1
|
Hall LG, Czeczor JK, Connor T, Botella J, De Jong KA, Renton MC, Genders AJ, Venardos K, Martin SD, Bond ST, Aston-Mourney K, Howlett KF, Campbell JA, Collier GR, Walder KR, McKenzie M, Ziemann M, McGee SL. Amyloid beta 42 alters cardiac metabolism and impairs cardiac function in male mice with obesity. Nat Commun 2024; 15:258. [PMID: 38225272 PMCID: PMC10789867 DOI: 10.1038/s41467-023-44520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
There are epidemiological associations between obesity and type 2 diabetes, cardiovascular disease and Alzheimer's disease. The role of amyloid beta 42 (Aβ42) in these diverse chronic diseases is obscure. Here we show that adipose tissue releases Aβ42, which is increased from adipose tissue of male mice with obesity and is associated with higher plasma Aβ42. Increasing circulating Aβ42 levels in male mice without obesity has no effect on systemic glucose homeostasis but has obesity-like effects on the heart, including reduced cardiac glucose clearance and impaired cardiac function. The closely related Aβ40 isoform does not have these same effects on the heart. Administration of an Aβ-neutralising antibody prevents obesity-induced cardiac dysfunction and hypertrophy. Furthermore, Aβ-neutralising antibody administration in established obesity prevents further deterioration of cardiac function. Multi-contrast transcriptomic analyses reveal that Aβ42 impacts pathways of mitochondrial metabolism and exposure of cardiomyocytes to Aβ42 inhibits mitochondrial complex I. These data reveal a role for systemic Aβ42 in the development of cardiac disease in obesity and suggest that therapeutics designed for Alzheimer's disease could be effective in combating obesity-induced heart failure.
Collapse
Affiliation(s)
- Liam G Hall
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Department of Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Juliane K Czeczor
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Becton Dickinson GmbH, Medical Affairs, 69126, Heidelberg, Germany
| | - Timothy Connor
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Javier Botella
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Kirstie A De Jong
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Mark C Renton
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Amanda J Genders
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences and Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Kylie Venardos
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Sheree D Martin
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Simon T Bond
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Kathryn Aston-Mourney
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | | | | | - Ken R Walder
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Matthew McKenzie
- School of Life and Environmental Science, Deakin University, Geelong, Australia
| | - Mark Ziemann
- School of Life and Environmental Science, Deakin University, Geelong, Australia
| | - Sean L McGee
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia.
- Ambetex Pty Ltd, Geelong, Australia.
| |
Collapse
|
2
|
Li A, Gao M, Liu B, Qin Y, Chen L, Liu H, Gong G. Inhibition of mitochondrial superoxide promotes the development of hiPS-CMs during differentiation. Free Radic Biol Med 2022; 190:94-104. [PMID: 35952922 DOI: 10.1016/j.freeradbiomed.2022.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
Abstract
The redox state is a crucial determinant of the maturation transition of cardiomyocytes in vivo. Mitochondria, the primary site of superoxide generation, are very sensitive to various stimulations, including oxygen and nutrient supply. How mitochondrial superoxide affects the differentiation and development of induced pluripotent stem cell (iPSC)-derived cardiac myocytes (iPS-CMs) is not completely clear. To address the questions, we monitored the superoxide level during the differentiation and development of human iPS-CMs using MitoSOX. Mitochondria-targeted antioxidant Mito-TEMPO was used to treat hiPS-CMs in the differentiation period. We found that mitochondrial superoxide generation was dramatically enhanced during the differentiation and early development of iPS-CMs. Increased oxidative stress induced oxidative damage to macromolecules in iPS-CMs, such as lipids, proteins, and DNA. Mito-TEMPO protected mitochondrial functions, alleviated oxidative damage to lipids, proteins, and DNA and improved cellular structure and fatty acid utilization. Our findings confirmed that iPS-CM suffered from oxidative stress during differentiation and that mitochondrial-targeted antioxidant is beneficial for the maturation of iPS-CMs.
