1
|
Zuo W, Sun R, Ji Z, Ma G. Macrophage-driven cardiac inflammation and healing: insights from homeostasis and myocardial infarction. Cell Mol Biol Lett 2023; 28:81. [PMID: 37858035 PMCID: PMC10585879 DOI: 10.1186/s11658-023-00491-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Early and prompt reperfusion therapy has markedly improved the survival rates among patients enduring myocardial infarction (MI). Nonetheless, the resulting adverse remodeling and the subsequent onset of heart failure remain formidable clinical management challenges and represent a primary cause of disability in MI patients worldwide. Macrophages play a crucial role in immune system regulation and wield a profound influence over the inflammatory repair process following MI, thereby dictating the degree of myocardial injury and the subsequent pathological remodeling. Despite numerous previous biological studies that established the classical polarization model for macrophages, classifying them as either M1 pro-inflammatory or M2 pro-reparative macrophages, this simplistic categorization falls short of meeting the precision medicine standards, hindering the translational advancement of clinical research. Recently, advances in single-cell sequencing technology have facilitated a more profound exploration of macrophage heterogeneity and plasticity, opening avenues for the development of targeted interventions to address macrophage-related factors in the aftermath of MI. In this review, we provide a summary of macrophage origins, tissue distribution, classification, and surface markers. Furthermore, we delve into the multifaceted roles of macrophages in maintaining cardiac homeostasis and regulating inflammation during the post-MI period.
Collapse
Affiliation(s)
- Wenjie Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing, 210009, China
| | - Renhua Sun
- Department of Cardiology, Yancheng No. 1 People's Hospital, No. 66 South Renmin Road, Yancheng, 224000, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing, 210009, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing, 210009, China.
| |
Collapse
|
2
|
Wu M, Wu Y, Tang S, Huang J, Wu Y. Single-cell RNA-seq uncovers distinct pathways and genes in endothelial cells during atherosclerosis progression. Front Mol Biosci 2023; 10:1176267. [PMID: 37325477 PMCID: PMC10266549 DOI: 10.3389/fmolb.2023.1176267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Background: Atherosclerosis (AS) is a chronic inflammatory disease involving various cell types, cytokines, and adhesion molecules. Herein, we aimed to uncover its key molecular mechanisms by single-cell RNA-seq (scRNA-seq) analysis. Methods: ScRNA-seq data of cells from atherosclerotic human coronary arteries were analyzed using the Seurat package. Cell types were clustered, and differentially expressed genes (DEGs) were screened. GSVA (Gene Set Variation Analysis) scores of hub pathways were compared among different cell clusters. DEGs in endothelial cells between apolipoprotein-E (ApoE)-/- mice and specific TGFbR1/2 KO ApoE-/- mice fed with high-fat diet were overlapped with those from human AS coronary arteries. In fluid shear stress and AS, hub genes were determined based on the protein-protein interaction (PPI) network, which were verified in ApoE-/- mice. Finally, hub genes were validated in three pairs of AS coronary arteries and normal tissues by histopathological examination. Results: ScRNA-seq identified nine cell clusters in human coronary arteries, namely, fibroblasts, endothelial cells, macrophages, B cells, adipocytes, HSCs, NK cells, CD8+ T cells, and monocytes. Among them, endothelial cells had the lowest fluid shear stress and AS and TGF-beta signaling pathway scores. Compared to ApoE-/- mice fed with normal diet, fluid shear stress and AS and TGF-beta scores were both significantly lower in endothelial cells from TGFbR1/2 KO ApoE-/- mice fed with normal or high-fat diet. Furthermore, the two hub pathways had a positive correlation. Three hub genes (ICAM1, KLF2, and VCAM1) were identified, and their expression was distinctly downregulated in endothelial cells from TGFbR1/2 KO ApoE-/- mice fed with normal or high-fat diet than in those from ApoE-/- mice fed with a normal diet, which were confirmed in human AS coronary artery. Conclusion: Our findings clarified the pivotal impacts of pathways (fluid shear stress and AS and TGF-beta) and genes (ICAM1, KLF2, and VCAM1) in endothelial cells on AS progression.
