ang1-7 were determined in left ventricular samples by mass spectrometry. Circulating angiotensin concentrations were assessed for a subgroup of patients. RESULTS AngII and Ang2-8 (AngIII) were the dominant peptides in the failing heart, while other metabolites, especially Ang1-7, were below the detection limit. Patients receiving an ARB component (i.e., ARB or ARNi) had significantly higher levels of cardiac AngII and AngIII (AngII: 242 [interquartile range (IQR): 145.7 to 409.9] fmol/g vs 63.0 [IQR: 19.9 to 124.1] fmol/g; p < 0.001; and AngIII: 87.4 [IQR: 46.5 to 165.3] fmol/g vs 23.0 [IQR: <5.0 to 59.3] fmol/g; p = 0.002). Myocardial AngII concentrations were strongly related to circulating AngII levels. Myocardial RAS enzyme regulation was independent from the class of RAS inhibitor used, particularly, a comparable myocardial neprilysin activity was observed for patients with or without ARNi. Tissue chymase, but not ACE, is the main enzyme for cardiac AngII generation, whereas AngII is metabolized to Ang1-7 by prolyl carboxypeptidase but not to ACE2. There was no trace of cardiac ACE2 activity. CONCLUSIONS The failing heart contains considerable levels of classical RAS metabolites, whereas AngIII might be an unrecognized mediator of detrimental effects on cardiovascular structure. The results underline the importance of pharmacologic interventions reducing circulating AngII actions, yet offer room for cardiac tissue-specific RAS drugs aiming to limit myocardial AngII/AngIII peptide accumulation and actions.
Collapse
Affiliation(s)
- Noemi Pavo
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.
| | - Suriya Prausmüller
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Georg Spinka
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Georg Goliasch
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Philipp E Bartko
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Raphael Wurm
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Henrike Arfsten
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Guido Strunk
- Complexity Research, Vienna, Austria; Department of Statistics, Complexity Research, FH Campus Vienna, Vienna, Austria; Department of Entrepreneurship and Economic Education, Faculty of Business and Economics, Technical University Dortmund, Dortmund, Germany
| | | | | | - Julia Mascherbauer
- Karl Landsteiner University of Health Sciences, Department of Internal Medicine 3, University Hospital St. Pölten, Krems, Austria
| | - Keziban Uyanik-Ünal
- Clinical Division of Cardiac Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Christian Hengstenberg
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Andreas Zuckermann
- Clinical Division of Cardiac Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Martin Hülsmann
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Alomar SA, Alghabban SA, Alharbi HA, Almoqati MF, Alduraibi Y, Abu-Zaid A. Firibastat, the first-in-class brain aminopeptidase a inhibitor, in the management of hypertension: A review of clinical trials. Avicenna J Med 2021; 11:1-7. [PMID: 33520782 PMCID: PMC7839263 DOI: 10.4103/ajm.ajm_117_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
An unfortunate subset of hypertensive patients develops resistant hypertension in which optimal doses of three or more first-line antihypertensive drugs fail to sufficiently control blood pressure. Patients with resistant hypertension represent a high-risk and difficult-to-treat group, and such patients are at amplified jeopardies for substantial hypertension-related multi-organ failure, morbidity, and mortality. Thus, there is a pressing requirement to better improve blood pressure control through the pharmaceutical generation of novel classes of antihypertensive drugs that act on newer and alternative therapeutic targets. The hyperactivity of the brain renin-angiotensin system (RAS) has been shown to play a role in the pathogenesis of hypertension in various experimental and genetic hypertensive animal models. In the brain, angiotensin-II is metabolized to angiotensin-III by aminopeptidase A (APA), a membrane-bound zinc metalloprotease enzyme. A large body of evidence has previously established that angiotensin-III is one of the main effector peptides of the brain RAS. Angiotensin-III exerts central stimulatory regulation over blood pressure through several proposed mechanisms. Accumulating evidence from preclinical studies demonstrated that the centrally acting APA inhibitor prodrugs (firibastat and NI956) are very safe and effective at reducing blood pressure in various hypertensive animal models. The primary purpose of this study is to narratively review the published phase I-II literature on the safety and efficacy of APA inhibitors in the management of patients with hypertension. Moreover, a summary of ongoing clinical trials and future perspectives are presented.