Collapse
Affiliation(s)
- Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bilin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yuan Qin
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Lei Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Hanyu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
3
|
Yücel D, Garay BI, Perlingeiro RCR, van Berlo JH. Stimulation of Cardiomyocyte Proliferation Is Dependent on Species and Level of Maturation. Front Cell Dev Biol 2022; 10:806564. [PMID: 35663393 PMCID: PMC9160302 DOI: 10.3389/fcell.2022.806564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
The heart is one of the least regenerative organs. This is in large part due to the inability of adult mammalian cardiomyocytes to proliferate and divide. In recent years, a number of small molecules and molecular targets have been identified to stimulate cardiomyocyte proliferation, including p38 inhibition, YAP-Tead activation, fibroblast growth factor 1 and Neuregulin 1. Despite these exciting initial findings, a therapeutic approach to enhance cardiomyocyte proliferation in vivo is still lacking. We hypothesized that a more comprehensive in vitro validation using live-cell imaging and assessment of the proliferative effects on various cardiomyocyte sources might identify the most potent proliferative stimuli. Here, we used previously published stimuli to determine their proliferative effect on cardiomyocytes from different species and isolated from different developmental timepoints. Although all stimuli enhanced DNA synthesis and Histone H3 phosphorylation in neonatal rat ventricular cardiomyocytes to similar degrees, these effects varied substantially in mouse cardiomyocytes and human iPSC-derived cardiomyocytes. Our results highlight p21 inhibition and Yap-Tead activation as potent proliferative strategies to induce cultured cardiomyocyte cell cycle activity across mouse, rat and human cardiomyocytes.
Collapse
Affiliation(s)
- Dogacan Yücel
- Department of Medicine, Lillehei Heart Institute, Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Bayardo I. Garay
- Department of Medicine, Lillehei Heart Institute, Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Scientist Training Program, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Rita C. R. Perlingeiro
- Department of Medicine, Lillehei Heart Institute, Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Jop H. van Berlo
- Department of Medicine, Lillehei Heart Institute, Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Jop H. van Berlo,
| |
Collapse
|
4
|
TECRL deficiency results in aberrant mitochondrial function in cardiomyocytes. Commun Biol 2022; 5:470. [PMID: 35577932 PMCID: PMC9110732 DOI: 10.1038/s42003-022-03414-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/26/2022] [Indexed: 11/20/2022] Open
Abstract
Sudden cardiac death (SCD) caused by ventricular arrhythmias is the leading cause of mortality of cardiovascular disease. Mutation in TECRL, an endoplasmic reticulum protein, was first reported in catecholaminergic polymorphic ventricular tachycardia during which a patient succumbed to SCD. Using loss- and gain-of-function approaches, we investigated the role of TECRL in murine and human cardiomyocytes. Tecrl (knockout, KO) mouse shows significantly aggravated cardiac dysfunction, evidenced by the decrease of ejection fraction and fractional shortening. Mechanistically, TECRL deficiency impairs mitochondrial respiration, which is characterized by reduced adenosine triphosphate production, increased fatty acid synthase (FAS) and reactive oxygen species production, along with decreased MFN2, p-AKT (Ser473), and NRF2 expressions. Overexpression of TECRL induces mitochondrial respiration, in PI3K/AKT dependent manner. TECRL regulates mitochondrial function mainly through PI3K/AKT signaling and the mitochondrial fusion protein MFN2. Apoptosis inducing factor (AIF) and cytochrome C (Cyc) is released from the mitochondria into the cytoplasm after siTECRL infection, as demonstrated by immunofluorescent staining and western blotting. Herein, we propose a previously unrecognized TECRL mechanism in regulating CPVT and may provide possible support for therapeutic target in CPVT. The endoplasmic reticulum protein TECRL promotes mitochondrial function in cardiomyocytes and its knockout in mice leads to cardiac dysfunction, decreased mitochondria function, and elevated levels of reactive oxygen species.
Collapse
|
5
|
Yang D, Zhao C, Zhang M, Zhang S, Zhai J, Gao X, Liu C, Lv X, Zheng S. Changes in oxidation-antioxidation function on the thymus of chickens infected with reticuloendotheliosis virus. BMC Vet Res 2020; 16:483. [PMID: 33308224 PMCID: PMC7731740 DOI: 10.1186/s12917-020-02708-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
Background Reticuloendotheliosis virus (REV) is a retrovirus that causes severe immunosuppression in poultry. Animals grow slowly under conditions of oxidative stress. In addition, long-term oxidative stress can impair immune function, as well as accelerate aging and death. This study aimed to elucidate the pathogenesis of REV from the perspective of changes in oxidative-antioxidative function following REV infection. Methods A total of 80 one-day-old specific pathogen free (SPF) chickens were randomly divided into a control group (Group C) and an REV-infected group (Group I). The chickens in Group I received intraperitoneal injections of REV with 104.62/0.1 mL TCID50. Thymus was collected on day 1, 3, 7, 14, 21, 28, 35, and 49 for histopathology and assessed the status of oxidative stress. Results In chickens infected with REV, the levels of H2O2 and MDA in the thymus increased, the levels of TAC, SOD, CAT, and GPx1 decreased, and there was a reduction in CAT and Gpx1 mRNA expression compared with the control group. The thymus index was also significantly reduced. Morphological analysis showed that REV infection caused an increase in the thymic reticular endothelial cells, inflammatory cell infiltration, mitochondrial swelling, and nuclear damage. Conclusions These results indicate that an increase in oxidative stress enhanced lipid peroxidation, markedly decreased antioxidant function, caused thymus atrophy, and immunosuppression in REV-infected chickens.