Collapse
Affiliation(s)
- Min Wu
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Yijin Wu
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Shulin Tang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Jinsong Huang
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Yueheng Wu
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| |
Collapse
|
3
|
Yu L, Zhang Y, Liu C, Wu X, Wang S, Sui W, Zhang Y, Zhang C, Zhang M. Heterogeneity of macrophages in atherosclerosis revealed by single-cell RNA sequencing. FASEB J 2023; 37:e22810. [PMID: 36786718 DOI: 10.1096/fj.202201932rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
Technology at the single-cell level has advanced dramatically in characterizing molecular heterogeneity. These technologies have enabled cell subtype diversity to be seen in all tissues, including atherosclerotic plaques. Critical in atherosclerosis pathogenesis and progression are macrophages. Previous studies have only determined macrophage phenotypes within the plaque, mainly by bulk analysis. However, recent progress in single-cell technologies now enables the comprehensive mapping of macrophage subsets and phenotypes present in plaques. In this review, we have updated and discussed the definition and classification of macrophage subsets in mice and humans using single-cell RNA sequencing. We summarized the different classification methods and perspectives: traditional classification with an updated scoring system, inflammatory macrophages, foamy macrophages, and atherosclerotic-resident macrophages. In addition, some special types of macrophages were identified by specific markers, including IFN-inducible and cavity macrophages. Furthermore, we discussed macrophage subset-specific markers and their functions. In the future, these novel insights into the characteristics and phenotypes of these macrophage subsets within atherosclerotic plaques can provide additional therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Liwen Yu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yujie Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Changhao Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Wu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shasha Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenhai Sui
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
4
|
Khozyainova AA, Valyaeva AA, Arbatsky MS, Isaev SV, Iamshchikov PS, Volchkov EV, Sabirov MS, Zainullina VR, Chechekhin VI, Vorobev RS, Menyailo ME, Tyurin-Kuzmin PA, Denisov EV. Complex Analysis of Single-Cell RNA Sequencing Data. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:231-252. [PMID: 37072324 PMCID: PMC10000364 DOI: 10.1134/s0006297923020074] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 03/12/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) is a revolutionary tool for studying the physiology of normal and pathologically altered tissues. This approach provides information about molecular features (gene expression, mutations, chromatin accessibility, etc.) of cells, opens up the possibility to analyze the trajectories/phylogeny of cell differentiation and cell-cell interactions, and helps in discovery of new cell types and previously unexplored processes. From a clinical point of view, scRNA-seq facilitates deeper and more detailed analysis of molecular mechanisms of diseases and serves as a basis for the development of new preventive, diagnostic, and therapeutic strategies. The review describes different approaches to the analysis of scRNA-seq data, discusses the advantages and disadvantages of bioinformatics tools, provides recommendations and examples of their successful use, and suggests potential directions for improvement. We also emphasize the need for creating new protocols, including multiomics ones, for the preparation of DNA/RNA libraries of single cells with the purpose of more complete understanding of individual cells.
Collapse
Affiliation(s)
- Anna A Khozyainova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia.
