1
|
Palomino TV, Muddiman DC. Mass spectrometry imaging of N-linked glycans: Fundamentals and recent advances. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38934211 DOI: 10.1002/mas.21895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
With implications in several medical conditions, N-linked glycosylation is one of the most important posttranslation modifications present in all living organisms. Due to their nontemplate synthesis, glycan structures are extraordinarily complex and require multiple analytical techniques for complete structural elucidation. Mass spectrometry is the most common way to investigate N-linked glycans; however, with techniques such as liquid-chromatography mass spectrometry, there is complete loss of spatial information. Mass spectrometry imaging is a transformative analytical technique that can visualize the spatial distribution of ions within a biological sample and has been shown to be a powerful tool to investigate N-linked glycosylation. This review covers the fundamentals of mass spectrometry imaging and N-linked glycosylation and highlights important findings of recent key studies aimed at expanding and improving the glycomics imaging field.
Collapse
Affiliation(s)
- Tana V Palomino
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
3
|
Wu L, Liu H, Xu X, Huang C, Li Y, Xiao X, Zhan Y, Gao C. Serum N-glycomic profiling identifies candidate biomarker panels for assessing coronary artery stenosis severity. Heliyon 2024; 10:e29443. [PMID: 38633623 PMCID: PMC11021961 DOI: 10.1016/j.heliyon.2024.e29443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Stenosis severity may escalate over the course of coronary artery disease (CAD), increasing the risk of death for the patient. Conventionally, the assessment of stenosis degree relies on invasive coronary angiography (ICA), an invasive examination unsuitable for patients in poor physical condition or those with contrast allergies and one that imposes a psychological burden on patients. Although abnormal serum N-glycan profiles have exhibited robust associations with various cardiovascular diseases, including CAD, their potential in diagnosing CAD stenosis remains to be determined. In this study, we performed a comprehensive analysis of serum N-glycome from 132 patients who underwent ICA and 27 healthy controls using MALDI-TOF-mass spectrometry. The patients who underwent ICA examination were categorized into four groups based on stenosis severity: no/mild/moderate/severe stenosis. Twenty-seven N-glycans were directly quantified, and 47 derived glycan traits were obtained. Notably, among these 74 glycan features, 18 exhibited variations across the study groups. Using a combination of least absolute shrinkage and selection operator and logistic regression analyses, we developed five diagnostic models for recognizing stenosis degree. Our results suggested that alterations in serum N-glycosylation modifications might be valuable for identifying stenosis degree and monitoring disease progression in individuals with CAD. It is expected to offer a noninvasive alternative for those who could not undergo ICA because of various reasons. However, the diagnostic potential of serum N-glycan panels as biomarkers requires multicenter, large cohort validation in the future.
Collapse
Affiliation(s)
- Linlin Wu
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Haoqi Liu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Xuewen Xu
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Chenjun Huang
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Yueyue Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences and Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, China
| | - Xiao Xiao
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Yueping Zhan
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Chunfang Gao
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China
| |
Collapse
|
4
|
Macdonald JK, Mehta AS, Drake RR, Angel PM. Molecular analysis of the extracellular microenvironment: from form to function. FEBS Lett 2024; 598:602-620. [PMID: 38509768 PMCID: PMC11049795 DOI: 10.1002/1873-3468.14852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
The extracellular matrix (ECM) proteome represents an important component of the tissue microenvironment that controls chemical flux and induces cell signaling through encoded structure. The analysis of the ECM represents an analytical challenge through high levels of post-translational modifications, protease-resistant structures, and crosslinked, insoluble proteins. This review provides a comprehensive overview of the analytical challenges involved in addressing the complexities of spatially profiling the extracellular matrix proteome. A synopsis of the process of synthesizing the ECM structure, detailing inherent chemical complexity, is included to present the scope of the analytical challenge. Current chromatographic and spatial techniques addressing these challenges are detailed. Capabilities for multimodal multiplexing with cellular populations are discussed with a perspective on developing a holistic view of disease processes that includes both the cellular and extracellular microenvironment.