Collapse
Affiliation(s)
| | | | | | | | - Yazid Alduraibi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ahmed Abu-Zaid
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
15
|
Flahault A, Girault-Sotias PE, Keck M, Alvear-Perez R, De Mota N, Estéoulle L, Ramanoudjame SM, Iturrioz X, Bonnet D, Llorens-Cortes C. A metabolically stable apelin-17 analog decreases AVP-induced antidiuresis and improves hyponatremia. Nat Commun 2021; 12:305. [PMID: 33436646 PMCID: PMC7804859 DOI: 10.1038/s41467-020-20560-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/09/2020] [Indexed: 01/29/2023] Open
Abstract
Apelin and arginine-vasopressin (AVP) are conversely regulated by osmotic stimuli. We therefore hypothesized that activating the apelin receptor (apelin-R) with LIT01-196, a metabolically stable apelin-17 analog, may be beneficial for treating the Syndrome of Inappropriate Antidiuresis, in which AVP hypersecretion leads to hyponatremia. We show that LIT01-196, which behaves as a potent full agonist for the apelin-R, has an in vivo half-life of 156 minutes in the bloodstream after subcutaneous administration in control rats. In collecting ducts, LIT01-196 decreases dDAVP-induced cAMP production and apical cell surface expression of phosphorylated aquaporin 2 via AVP type 2 receptors, leading to an increase in aqueous diuresis. In a rat experimental model of AVP-induced hyponatremia, LIT01-196 subcutaneously administered blocks the antidiuretic effect of AVP and the AVP-induced increase in urinary osmolality and induces a progressive improvement of hyponatremia. Our data suggest that apelin-R activation constitutes an original approach for hyponatremia treatment.
Collapse
Grants
- Fondation pour la Recherche Médicale (Foundation for Medical Research in France)
- Fondation Pour la Recherche en Chimie (Frontier Research in Chemistry Foundation)
- This work was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM) including financial support for Proof of Concept, CoPoc Apelinatremia 2015-2017 by INSERM Transfert, the Centre National de la Recherche Scientifique, the Université de Strasbourg, the LabEx MEDALIS, the Collège de France, the Agence Nationale de la Recherche "Vie, santé et bien-être 2016" (ANR-16-CE18-0030, FluoroPEP), the Fédération Française de Cardiologie and the FRC (Frontier Research in Chemistry). AF was supported by a fellowship from INSERM (Poste d’Accueil pour Hospitaliers). PEGS was supported by a fellowship from the Fondation pour la Recherche Médicale, grant number “PBR201810007643”. LE and SMR were supported by a fellowship from the Ministère de l’Education Nationale, de l’Enseignement Supérieur et de la Recherche and the Agence Nationale pour la Recherche, respectively.
Collapse
Affiliation(s)
- Adrien Flahault
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM, Unit U1050, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 7241, Collège de France, Paris, France
| | - Pierre-Emmanuel Girault-Sotias
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM, Unit U1050, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 7241, Collège de France, Paris, France
| | - Mathilde Keck
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM, Unit U1050, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 7241, Collège de France, Paris, France
| | - Rodrigo Alvear-Perez
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM, Unit U1050, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 7241, Collège de France, Paris, France
| | - Nadia De Mota
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM, Unit U1050, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 7241, Collège de France, Paris, France
| | - Lucie Estéoulle
- Laboratory of Therapeutic Innovation, Unité Mixte de Recherche 7200, Centre National de la Recherche Scientifique, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Sridévi M Ramanoudjame
- Laboratory of Therapeutic Innovation, Unité Mixte de Recherche 7200, Centre National de la Recherche Scientifique, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Xavier Iturrioz
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM, Unit U1050, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 7241, Collège de France, Paris, France
| | - Dominique Bonnet
- Laboratory of Therapeutic Innovation, Unité Mixte de Recherche 7200, Centre National de la Recherche Scientifique, Faculty of Pharmacy, University of Strasbourg, Illkirch, France.