| | - Anna A Valyaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Mikhail S Arbatsky
- Laboratory of Artificial Intelligence and Bioinformatics, The Russian Clinical Research Center for Gerontology, Pirogov Russian National Medical University, Moscow, 129226, Russia
- School of Public Administration, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Sergey V Isaev
- Research Institute of Personalized Medicine, National Center for Personalized Medicine of Endocrine Diseases, National Medical Research Center for Endocrinology, Moscow, 117036, Russia
| | - Pavel S Iamshchikov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia
- Laboratory of Complex Analysis of Big Bioimage Data, National Research Tomsk State University, Tomsk, 634050, Russia
| | - Egor V Volchkov
- Department of Oncohematology, Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
| | - Marat S Sabirov
- Laboratory of Bioinformatics and Molecular Genetics, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, 119334, Russia
| | - Viktoria R Zainullina
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia
| | - Vadim I Chechekhin
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Rostislav S Vorobev
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia
| | - Maxim E Menyailo
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia
| | - Pyotr A Tyurin-Kuzmin
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Evgeny V Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia
| |
Collapse
|
5
|
Wang Y, Wang Q, Xu D. New insights into macrophage subsets in atherosclerosis. J Mol Med (Berl) 2022; 100:1239-1251. [PMID: 35930063 DOI: 10.1007/s00109-022-02224-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 12/11/2022]
Abstract
Macrophages in atherosclerotic patients are notably plastic and heterogeneous. Single-cell RNA sequencing (Sc RNA-seq) can provide information about all the RNAs in individual cells, and it is used to identify cell subpopulations in atherosclerosis (AS) and reveal the heterogeneity of these cells. Recently, some findings from Sc RNA-seq experiments have suggested the existence of multiple macrophage subsets in atherosclerotic plaque lesions, and these subsets exhibit significant differences in their gene expression levels and functions. These cells affect various aspects of plaque lesion development, stabilization, and regression, as well as plaque rupture. This article aims to review the content and results of current studies that used RNA-seq to explore the different types of macrophages in AS and the related molecular mechanisms as well as to identify the potential roles of these macrophage types in the pathogenesis of atherosclerotic plaques. Also, this review listed some new therapeutic targets for delaying atherosclerotic lesion progression and treatment based on the experimental results.
Collapse
Affiliation(s)
- Yurong Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qiong Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
6
|
Exploring COVID-19 at the single-cell level: a narrative review. JOURNAL OF BIO-X RESEARCH 2022. [DOI: 10.1097/jbr.0000000000000109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
7
|
Fan Y, Zhou H, Liu X, Li J, Xu K, Fu X, Ye L, Li G. Applications of Single-Cell RNA Sequencing in Cardiovascular Research. Front Cell Dev Biol 2022; 9:810232. [PMID: 35174168 PMCID: PMC8841340 DOI: 10.3389/fcell.2021.810232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/14/2021] [Indexed: 11/28/2022] Open
Abstract
In recent years, cardiovascular disease (CVD) continues to be the leading cause of global disease burden. Extensive efforts have been made across basic, translational, and clinical research domains to curb the CVD epidemic and improve the health of the population. The successful completion of the Human Genome Project catapulted sequencing technology into the mainstream and aroused the interests of clinicians and scientific researchers alike. Advances in single-cell RNA sequencing (scRNA-seq), which is based on the transcriptional phenotypes of individual cells, have enabled the investigation of cellular fate, heterogeneity, and cell–cell interactions, as well as cell lineage determination, at a single-cell resolution. In this review, we summarize recent findings on the embryological development of the cardiovascular system and the pathogenesis and treatment of cardiovascular disease, as revealed by scRNA-seq technology. In particular, we discuss how scRNA-seq can help identify potential targets for the treatment of cardiovascular diseases and conclude with future perspectives for scRNA-seq.