Collapse
Affiliation(s)
- Dahan Yang
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Chenhui Zhao
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Meixi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,WuXi AppTec (Suzhou)Co., Ltd, 215000, Suzhou, People's Republic of China
| | - Shujun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Jie Zhai
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - XueLi Gao
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Chaonan Liu
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Xiaoping Lv
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Shimin Zheng
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China. .,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China.
| |
Collapse
|
6
|
Li H, Liu C, Bao M, Liu W, Nie Y, Lian H, Hu S. Optimized Langendorff perfusion system for cardiomyocyte isolation in adult mouse heart. J Cell Mol Med 2020; 24:14619-14625. [PMID: 33147379 PMCID: PMC7754046 DOI: 10.1111/jcmm.15773] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/28/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
With the rapid development of single‐cell sequencing technology, the Langendorff perfusion system has emerged as a common approach to decompose cardiac tissue and obtain living cardiomyocytes to study cardiovascular disease with the mechanism of cardiomyocyte biology. However, the traditional Langendorff perfusion system is difficult to master, and further, the viability and purity of cardiomyocytes are frequently unable to meet sequencing requirements due to complicated devices and manipulate processes. Here, we provide an optimized Langendorff perfusion system with a simplified and standardized operating protocol which utilizes gravity as the perfusion pressure, includes a novel method for bubbles removing and standardizes the criteria for termination of digestion. We obtained stable cardiomyocyte with high viability and purity after multiple natural gravity sedimentation. The combination of the optimized Langendorff perfusion system and the multiple natural gravity sedimentation provides a stable system for isolating adult mouse heart, which will provide higher‐quality cardiomyocytes for further experiments.
Collapse
Affiliation(s)
- Haotong Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China
| | - Chungeng Liu
- Department of Cardiovascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Minghui Bao
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Weijing Liu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China
| | - Hong Lian
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China
| |
Collapse
|
7
|
Li A, Qin Y, Gao M, Jiang W, Liu B, Tian X, Gong G. Protocol for Imaging of Mitoflashes in Live Cardiomyocytes. STAR Protoc 2020; 1:100101. [PMID: 33111128 PMCID: PMC7580095 DOI: 10.1016/j.xpro.2020.100101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We describe a protocol for imaging a mitochondrial fluorescence transient increase event (Mitoflash) in live cardiomyocytes using a confocal microscope. Mitoflash, detected by mitochondria-targeted circularly permuted fluorescent protein (mt-cpYFP), can be used to assess mitochondrial respiration function in situ. The protocol is also suitable for live-cell imaging of other adherent cells, including fibroblasts and hepatocytes. For complete details on the use and execution of this protocol, please refer to Gong et al. (2014) and Gong et al. (2015).
Collapse
Affiliation(s)
- Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yuan Qin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wenting Jiang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Bilin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiangang Tian
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Department of Cardiovascular Surgery, Daping Hospital, Army Medical Center of PLA, Chongqing 400037, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
8
|
Tian X, Gao M, Li A, Liu B, Jiang W, Qin Y, Gong G. Protocol for Isolation of Viable Adult Rat Cardiomyocytes with High Yield. STAR Protoc 2020; 1:100045. [PMID: 33111091 PMCID: PMC7580079 DOI: 10.1016/j.xpro.2020.100045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Isolation of high-quantity and high-quality ventricular cardiomyocytes from adult rats is critical to study heart physiology and pathology and for drug toxicity screening. It remains challenging to produce a high yield of viable cardiomyocytes from rats. Here, we present our modified enzymatic digestion protocol that relies on the Langendorff device to generate large numbers of viable cardiomyocytes consistently. The most critical parts of this protocol are the selection of rat age and digestion time to obtain viable cardiomyocytes. For complete details on the use and execution of this protocol, please refer to Liu et al. (2019) and Qin et al. (2020).
Collapse
Affiliation(s)
- Xiangang Tian
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Department of Cardiovascular Surgery, Daping Hospital, Army Medical Center of PLA, Chongqing 400037, China
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Bilin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wenting Jiang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yuan Qin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|