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM, Unit U1050, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 7241, Collège de France, Paris, France.
| |
Collapse
|
16
|
Novel therapeutics for the treatment of hypertension and its associated complications: peptide- and nonpeptide-based strategies. Hypertens Res 2021; 44:740-755. [PMID: 33731923 PMCID: PMC7967108 DOI: 10.1038/s41440-021-00643-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is responsible for maintaining blood pressure and vascular tone. Modulation of the RAAS, therefore, interferes with essential cellular processes and leads to high blood pressure, oxidative stress, inflammation, fibrosis, and hypertrophy. Consequently, these conditions cause fatal cardiovascular and renal complications. Thus, the primary purpose of hypertension treatment is to diminish or inhibit overactivated RAAS. Currently available RAAS inhibitors have proven effective in reducing blood pressure; however, beyond hypertension, they have failed to treat end-target organ injury. In addition, RAAS inhibitors have some intolerable adverse effects, such as hyperkalemia and hypotension. These gaps in the available treatment for hypertension require further investigation of the development of safe and effective therapies. Current research is focused on the combination of existing and novel treatments that neutralize the angiotensin II type I (AT1) receptor-mediated action of the angiotensin II peptide. Preclinical studies of peptide- and nonpeptide-based therapeutic agents demonstrate their conspicuous impact on the treatment of cardiovascular diseases in animal models. In this review, we will discuss novel therapeutic agents being developed as RAAS inhibitors that show prominent effects in both preclinical and clinical studies. In addition, we will also highlight the need for improvement in the efficacy of existing drugs in the absence of new prominent antihypertensive drugs.
Collapse
|
17
|
Abstract
Systemic hypertension is the leading cause of death and disability worldwide. The management of hypertension is challenging in the high-risk patient population with high salt-sensitivity and low serum renin levels. The renin-angiotensin system (RAS) plays a central role in blood pressure (BP) regulation. While we have effective medications to act on peripheral RAS, our understanding of brain RAS and its effect on BP regulation is still in an evolving stage. Brain RAS hyperactivity is associated with the development and maintenance of hypertension. In comparison to peripheral RAS, where angiotensin II is the most crucial component responsible for BP regulation, angiotensin III is likely the main active peptide in the brain RAS. Angiotensin II is metabolized by aminopeptidase A into angiotensin III in the brain. EC33 is a potent inhibitor of brain aminopeptidase A tested in animal models. The use of EC33 in conscious spontaneously hypertensive rats, hypertensive deoxycorticosterone acetate-salt rats, and conscious normotensive rat models leads to a reduction in BP. In order to facilitate the passage of EC33 through the blood-brain barrier, the 2 molecules of EC33 were linked by a disulfide bridge to form a prodrug called RB150. RB150, later renamed as QGC001 or firibastat, was found to be effective in animal models and well-tolerated when used in healthy participants. Firibastat was found to be safe and effective in phase 2 trials, and is now planned to undergo a phase 3 trial. Firibastat has the potential to be groundbreaking in the management of resistant hypertension.
Collapse
|
18
|
Chrysant SG, Chrysant GS. New and emerging cardiovascular and antihypertensive drugs. Expert Opin Drug Saf 2020; 19:1315-1327. [DOI: 10.1080/14740338.2020.1810232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Steven G. Chrysant
- Department of Cardiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - George S. Chrysant
- Department of Cardiology, INTEGRIS Baptist Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
19
|
Bengel FM, Hermanns N, Thackeray JT. Radionuclide Imaging of the Molecular Mechanisms Linking Heart and Brain in Ischemic Syndromes. Circ Cardiovasc Imaging 2020; 13:e011303. [DOI: 10.1161/circimaging.120.011303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
For the heart and the brain, clinical observations suggest that an acute ischemic event experienced by one organ is associated with an increased risk for future acute events and chronic dysfunction of the reciprocal organ. Beyond atherosclerosis as a common systemic disease, various molecular mechanisms are thought to be involved in this interaction. Molecular-targeted nuclear imaging may identify the contribution of factors, such as the neurohumoral, circulatory, or especially the immune system, by combining specific radiotracers with whole-body acquisition and global as well as regional multiorgan analysis. This may be integrated with complementary functional imaging markers and systemic biomarkers for comprehensive network interrogation. Such systems-based strategies go beyond the traditional organ-centered approach and provide novel mechanistic insights, information about temporal dynamics, and a foundation for future interventions aiming at optimal preservation of function of both organs.