Collapse
Affiliation(s)
- Yu Fan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Obstetrics, Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Han Zhou
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xuexue Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jingyan Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Ke Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xiaodong Fu
- Department of Obstetrics, Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lei Ye
- National Heart Research Institute of Singapore, Singapore, Singapore
- *Correspondence: Lei Ye, ; Guang Li,
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- *Correspondence: Lei Ye, ; Guang Li,
| |
Collapse
|
8
|
Ma WF, Hodonsky CJ, Turner AW, Wong D, Song Y, Mosquera JV, Ligay AV, Slenders L, Gancayco C, Pan H, Barrientos NB, Mai D, Alencar GF, Owsiany K, Owens GK, Reilly MP, Li M, Pasterkamp G, Mokry M, van der Laan SW, Khomtchouk BB, Miller CL. Enhanced single-cell RNA-seq workflow reveals coronary artery disease cellular cross-talk and candidate drug targets. Atherosclerosis 2022; 340:12-22. [PMID: 34871816 PMCID: PMC8919504 DOI: 10.1016/j.atherosclerosis.2021.11.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND AIMS The atherosclerotic plaque microenvironment is highly complex, and selective agents that modulate plaque stability are not yet available. We sought to develop a scRNA-seq analysis workflow to investigate this environment and uncover potential therapeutic approaches. We designed a user-friendly, reproducible workflow that will be applicable to other disease-specific scRNA-seq datasets. METHODS Here we incorporated automated cell labeling, pseudotemporal ordering, ligand-receptor evaluation, and drug-gene interaction analysis into a ready-to-deploy workflow. We applied this pipeline to further investigate a previously published human coronary single-cell dataset by Wirka et al. Notably, we developed an interactive web application to enable further exploration and analysis of this and other cardiovascular single-cell datasets. RESULTS We revealed distinct derivations of fibroblast-like cells from smooth muscle cells (SMCs), and showed the key changes in gene expression along their de-differentiation path. We highlighted several key ligand-receptor interactions within the atherosclerotic environment through functional expression profiling and revealed several avenues for future pharmacological development for precision medicine. Further, our interactive web application, PlaqView (www.plaqview.com), allows lay scientists to explore this and other datasets and compare scRNA-seq tools without prior coding knowledge. CONCLUSIONS This publicly available workflow and application will allow for more systematic and user-friendly analysis of scRNA datasets in other disease and developmental systems. Our analysis pipeline provides many hypothesis-generating tools to unravel the etiology of coronary artery disease. We also highlight potential mechanisms for several drugs in the atherosclerotic cellular environment. Future releases of PlaqView will feature more scRNA-seq and scATAC-seq atherosclerosis-related datasets to provide a critical resource for the field, and to promote data harmonization and biological interpretation.
Collapse
Affiliation(s)
- Wei Feng Ma
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA, 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Chani J Hodonsky
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Adam W Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Doris Wong
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA , 22908, USA
| | - Yipei Song
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA; Department of Computer Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jose Verdezoto Mosquera
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA , 22908, USA
| | - Alexandra V Ligay
- Master of Science in Biomedical Informatics (MScBMI) Program, University of Chicago, Chicago, IL, 60637, USA
| | - Lotte Slenders
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, 3584, CX, Utrecht, the Netherlands
| | - Christina Gancayco
- Research Computing, University of Virginia, Charlottesville, VA, 22908, USA
| | - Huize Pan
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, 10032, USA
| | - Nelson B Barrientos
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - David Mai
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Gabriel F Alencar
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA
| | - Katherine Owsiany
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA, 22908, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, 10032, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, 3584, CX, Utrecht, the Netherlands
| | - Michal Mokry
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, 3584, CX, Utrecht, the Netherlands; Department of Experimental Cardiology, University Medical Center Utrecht, 3584, CX, Utrecht, the Netherlands
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, 3584, CX, Utrecht, the Netherlands
| | - Bohdan B Khomtchouk
- Department of Medicine, Section of Computational Biomedicine and Biomedical Data Science, Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL , 60637, USA.