Collapse
Affiliation(s)
- Jade K Macdonald
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
5
|
Piga I, Magni F, Smith A. The journey towards clinical adoption of MALDI-MS-based imaging proteomics: from current challenges to future expectations. FEBS Lett 2024; 598:621-634. [PMID: 38140823 DOI: 10.1002/1873-3468.14795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
Among the spatial omics techniques available, mass spectrometry imaging (MSI) represents one of the most promising owing to its capability to map the distribution of hundreds of peptides and proteins, as well as other classes of biomolecules, within a complex sample background in a multiplexed and relatively high-throughput manner. In particular, matrix-assisted laser desorption/ionisation (MALDI-MSI) has come to the fore and established itself as the most widely used technique in clinical research. However, the march of this technique towards clinical utility has been hindered by issues related to method reproducibility, appropriate biocomputational tools, and data storage. Notwithstanding these challenges, significant progress has been achieved in recent years regarding multiple facets of the technology and has rendered it more suitable for a possible clinical role. As such, there is now more robust and extensive evidence to suggest that the technology has the potential to support clinical decision-making processes under appropriate circumstances. In this review, we will discuss some of the recent developments that have facilitated this progress and outline some of the more promising clinical proteomics applications which have been developed with a clear goal towards implementation in mind.
Collapse
Affiliation(s)
- Isabella Piga
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Andrew Smith
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| |
Collapse
|
6
|
Iwamoto S, Kobayashi T, Hanamatsu H, Yokota I, Teranishi Y, Iwamoto A, Kitagawa M, Ashida S, Sakurai A, Matsuo S, Myokan Y, Sugimoto A, Ushioda R, Nagata K, Gotoh N, Nakajima K, Nishikaze T, Furukawa JI, Itano N. Tolerable glycometabolic stress boosts cancer cell resilience through altered N-glycosylation and Notch signaling activation. Cell Death Dis 2024; 15:53. [PMID: 38225221 PMCID: PMC10789756 DOI: 10.1038/s41419-024-06432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024]
Abstract
Chronic metabolic stress paradoxically elicits pro-tumorigenic signals that facilitate cancer stem cell (CSC) development. Therefore, elucidating the metabolic sensing and signaling mechanisms governing cancer cell stemness can provide insights into ameliorating cancer relapse and therapeutic resistance. Here, we provide convincing evidence that chronic metabolic stress triggered by hyaluronan production augments CSC-like traits and chemoresistance by partially impairing nucleotide sugar metabolism, dolichol lipid-linked oligosaccharide (LLO) biosynthesis and N-glycan assembly. Notably, preconditioning with either low-dose tunicamycin or 2-deoxy-D-glucose, which partially interferes with LLO biosynthesis, reproduced the promoting effects of hyaluronan production on CSCs. Multi-omics revealed characteristic changes in N-glycan profiles and Notch signaling activation in cancer cells exposed to mild glycometabolic stress. Restoration of N-glycan assembly with glucosamine and mannose supplementation and Notch signaling blockade attenuated CSC-like properties and further enhanced the therapeutic efficacy of cisplatin. Therefore, our findings uncover a novel mechanism by which tolerable glycometabolic stress boosts cancer cell resilience through altered N-glycosylation and Notch signaling activation.
Collapse
Affiliation(s)
- Shungo Iwamoto
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | | | - Hisatoshi Hanamatsu
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ikuko Yokota
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan
| | - Yukiko Teranishi
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Akiho Iwamoto
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Miyu Kitagawa
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Sawako Ashida
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Ayane Sakurai
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Suguru Matsuo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Yuma Myokan
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Aiyu Sugimoto
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Ryo Ushioda
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- JT Biohistory Research Hall, Takatsuki, Osaka, Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuki Nakajima
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Takashi Nishikaze
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Jun-Ichi Furukawa
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan
| | - Naoki Itano
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.
| |
Collapse
|
7
|
Abstract
Imaging mass spectrometry is a well-established technology that can easily and succinctly communicate the spatial localization of molecules within samples. This review communicates the recent advances in the field, with a specific focus on matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) applied on tissues. The general sample preparation strategies for different analyte classes are explored, including special considerations for sample types (fresh frozen or formalin-fixed,) strategies for various analytes (lipids, metabolites, proteins, peptides, and glycans) and how multimodal imaging strategies can leverage the strengths of each approach is mentioned. This work explores appropriate experimental design approaches and standardization of processes needed for successful studies, as well as the various data analysis platforms available to analyze data and their strengths. The review concludes with applications of imaging mass spectrometry in various fields, with a focus on medical research, and some examples from plant biology and microbe metabolism are mentioned, to illustrate the breadth and depth of MALDI IMS.