Collapse
Affiliation(s)
- Frank M. Bengel
- Department of Nuclear Medicine, Hannover Medical School, Germany
| | - Nele Hermanns
- Department of Nuclear Medicine, Hannover Medical School, Germany
| | | |
Collapse
|
20
|
Maccari S, Pace V, Barbagallo F, Stati T, Ambrosio C, Grò MC, Molinari P, Vezzi V, Catalano L, Matarrese P, Patrizio M, Rizzi R, Marano G. Intermittent β-adrenergic blockade downregulates the gene expression of β-myosin heavy chain in the mouse heart. Eur J Pharmacol 2020; 882:173287. [PMID: 32585157 DOI: 10.1016/j.ejphar.2020.173287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/14/2023]
Abstract
Expression of the β-myosin heavy chain (β-MHC), a major component of the cardiac contractile apparatus, is tightly regulated as even modest increases can be detrimental to heart under stress. In healthy hearts, continuous inhibition of β-adrenergic tone upregulates β-MHC expression. However, it is unknown whether the duration of the β-adrenergic inhibition and β-MHC expression are related. Here, we evaluated the effects of intermittent β-blockade on cardiac β-MHC expression. To this end, the β-blocker propranolol, at the dose of 15mg/kg, was administered once a day in mice for 14 days. This dosing schedule caused daily drug-free periods of at least 6 h as evidenced by propranolol plasma concentrations and cardiac β-adrenergic responsiveness. Under these conditions, β-MHC expression decreased by about 75% compared to controls. This effect was abolished in mice lacking β1- but not β2-adrenergic receptors (β-AR) indicating that β-MHC expression is regulated in a β1-AR-dependent manner. In β1-AR knockout mice, the baseline β-MHC expression was fourfold higher than in wild-type mice. Also, we evaluated the impact of intermittent β-blockade on β-MHC expression in mice with systolic dysfunction, in which an increased β-MHC expression occurs. At 3 weeks after myocardial infarction, mice showed systolic dysfunction and upregulation of β-MHC expression. Intermittent β-blockade decreased β-MHC expression while attenuating cardiac dysfunction. In vitro studies showed that propranolol does not affect β-MHC expression on its own but antagonizes catecholamine effects on β-MHC expression. In conclusion, a direct relationship occurs between the duration of the β-adrenergic inhibition and β-MHC expression through the β1-AR.
Collapse
Affiliation(s)
- Sonia Maccari
- Center for Gender-Specific Medicine, National Institute of Health, Rome, Italy
| | - Valentina Pace
- Institute of Biochemistry and Cellular Biology, National Council of Research, Monterotondo (RM), Italy
| | | | - Tonino Stati
- Center for Gender-Specific Medicine, National Institute of Health, Rome, Italy
| | - Caterina Ambrosio
- National Center for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| | - Maria Cristina Grò
- National Center for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| | - Paola Molinari
- National Center for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| | - Vanessa Vezzi
- National Center for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| | | | - Paola Matarrese
- Center for Gender-Specific Medicine, National Institute of Health, Rome, Italy
| | - Mario Patrizio
- Center for Gender-Specific Medicine, National Institute of Health, Rome, Italy
| | - Roberto Rizzi
- Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Institute for Biomedical Technologies, National Council of Research, Milan, Italy
| | - Giuseppe Marano
- Center for Gender-Specific Medicine, National Institute of Health, Rome, Italy.