| | - Clint L Miller
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA , 22908, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
9
|
Gao XF, Chen AQ, Wang ZM, Wang F, Luo S, Chen SY, Gu Y, Kong XQ, Zuo GF, Chen Y, Ge Z, Zhang JJ, Chen SL. Single-Cell RNA Sequencing of the Rat Carotid Arteries Uncovers Potential Cellular Targets of Neointimal Hyperplasia. Front Cardiovasc Med 2021; 8:751525. [PMID: 34957241 PMCID: PMC8697976 DOI: 10.3389/fcvm.2021.751525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022] Open
Abstract
Aims: In-stent restenosis (ISR) remains an Achilles heel of drug-eluting stents despite technical advances in devices and procedural techniques. Neointimal hyperplasia (NIH) is the most important pathophysiological process of ISR. The present study mapped normal arteries and stenotic arteries to uncover potential cellular targets of neointimal hyperplasia. Methods and Results: By comparing the left (control) and right (balloon injury) carotid arteries of rats, we mapped 11 clusters in normal arteries and 11 mutual clusters in both the control and experimental groups. Different clusters were categorized into 6 cell types, including vascular smooth muscle cells (VSMCs), fibroblasts, endothelial cells (ECs), macrophages, unknown cells and others. An abnormal cell type expressing both VSMC and fibroblast markers at the same time was termed a transitional cell via pseudotime analysis. Due to the high proportion of VSMCs, we divided them into 6 clusters and analyzed their relationship with VSMC phenotype switching. Moreover, N-myristoyltransferase 1 (NMT1) was verified as a credible VSMC synthetic phenotype marker. Finally, we proposed several novel target genes by disease susceptibility gene analysis, such as Cyp7a1 and Cdk4, which should be validated in future studies. Conclusion: Maps of the heterogeneous cellular landscape in the carotid artery were defined by single-cell RNA sequencing and revealed several cell types with their internal relations in the ISR model. This study highlights the crucial role of VSMC phenotype switching in the progression of neointimal hyperplasia and provides clues regarding the underlying mechanism of NIH.
Collapse
Affiliation(s)
- Xiao-Fei Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Cardiology, Nanjing Heart Centre, Nanjing, China
| | - Ai-Qun Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhi-Mei Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shuai Luo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Si-Yu Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang-Quan Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guang-Feng Zuo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Department of Neurology, Medical School, Affiliated Drum Tower Hospital of Nanjing University, Nanjing, China
| | - Zhen Ge
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jun-Jie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Cardiology, Nanjing Heart Centre, Nanjing, China
| | - Shao-Liang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Cardiology, Nanjing Heart Centre, Nanjing, China
| |
Collapse
|
10
|
Adossa N, Khan S, Rytkönen KT, Elo LL. Computational strategies for single-cell multi-omics integration. Comput Struct Biotechnol J 2021; 19:2588-2596. [PMID: 34025945 PMCID: PMC8114078 DOI: 10.1016/j.csbj.2021.04.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023] Open
Abstract
Single-cell omics technologies are currently solving biological and medical problems that earlier have remained elusive, such as discovery of new cell types, cellular differentiation trajectories and communication networks across cells and tissues. Current advances especially in single-cell multi-omics hold high potential for breakthroughs by integration of multiple different omics layers. To pair with the recent biotechnological developments, many computational approaches to process and analyze single-cell multi-omics data have been proposed. In this review, we first introduce recent developments in single-cell multi-omics in general and then focus on the available data integration strategies. The integration approaches are divided into three categories: early, intermediate, and late data integration. For each category, we describe the underlying conceptual principles and main characteristics, as well as provide examples of currently available tools and how they have been applied to analyze single-cell multi-omics data. Finally, we explore the challenges and prospective future directions of single-cell multi-omics data integration, including examples of adopting multi-view analysis approaches used in other disciplines to single-cell multi-omics.
Collapse
Affiliation(s)
- Nigatu Adossa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Sofia Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Kalle T. Rytkönen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Laura L. Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| |
Collapse
|
11
|
Garvin AM, Hale TM. Fibroblast shifts in the hypertensive heart: How single cell RNA-sequencing will accelerate advancements in anti-fibrotic therapies. J Mol Cell Cardiol 2020; 151:44-45. [PMID: 33181125 DOI: 10.1016/j.yjmcc.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022]
Affiliation(s)
- Alexandra M Garvin
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA.
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA.
| |
Collapse
|