Collapse
Affiliation(s)
- Jessica L Moore
- Department of Proteomics, Discovery Life Sciences, Huntsville, Alabama 35806, United States
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
8
|
Anousakis-Vlachochristou N, Athanasiadou D, Carneiro KM, Toutouzas K. Focusing on the Native Matrix Proteins in Calcific Aortic Valve Stenosis. JACC Basic Transl Sci 2023; 8:1028-1039. [PMID: 37719438 PMCID: PMC10504402 DOI: 10.1016/j.jacbts.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 09/19/2023]
Abstract
Calcific aortic valve stenosis (CAVS) is a widespread valvular heart disease affecting people in aging societies, primarily characterized by fibrosis, inflammation, and progressive calcification, leading to valve orifice stenosis. Understanding the factors associated with CAVS onset and progression is crucial to develop effective future pharmaceutical therapies. In CAVS, native extracellular matrix proteins modifications, play a significant role in calcification in vitro and in vivo. This work aimed to review the evidence on the alterations of structural native extracellular matrix proteins involved in calcification development during CAVS and highlight its link to deregulated biomechanical function.
Collapse
Affiliation(s)
| | | | - Karina M.M. Carneiro
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Konstantinos Toutouzas
- National and Kapodistrian University of Athens, Medical School, First Department of Cardiology, Athens, Greece
| |
Collapse
|
9
|
Blaser MC, Kraler S, Lüscher TF, Aikawa E. Network-Guided Multiomic Mapping of Aortic Valve Calcification. Arterioscler Thromb Vasc Biol 2023; 43:417-426. [PMID: 36727519 PMCID: PMC9975082 DOI: 10.1161/atvbaha.122.318334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Abstract
Despite devastating clinical sequelae of calcific aortic valve disease that range from left ventricular remodeling to arrhythmias, heart failure, and early death, the molecular insights into disease initiation and progression are limited and pharmacotherapies remain unavailable. The pathobiology of calcific aortic valve disease is complex and comprehensive studies are challenging valvular calcification is heterogeneous and occurs preferentially on the aortic surface, along a fibrocalcific spectrum. Here, we review efforts to study (epi-)genomic, transcriptomic, proteomic, and metabolomic aspects of aortic valve calcification in combination with network medicine-/systems biology-based strategies to integrate multilayered omics datasets and prioritize druggable targets for experimental validation studies. Ultimately, such holistic approach efforts may open therapeutic avenues that go beyond invasive and costly valve replacement therapy.
Collapse
Affiliation(s)
- Mark C. Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Schlieren, CH
| | - Thomas F. Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, CH
- Heart Division, Royal Brompton & Harefield Hospitals, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Peng W, Reyes CDG, Gautam S, Yu A, Cho BG, Goli M, Donohoo K, Mondello S, Kobeissy F, Mechref Y. MS-based glycomics and glycoproteomics methods enabling isomeric characterization. MASS SPECTROMETRY REVIEWS 2023; 42:577-616. [PMID: 34159615 PMCID: PMC8692493 DOI: 10.1002/mas.21713] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 05/03/2023]
Abstract
Glycosylation is one of the most significant and abundant posttranslational modifications in mammalian cells. It mediates a wide range of biofunctions, including cell adhesion, cell communication, immune cell trafficking, and protein stability. Also, aberrant glycosylation has been associated with various diseases such as diabetes, Alzheimer's disease, inflammation, immune deficiencies, congenital disorders, and cancers. The alterations in the distributions of glycan and glycopeptide isomers are involved in the development and progression of several human diseases. However, the microheterogeneity of glycosylation brings a great challenge to glycomic and glycoproteomic analysis, including the characterization of isomers. Over several decades, different methods and approaches have been developed to facilitate the characterization of glycan and glycopeptide isomers. Mass spectrometry (MS) has been a powerful tool utilized for glycomic and glycoproteomic isomeric analysis due to its high sensitivity and rich structural information using different fragmentation techniques. However, a comprehensive characterization of glycan and glycopeptide isomers remains a challenge when utilizing MS