| |
Collapse
|
21
|
Marc Y, Boitard SE, Balavoine F, Azizi M, Llorens-Cortes C. Targeting Brain Aminopeptidase A: A New Strategy for the Treatment of Hypertension and Heart Failure. Can J Cardiol 2020; 36:721-731. [PMID: 32389345 DOI: 10.1016/j.cjca.2020.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
The pathophysiology of heart failure (HF) and hypertension are thought to involve brain renin-angiotensin system (RAS) hyperactivity. Angiotensin III, a key effector peptide in the brain RAS, provides tonic stimulatory control over blood pressure (BP) in hypertensive rats. Aminopeptidase A (APA), the enzyme responsible for generating brain angiotensin III, constitutes a potential therapeutic target for hypertension treatment. We focus here on studies of RB150/firibastat, the first prodrug of the specific and selective APA inhibitor EC33 able to cross the blood-brain barrier. We consider its development from therapeutic target discovery to clinical trials of the prodrug. After oral administration, firibastat crosses the gastrointestinal and blood-brain barriers. On arrival in the brain, it is cleaved to generate EC33, which inhibits brain APA activity, lowering BP in various experimental models of hypertension. Firibastat was clinically and biologically well tolerated, even at high doses, in phase I trials conducted in healthy human subjects. It was then shown to decrease BP effectively in patients of various ethnic origins with hypertension in phase II trials. Brain RAS hyperactivity leads to excessive sympathetic activity, which can contribute to HF after myocardial infarction (MI). Chronic treatment with oral firibastat (4 or 8 weeks after MI) has been shown to normalize brain APA activity in mice. This effect is accompanied by a normalization of brain RAS and sympathetic activities, reducing cardiac fibrosis and hypertrophy and preventing cardiac dysfunction. Firibastat may therefore represent a novel therapeutic advance in the clinical management of patients with hypertension and potentially with HF after MI.
Collapse
Affiliation(s)
- Yannick Marc
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; Quantum Genomics, Paris, France
| | - Solène Emmanuelle Boitard
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; Quantum Genomics, Paris, France
| | | | - Michel Azizi
- Centres d'Investigation Clinique 1418, Institut National de la Santé et de la Recherche Médicale, Paris, France; Hypertension Unit and Départements Médico-Universitaires Cardiovasculaire, Rénal, transplantation et neurovasculaire (DMU CARTE), l'Assistance Publique-Hôpitaux de Paris, Hôpital European Georges-Pompidou, Paris, France
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Paris, France.
| |
Collapse
|
22
|
A pilot double-blind randomized placebo-controlled crossover pharmacodynamic study of the centrally active aminopeptidase A inhibitor, firibastat, in hypertension. J Hypertens 2019; 37:1722-1728. [DOI: 10.1097/hjh.0000000000002092] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Abstract
PURPOSE OF REVIEW To review the data supporting the use of aminopeptidase A (APA) inhibitor prodrugs as centrally acting antihypertensive agents. RECENT FINDINGS Brain renin-angiotensin system (RAS) hyperactivity has been implicated in the development and maintenance of hypertension. Angiotensin III, generated by APA, one of the main effector peptides of the brain RAS, exerts a tonic stimulatory control over blood pressure in hypertensive rats. This identified brain APA as a potential therapeutic target for the treatment of hypertension, leading to the development of RB150/firibastat, an orally active prodrug of the specific and selective APA inhibitor, EC33. When given orally, RB150/firibastat crosses the gastrointestinal and blood-brain barriers, enters the brain, and generates two active molecules of EC33 which inhibit brain APA activity, blocking brain angiotensin III formation, and decrease blood pressure for several hours in hypertensive rats. Orally active APA inhibitor prodrugs, by blocking brain RAS activity, represent promising novel strategy for treating hypertension.
Collapse
|
24
|
Abstract
Purpose of Review Although an independent brain renin-angiotensin system is often assumed to exist, evidence for this concept is weak. Most importantly, renin is lacking in the brain, and both brain angiotensinogen and angiotensin (Ang) II levels are exceptionally low. In fact, brain Ang II levels may well represent uptake of circulating Ang II via Ang II type 1 (AT1) receptors. Recent Findings Nevertheless, novel drugs are now aimed at the brain RAS, i.e., aminopeptidase A inhibitors should block Ang III formation from Ang II, and hence diminish AT1 receptor stimulation by Ang III, while AT2 and Mas receptor agonists are reported to induce neuroprotection after stroke. The endogenous agonists of these receptors and their origin remain unknown. Summary This review addresses the questions whether independent angiotensin generation truly occurs in the brain, what its relationship with the kidney is, and how centrally acting RAS blockers/agonists might work.
Collapse
Affiliation(s)
- Liwei Ren
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Xifeng Lu
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|