alone. Therefore, various separation methods, including liquid chromatography, capillary electrophoresis, and ion mobility, were developed to resolve glycan and glycopeptide isomers before MS. These separation techniques were coupled to MS for a better identification and quantitation of glycan and glycopeptide isomers. Additionally, bioinformatic tools are essential for the automated processing of glycan and glycopeptide isomeric data to facilitate isomeric studies in biological cohorts. Here in this review, we discuss commonly employed MS-based techniques, separation hyphenated MS methods, and software, facilitating the separation, identification, and quantitation of glycan and glycopeptide isomers.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Kaitlyn Donohoo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
11
|
Yasuhara J, Schultz K, Bigelow AM, Garg V. Congenital aortic valve stenosis: from pathophysiology to molecular genetics and the need for novel therapeutics. Front Cardiovasc Med 2023; 10:1142707. [PMID: 37187784 PMCID: PMC10175644 DOI: 10.3389/fcvm.2023.1142707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Congenital aortic valve stenosis (AVS) is one of the most common valve anomalies and accounts for 3%-6% of cardiac malformations. As congenital AVS is often progressive, many patients, both children and adults, require transcatheter or surgical intervention throughout their lives. While the mechanisms of degenerative aortic valve disease in the adult population are partially described, the pathophysiology of adult AVS is different from congenital AVS in children as epigenetic and environmental risk factors play a significant role in manifestations of aortic valve disease in adults. Despite increased understanding of genetic basis of congenital aortic valve disease such as bicuspid aortic valve, the etiology and underlying mechanisms of congenital AVS in infants and children remain unknown. Herein, we review the pathophysiology of congenitally stenotic aortic valves and their natural history and disease course along with current management strategies. With the rapid expansion of knowledge of genetic origins of congenital heart defects, we also summarize the literature on the genetic contributors to congenital AVS. Further, this increased molecular understanding has led to the expansion of animal models with congenital aortic valve anomalies. Finally, we discuss the potential to develop novel therapeutics for congenital AVS that expand on integration of these molecular and genetic advances.
Collapse
Affiliation(s)
- Jun Yasuhara
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
- Correspondence: Jun Yasuhara Vidu Garg
| | - Karlee Schultz
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Amee M. Bigelow
- Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
- Correspondence: Jun Yasuhara Vidu Garg
| |
Collapse
|
12
|
Clift CL, Saunders J, Drake RR, Angel PM. Perspectives on pediatric congenital aortic valve stenosis: Extracellular matrix proteins, post translational modifications, and proteomic strategies. Front Cardiovasc Med 2022; 9:1024049. [PMID: 36439995 PMCID: PMC9685993 DOI: 10.3389/fcvm.2022.1024049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
In heart valve biology, organization of the extracellular matrix structure is directly correlated to valve function. This is especially true in cases of pediatric congenital aortic valve stenosis (pCAVS), in which extracellular matrix (ECM) dysregulation is a hallmark of the disease, eventually leading to left ventricular hypertrophy and heart failure. Therapeutic strategies are limited, especially in pediatric cases in which mechanical and tissue engineered valve replacements may not be a suitable option. By identifying mechanisms of translational and post-translational dysregulation of ECM in CAVS, potential drug targets can be identified, and better bioengineered solutions can be developed. In this review, we summarize current knowledge regarding ECM proteins and their post translational modifications (PTMs) during aortic valve development and disease and contributing factors to ECM dysregulation in CAVS. Additionally, we aim to draw parallels between other fibrotic disease and contributions to ECM post-translational modifications. Finally, we explore the current treatment options in pediatrics and identify how the field of proteomics has advanced in recent years, highlighting novel characterization methods of ECM and PTMs that may be used to identify potential therapeutic strategies relevant to pCAVS.
Collapse
Affiliation(s)
- Cassandra L. Clift
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
- Division of Cardiovascular Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Janet Saunders
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
- *Correspondence: Peggi M. Angel,
| |
Collapse
|
13
|
Veličković D, Sharma K, Alexandrov T, Hodgin JB, Anderton CR. Controlled Humidity Levels for Fine Spatial Detail Information in Enzyme-Assisted N-Glycan MALDI MSI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1577-1580. [PMID: 35802124 DOI: 10.1021/jasms.2c00120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Investigation of the spatial distribution of N-glycans in tissue specimens has emerged as a powerful tool in clinical research, in part, because altered N-glycans are often a hallmark of disease progression. Mass spectrometry imaging of N-glycans relies on peptide N-glycanase spraying and tissue incubation for efficient in situ release of N-glycans from their carrier proteins. Unstandardized and uncontrolled incubation steps often cause significant delocalization of released N-glycans, resulting in the inability to link given N-glycan composition to a specific microanatomical region in the tissue. Herein, we optimized the incubation step to provide accurate and sensitive MALDI-MSI of N-glycans. Specifically, we tested saturated solutions of various salts that maintain constant relative humidity in the incubation chamber. We showed that the best performance was achieved using a saturated solution of KNO3 that maintains an 89% RH. Under these conditions, near maximal sensitivity was achieved with the minutest ion delocalization, which we demonstrated at a 35 μm spatial resolution, where we observed six distinct spatial patterns that colocalize to distinct microanatomical compartments in a kidney nephrectomy tissue section.
Collapse
Affiliation(s)
- Dušan Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kumar Sharma
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health, San Antonio, Texas 78229, United States
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jeffrey B Hodgin
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109 United States
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
14
|
Rujchanarong D, Scott D, Park Y, Brown S, Mehta AS, Drake R, Sandusky GE, Nakshatri H, Angel PM. Metabolic Links to Socioeconomic Stresses Uniquely Affecting Ancestry in Normal Breast Tissue at Risk for Breast Cancer. Front Oncol 2022; 12:876651. [PMID: 35832545 PMCID: PMC9273232 DOI: 10.3389/fonc.2022.876651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
A primary difference between black women (BW) and white women (WW) diagnosed with breast cancer is aggressiveness of the tumor. Black women have higher mortalities with similar incidence of breast cancer compared to other race/ethnicities, and they are diagnosed at a younger age with more advanced tumors with double the rate of lethal, triple negative breast cancers. One hypothesis is that chronic social and economic stressors result in ancestry-dependent molecular responses that create a tumor permissive tissue microenvironment in normal breast tissue. Altered regulation of N-glycosylation of proteins, a glucose metabolism-linked post-translational modification attached to an asparagine (N) residue, has been associated with two strong independent risk factors for breast cancer: increased breast density and body mass index (BMI). Interestingly, high body mass index (BMI) levels have been reported to associate with increases of cancer-associated N-glycan signatures. In this study, we used matrix assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) to investigate molecular pattern changes of N-glycosylation in ancestry defined normal breast tissue from BW and WW with significant 5-year risk of breast cancer by Gail score. N-glycosylation was tested against social stressors including marital status, single, education, economic status (income), personal reproductive history, the risk factors BMI and age. Normal breast tissue microarrays from the Susan G. Komen tissue bank (BW=43; WW= 43) were used to evaluate glycosylation against socioeconomic stress and risk factors. One specific N-glycan (2158 m/z) appeared dependent on ancestry with high sensitivity and specificity (AUC 0.77, Brown/Wilson p-value<0.0001). Application of a linear regression model with ancestry as group variable and socioeconomic covariates as predictors identified a specific N-glycan signature associated with different socioeconomic stresses. For WW, household income was strongly associated to certain N-glycans, while for BW, marital status (married and single) was strongly associated with the same N-glycan signature. Current work focuses on understanding if combined N-glycan biosignatures can further help understand normal breast tissue at risk. This study lays the foundation for understanding the complexities linking socioeconomic stresses and molecular factors to their role in ancestry dependent breast cancer risk.
Collapse
Affiliation(s)
- Denys Rujchanarong
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - Danielle Scott
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - Yeonhee Park
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Sean Brown
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - Richard Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| | - George E. Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
15
|
McKitrick TR, Ackerman ME, Anthony RM, Bennett CS, Demetriou M, Hudalla GA, Ribbeck K, Ruhl S, Woo CM, Yang L, Zost SJ, Schnaar RL, Doering TL. The Crossroads of Glycoscience, Infection, and Immunology. Front Microbiol 2021; 12:731008. [PMID: 34646251 PMCID: PMC8504252 DOI: 10.3389/fmicb.2021.731008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/12/2021] [Indexed: 01/21/2023] Open
Abstract
Advances in experimental capabilities in the glycosciences offer expanding opportunities for discovery in the broad areas of immunology and microbiology. These two disciplines overlap when microbial infection stimulates host immune responses and glycan structures are central in the processes that occur during all such encounters. Microbial glycans mediate host-pathogen interactions by acting as surface receptors or ligands, functioning as virulence factors, impeding host immune responses, or playing other roles in the struggle between host and microbe. In the context of the host, glycosylation drives cell–cell interactions that initiate and regulate the host response and modulates the effects of antibodies and soluble immune mediators. This perspective reports on a workshop organized jointly by the National Institute of Allergy and Infectious Diseases and the National Institute of Dental and Craniofacial Research in May 2020. The conference addressed the use of emerging glycoscience tools and resources to advance investigation of glycans and their roles in microbe-host interactions, immune-mediated diseases, and immune cell recognition and function. Future discoveries in these areas will increase fundamental scientific understanding and have the potential to improve diagnosis and treatment of infections and immune dysregulation.
Collapse
Affiliation(s)
- Tanya R McKitrick
- National Center for Functional Glycomics, Harvard Medical School, Boston, MA, United States
| | | | - Robert M Anthony
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Clay S Bennett
- Department of Chemistry, Tufts University, Medford, MA, United States
| | - Michael Demetriou
- Department of Neurology, Microbiology, and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Gregory A Hudalla
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Stefan Ruhl
- Department of Oral Biology, University at Buffalo School of Dental Medicine, Buffalo, NY, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States
| | | | - Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ronald L Schnaar
- Department of Pharmacology, Johns Hopkins University, Baltimore, MD, United States
| | - Tamara L Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
16
|
Veličković D, Bečejac T, Mamedov S, Sharma K, Ambalavanan N, Alexandrov T, Anderton CR. Rapid Automated Annotation and Analysis of N-Glycan Mass Spectrometry Imaging Data Sets Using NGlycDB in METASPACE. Anal Chem 2021; 93:13421-13425. [PMID: 34581565 DOI: 10.1021/acs.analchem.1c02347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Imaging N-glycan spatial distribution in tissues using mass spectrometry imaging (MSI) is emerging as a promising tool in biological and clinical applications. However, there is currently no high-throughput tool for visualization and molecular annotation of N-glycans in MSI data, which significantly slows down data processing and hampers the applicability of this approach. Here, we present how METASPACE, an open-source cloud engine for molecular annotation of MSI data, can be used to automatically annotate, visualize, analyze, and interpret high-resolution mass spectrometry-based spatial N-glycomics data. METASPACE is an emerging tool in spatial metabolomics, but the lack of compatible glycan databases has limited its application for comprehensive N-glycan annotations from MSI data sets. We created NGlycDB, a public database of N-glycans, by adapting available glycan databases. We demonstrate the applicability of NGlycDB in METASPACE by analyzing MALDI-MSI data from formalin-fixed paraffin-embedded (FFPE) human kidney and mouse lung tissue sections. We added NGlycDB to METASPACE for public use, thus, facilitating applications of MSI in glycobiology.
Collapse
Affiliation(s)
- Dušan Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Tamara Bečejac
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sergii Mamedov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Kumar Sharma
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health, San Antonio, Texas 78229, United States
| | - Namasivayam Ambalavanan
- Department of Pediatrics, School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California 92093, United States
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health, San Antonio, Texas 78229, United States
| |
Collapse
|
17
|
Angel PM, Rujchanarong D, Pippin S, Spruill L, Drake R. Mass Spectrometry Imaging of Fibroblasts: Promise and Challenge. Expert Rev Proteomics 2021; 18:423-436. [PMID: 34129411 PMCID: PMC8717608 DOI: 10.1080/14789450.2021.1941893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Fibroblasts maintain tissue and organ homeostasis through output of extracellular matrix that affects nearby cell signaling within the stroma. Altered fibroblast signaling contributes to many disease states and extracellular matrix secreted by fibroblasts has been used to stratify patient by outcome, recurrence, and therapeutic resistance. Recent advances in imaging mass spectrometry allow access to single cell fibroblasts and their ECM niche within clinically relevant tissue samples. AREAS COVERED We review biological and technical challenges as well as new solutions to proteomic access of fibroblast expression within the complex tissue microenvironment. Review topics cover conventional proteomic methods for single fibroblast analysis and current approaches to accessing single fibroblast proteomes by imaging mass spectrometry approaches. Strategies to target and evaluate the single cell stroma proteome on the basis of cell signaling are presented. EXPERT OPINION The promise of defining proteomic signatures from fibroblasts and their extracellular matrix niches is the discovery of new disease markers and the ability to refine therapeutic treatments. Several imaging mass spectrometry approaches exist to define the fibroblast in the setting of pathological changes from clinically acquired samples. Continued technology advances are needed to access and understand the stromal proteome and apply testing to the clinic.
Collapse
Affiliation(s)
- Peggi M. Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston SC USA
| | - Denys Rujchanarong
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston SC USA
| | - Sarah Pippin
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston SC USA
| | - Laura Spruill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| | - Richard Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston SC USA
| |
Collapse
|
18
|
Blaschke CRK, McDowell CT, Black AP, Mehta AS, Angel PM, Drake RR. Glycan Imaging Mass Spectrometry: Progress in Developing Clinical Diagnostic Assays for Tissues, Biofluids, and Cells. Clin Lab Med 2021; 41:247-266. [PMID: 34020762 PMCID: PMC8862151 DOI: 10.1016/j.cll.2021.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
N-glycan imaging mass spectrometry (IMS) can rapidly and reproducibly identify changes in disease-associated N-linked glycosylation that are linked with histopathology features in standard formalin-fixed paraffin-embedded tissue samples. It can detect multiple N-glycans simultaneously and has been used to identify specific N-glycans and carbohydrate structural motifs as possible cancer biomarkers. Recent advancements in instrumentation and sample preparation are also discussed. The tissue N-glycan IMS workflow has been adapted to new glass slide-based assays for effective and rapid analysis of clinical biofluids, cultured cells, and immunoarray-captured glycoproteins for detection of changes in glycosylation associated with disease.
Collapse
Affiliation(s)
- Calvin R K Blaschke
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, Charleston, SC 29425, USA
| | - Colin T McDowell
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, Charleston, SC 29425, USA
| | - Alyson P Black
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, Charleston, SC 29425, USA
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, Charleston, SC 29425, USA
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, Charleston, SC 29425, USA
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, Charleston, SC 29425, USA.
| |
Collapse
|
19
|
Abstract
Calcific aortic valve disease sits at the confluence of multiple world-wide epidemics of aging, obesity, diabetes, and renal dysfunction, and its prevalence is expected to nearly triple over the next 3 decades. This is of particularly dire clinical relevance, as calcific aortic valve disease can progress rapidly to aortic stenosis, heart failure, and eventually premature death. Unlike in atherosclerosis, and despite the heavy clinical toll, to date, no pharmacotherapy has proven effective to halt calcific aortic valve disease progression, with invasive and costly aortic valve replacement representing the only treatment option currently available. This substantial gap in care is largely because of our still-limited understanding of both normal aortic valve biology and the key regulatory mechanisms that drive disease initiation and progression. Drug discovery is further hampered by the inherent intricacy of the valvular microenvironment: a unique anatomic structure, a complex mixture of dynamic biomechanical forces, and diverse and multipotent cell populations collectively contributing to this currently intractable problem. One promising and rapidly evolving tactic is the application of multiomics approaches to fully define disease pathogenesis. Herein, we summarize the application of (epi)genomics, transcriptomics, proteomics, and metabolomics to the study of valvular heart disease. We also discuss recent forays toward the omics-based characterization of valvular (patho)biology at single-cell resolution; these efforts promise to shed new light on cellular heterogeneity in healthy and diseased valvular tissues and represent the potential to efficaciously target and treat key cell subpopulations. Last, we discuss systems biology- and network medicine-based strategies to extract meaning, mechanisms, and prioritized drug targets from multiomics datasets.
Collapse
Affiliation(s)
- Mark C. Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Schlieren, CH
| | - Thomas F. Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, CH
- Heart Division, Royal Brompton & Harefield Hospitals, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|